Classical Schubert Calculus Recall Classical Schubert Caledus
Record
Jentury 1 Ott at Grounausian Caledus Gr(k, n) = i subspaces of dim k in Cⁿ 3 Lecture 1 QH of Grassmannian **Sum over** We have sum over ② ^H (Gr(kn)) ⁼ ^⑰ ^Q j $x = \frac{1}{\sqrt{2}}$ $x = \frac{1}{\sqrt{$ $\frac{d\mu}{d\mu}$
of dim k
 $\frac{8mn}{\lambda}$
 $\frac{1}{2}$ $\frac{1}{2}deg^{\sigma_{\lambda}} = |\lambda|$ with multiplication $\sigma_{\lambda} \sigma_{\mu} = \sum_{\nu} \underbrace{C_{\mu}^{\nu} \sigma_{\nu}}_{LR \text{ coefficient}}$ (when product) Example (Pievi Rule) $\mu = \lambda + \square$ inside $\ast \{\frac{1}{\sum_{k=1}^{n}}\}$ $\frac{1}{2}$ deg $\lambda = \frac{1}{\sqrt{2}}$
with multiplication
 $\sigma_{\lambda} \sigma_{\mu} = \sum_{\mu} \underbrace{C_{\lambda \mu}^{\mu} \sigma_{\nu}}_{\lambda}$
lik coeffici 5 . 5x ⁼ 2 Tu With multiplient on $\sigma_{\lambda} \sigma_{\mu} = \sum_{\mu} \frac{c_{\lambda \mu}^{\mu}}{c_{\lambda \mu}} \sigma_{\nu}$ (when $\frac{c_{X\alpha}}{c_{X\alpha}} \sigma_{Y}$ ($e_r \cdot \sigma_\lambda = \sum_\mu \sigma_\mu$ σ_{eff}' $\mu = x + r$ many row-different $(i \times i \text{ de } * i \text{ f} \text{)}$ Record

Gr(θ, n) = if subspaces of dim R h Cⁿ)

We have
 $H^2(G_r(\theta,n)) = \bigoplus_{\lambda} Q \circ \lambda$
 $\frac{1}{\lambda} \frac{\partial \phi}{\partial x} = \frac{1}{\lambda}$
 $\frac{1}{2} \frac{\partial \phi}{\partial x} = \frac{1}{\lambda}$

with multiplication
 $\phi \circ \phi = 2$, $\phi \circ \frac{C_1}{\lambda} \circ \phi'$ (second prod $\begin{aligned} \mathbf{B} \cdot \mathbf{G} \mathbf{D} \mathrel{\mathop:}= \mathbf{H} \mathbf{D} + \mathbf{H} \mathbf{D} \mathbf{D} \mathrel{\mathop:}= \mathbf{H} \mathbf{D} \mathop{\mathop:}\nolimits_{\mathbf{w}} \mathbf{H} \mathop{\mathop:}\nolimits_{\mathbf{w}} \mathop{\mathop:}\nolimits_{\mathbf{w}} \mathop{\mathop:}\nolimits_{\mathbf{w}} \mathop{\mathop:}\nolimits_{\mathbf{w}} \mathop{\mathop:}\nolimits_{\mathbf{w}} \mathop{\mathop:}\nolimits_{\mathbf{w}} \mathop{\$ Quantum Schubert Caleulus $\bigcup_{\alpha_1,\ldots,\alpha_n} \alpha_1, \gamma_2, \gamma_3 \in H^*$ For $8 \rightarrow \frac{1}{2}$, $\frac{1}{8}$ \in H (Gr (kin)) $QH(CGr(k,m)) = H^{\bullet}(Gr(k,m))E^{\bullet}_{\delta}]$
 $QH^{\bullet}(Gr(k,m)) = H^{\bullet}(Gr(k,m))E^{\bullet}_{\delta}]$
 $QH^{\bullet}(Gr(k,m)) = H^{\bullet}(Gr(k,m))E^{\bullet}_{\delta}]$ \int_{0}^{1} (x = u cont or $(8) * (3) * (3) = 2 + 1$ (x $* (3) * (3)$) = $\bigoplus_{\lambda} \mathbb{Q}[\mathfrak{p}]\mathfrak{v}_{\lambda}$, $\qquad \qquad \qquad \mathfrak{f}_{1} \star \mathfrak{1} = \mathfrak{F}_{1}$ \bigcirc $(\gamma_1 + \gamma_2) * \gamma_3 = \gamma_1 * \gamma_3 + \gamma_2 * \gamma_3$ $\frac{4}{\pi}$ aprentum product $\frac{1-\sigma_{\phi}}{1-\sigma_{\phi}}$ usuntum Schultert Celeulus

a graded vector space
 $QH(CGr(k,n)) = H'(Gr(k,n))E_8$
 $= \bigoplus_{\lambda} QE_8$] σ_{λ}
 $= \bigoplus_{\lambda} QE_8$] σ_{λ}
 $= \bigoplus_{\lambda} QE_8$] σ_{λ}
 $= \bigoplus_{\lambda} QE_9$] σ_{λ}
 $\gamma_i * 1 =$
 $(\gamma_i + \gamma_2)$
 $(\gamma_i + \gamma_2)$
 $(\gamma_i$ $(g⁴ y₂) = g⁴ + 4(y, +y₂)$ usual cohomdagy ring H (Gn(k.m). $\sqrt{\left(\bigcirc\right)^{2}(Gr(k,n))}$, *, 15 is a deformation of $\gamma_1 * \gamma_2 \equiv \gamma_1 \cdot \gamma_2 \mod{q \choose +q(\cdots)}$ Example We will characterize * Soon. Quantum Pieri formula (Bertram) (OH (Gr(2m), *, 1) is a deformation of

usuad coloomdogy rhag H(Gr(2m),
 \therefore
 \therefore when coloomdogy rhag H(Gr(2m),
 \therefore
 \therefore $\frac{1}{4}$
 \therefore
 $\frac{1}{\omega}\sigma_{\mu} + 9 \sum_{\mu} \sigma_{\mu}$ timed cohomdogy rhig H['](Gr(kin).

angle We will characterize * soon. Quantum Pieri

angle We will characterize * soon. Quantum Pieri
 $D \cdot \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$
 $D \cdot \frac{1}{2} = \frac{1}{2}$
 $D \cdot \frac{1}{2} = \frac{1}{2}$
 $D \cdot \frac{1}{2}$ $\overline{\ell}$ $\Box \cdot \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} +$ $\mu = \lambda + r$ many row different Δ' s (inside ℓ $(\frac{\pi}{\sqrt{2}})$) $-$ hook of length n (inside \ast if $\overrightarrow{h_{n+1}}$) & deleting a ribbon hook of Length (n-1)

More precisely, for a partition μ index λ terms	Example (n-7, 2, 3)				
\n $[A] =\n \begin{cases}\n \frac{\sigma_{\mu}}{3} & \text{if } \mu \text{ back } \lambda$ \n $\frac{\sigma_{\mu}}{2} & \text{if } \mu \text{ back } \lambda$ \n $\frac{\sigma_{\mu}}{2} & \text{if } \mu \text{ back } \lambda$ \n $\frac{\sigma_{\mu}}{2} & \text{if } \mu \text{ back to } \lambda$ \n $\frac{\sigma_{\mu}}{2} & \text{if } \mu \text{ back to } \lambda$ \n	\n $\frac{\sigma_{\mu}}{2} & \text{if } \mu \text{ back to } \lambda$ \n $\frac{\sigma_{\mu}}{2} & \text{if } \mu \text{ back to } \lambda$ \n	\n $\frac{\sigma_{\mu}}{2} & \text{if } \mu \text{ back to } \lambda$ \n	\n $\frac{\sigma_{\mu}}{2} & \text{if } \mu \text{ back to } \lambda$ \n	\n $\frac{\sigma_{\mu}}{2} & \text{if } \mu \text{ back to } \lambda$ \n	\n $\frac{\sigma_{\mu}}{2} & \text{if } \mu \text{ back to } \lambda$ \n
\n $\frac{\sigma_{\mu}}{2} & \text{if } \mu \text{ back to } \lambda$ \n	\n $\frac{\sigma_{\mu}}{2} & \text{if } \mu \text{ back to } \lambda$ \n				
\n $\frac{\sigma_{\mu}}{2} & \text{if } \mu \text{ back to } \lambda$ \n	\n $\frac{\sigma_{\mu}}{2} & \text{if } \mu \text{ back to } \lambda$ \n				
\n $\frac{\sigma_{\mu}}{2} & \text{if } \mu \text{ back$					

1)
$$
M \cap I' = 303
$$
 $I' = I$
\n2) $M + I' = A_{R}$ $\Rightarrow A_{R} M \in M + I'$
\n3) $Thw_{0} I = I' \text{ and } A_{R} = M + I'$ $(46 M)$
\n3) $Thw_{0} I = I' \text{ and } A_{R} = M + I'$ $(46 M)$
\n4) $I = \bigoplus_{A \in I} Q(\xi_{A} \text{ mod } I) \cong H''(\xi_{A} \text{ mod } I)$
\n5) $\frac{1}{\sqrt{2}} \text{ mod } \xi_{A} \text{ mod } I$
\n6) $\frac{1}{\sqrt{2}} \text{ mod } \xi_{A} \text{ mod } I$
\n7) $\frac{1}{\sqrt{2}} \text{ mod } \xi_{A} \text{ mod } I$
\n8) $\frac{1}{\sqrt{2}} \text{ mod } \xi_{A} \text{ mod } I$
\n9) $\frac{1}{\sqrt{2}} \text{ mod } \xi_{A} \text{ mod } I$
\n10) $\frac{1}{\sqrt{2}} \text{ mod } \xi_{A} \text{ mod } I$
\n11) $\frac{1}{\sqrt{2}} \text{ mod } \xi_{A} \text{ mod } \xi_{A} \text{ mod } I$
\n12) $\frac{1}{\sqrt{2}} \text{ mod } \xi_{A} \text{ mod } I$
\n13) $\frac{1}{\sqrt{2}} \text{ mod } \xi_{A} \text{ mod } \$

Classical EH Let $T = {*(x_i, x_j)} \subseteq GL_n$

We have Quantum Schubert Calculus
Lecture 3 Equivariant QH
Rui Xiong We have
 $H_1^{\bullet}(G_r(k,n)) = \bigoplus_{\lambda} \mathbb{Q} E_1^{\bullet}$ H_2^{\bullet} (\vdots and H_3^{\bullet} inde $(n+k)^k$ $\sigma_{\lambda} \cdot \sigma_{\mu} = \sum_{\substack{\mu \\ \mu \text{ is a positive}} } \sum_{\substack{\mu \\ \mu \text{ is a positive}} } C_{\mu} \cdot \sigma_{\mu}$
 $\Rightarrow \text{ non-equivalent (in 11)}$ for double schure More precisely. we have a ring homomorphism (Localization (Specialization) For each λ of parts $\leq k$, we define a Λ_{k} [t;] $\sum_{i=1}^{\infty}$ = H_T(Gr(km) permutation w_λ such that double schur
polynomial $S_{\lambda}(x,t) \longmapsto \begin{cases} \sigma_{\lambda} , & \lambda \in (n-k)^{k} , \\ 0 , & \lambda \text{ exceeds } . \end{cases}$ $1 \mapsto \lambda_k + 1$ $k+1 \mapsto \omega_{\lambda}(k+1)$ $2 \longrightarrow \lambda_{k-1}^{\wedge} + 2$ $k+2 \longmapsto L_{\lambda}(k+2)$
 $\vdots \qquad \vdots \qquad \qquad \wedge$
 $k \longmapsto \lambda_1 + k-1$ $\vdots \qquad \vdots$ t_i $\longmapsto \begin{cases} t_i, & i \in i \in n \\ 0, & otherwise \end{cases}$ Combinetoid Xi ti
Convention deg 1 Chevalley formula convertion = = des 1 1 121 n le ($\frac{1}{2}$ = 3)

4 5 6 7 8 9 10

3

4 3 6 9 10

4 3 6

4 3 6 Example (k=3) Let $D = x_1 + \cdots + x_k$, then $(x_1 = x_2(x+1))$ $D \cdot 5_{\lambda} = D|_{\lambda} 5_{\lambda} + \sum_{\mu = \lambda + n} 5_{\mu}$ Note: $S_{\square} = (x_1 - t_1) + \cdots + (x_{k} - t_{k}) \neq D$ $E_3(k=3)$ $(t_2+t_4+t_7)$ For any $f(x,+) \in \bigwedge_k \Sigma_{t,1}^{\infty}$, we define $\mathbb{D} \cdot \frac{1}{2} \mathbb{H} \mathbb{D}^2 + \frac{1}{2} \frac{1}{2} \mathbb{H} \mathbb{D}^2 + \frac{1}{2} \frac{1}{2} \mathbb{H} \mathbb{D}^2$ $f|_{x} = f(\omega_{x}t + t) \in \mathbb{Q}2t_{i}x_{i-1}^{*}$
 $x_{i} = t_{\omega_{x}(i)}$

Equantum H

We have $\frac{1}{2} \deg = n$ For $8.183.83 \in H_{1}(Gr(k_{1}n))$ $\sqrt{(1+\frac{1}{2})+\frac{1}{2}}=2+\sqrt{1+\frac{1}{2}}$ $\gamma_1 * \gamma_2 = \gamma_2 * \gamma_1$
 $\gamma_1 * 1 = \gamma_1$
 $\gamma_2 * 1 = \gamma_2$ $\mathbb{QH}_{\tau}^{\bullet}(\mathsf{Gr}(k.n))=\bigoplus\nolimits_{\lambda}\mathbb{Q}\mathsf{E}_{\nu^{\infty}}^{\sharp} \mathsf{L}_{\mu}\mathsf{I}_{\mathfrak{P}}^{\flat}\mathsf{G}_{\lambda}$ quentum product
Theorem
(QH_T(Gr(km), *, 15 is a deformation of \bigcirc $(\gamma_1+\gamma_2)*\gamma_3 = \gamma_1*\gamma_3 + \gamma_2*\gamma_3$ $(1^m q^k \gamma_1)$ * $(1^k q^k \gamma_2)$ = $1^{m+k} q^{k+4} (y, *y)$ usual colomdogy ring H(Gr(k.m). $\sum_{1} x_{1} x_{2} = \sum_{1} x_{1} x_{2} \mod q$

Here
$$
(\mu_{000},\mu_{00})
$$
 show the
\n
$$
F(t):=s\frac{1}{2}
$$
 then $D_{\mu}-D_{\mu} = |x| - |x|$
\n
$$
F(t):=s\frac{1}{2}
$$
 then $D_{\mu}-D_{\mu} = |x|+|x+1$
\n
$$
F(t):=s\frac{1}{2}
$$
 then $\frac{1}{2}$
\n
$$
F(t):=s\frac{1}{2}
$$

\n<

Nankai Leuture

QH^{*} (FL) =
$$
\bigoplus_{w \in S_m} Q
$$
 (q₁, ..., q_{m-1}) or w
\n \uparrow

 $\frac{log 2}{x}$.

General properties of *
\n1)
$$
(\gamma_1 * \gamma_2) * \gamma_3 = \gamma_1 * (\gamma_2 * \gamma_3)
$$

\n2) $\gamma_1 * \gamma_2 = \gamma_2 * \gamma_1$
\n3) $\gamma_1 * 1 = \gamma_1$
\n4) $(q^{d_1}\gamma_1) * (q^{d_2}\gamma_2) = q^{d_1+d_2} \gamma_1 * \gamma_2$
\n5) $\gamma_1 * \gamma_2 = \gamma_1 \cdot \gamma_2 \mod q$

It is a good exercise to show $e⁹$

and initial condition.

Actually, it suffices to show

$$
\chi_{k+1}
$$
 * E(k) = E(k+1) - yE(k) - y_k E(k+1)

which follows from expansion of determinant.

By the same reason, we see
\n
$$
e_k^3(x_1,...,x_n) = o
$$
 for $k=1,...,n$.
\nThus we get the presentation.

Examples

$$
e_{1}^{q}(x_{1},...,x_{k}) = tr = x_{1}+...+x_{k}
$$
\n
$$
e_{2}^{q}(x_{1},...,x_{k}) = e_{2}(x_{1},...,x_{k})+e_{1}^{q}+e_{2}+...+e_{k-1}^{q}
$$
\n
$$
det \begin{bmatrix} x_{1} - a_{1} \\ b_{1} & x_{2} - a_{2} \\ b_{2} & \ddots & \ddots \\ b_{k-1} & x_{k-1} \end{bmatrix} = \sum_{\substack{w \in S_{n} \\ w(x_{k})=1}} \prod_{\substack{u(x) = 1 \\ w(x_{k})=1 \\ w(x_{k})}} x_{i} \prod_{\substack{v(x) = 1 \\ v(x_{k})=1 \\ v(x_{k})=1}} a_{i}b_{i}
$$

5. Further questions

for general we So, how to find $\sigma_{\nu}=?$.

Answer: quantum Schubert polynomials.

The question is bancally

$$
H^*(\mathcal{F}\!\ell_n) = \bigoplus_{\cup \ell \leq n} \mathbb{Q} \sigma_{\nu}
$$

$$
= \bigoplus_{\underline{d} \in (w_1, \dots, v_n)} \langle x \rangle x^{\underline{d}}
$$

$$
=\bigoplus_{\underline{d}\in (1,\cdots,n^d,\rho)}\mathbb{Q}e_{\underline{d}}
$$

$$
L \text{where } e_j = e_{i_1}(x_1) e_{i_2}(x_1, x_2) \cdots e_{i_{n-1}}(x_1, ..., x_{n-1}),
$$

$$
\text{Den} \{x \in \mathcal{E}\} = \mathcal{E}_{i_1}(x_1) \mathcal{E}_{i_2}(x_1, x_2) \cdots \mathcal{E}_{i_{n-1}}(x_1, \dots, x_{n-1})
$$

$$
G_w = 2 \kappa_{u,i} e_i
$$

$$
\vec{r} \quad G_w = 2 \kappa_{u,i} e_i
$$

$$
\frac{c_9}{x_1^2 x_2 = x_1 (x_1x_2)}
$$
\n
$$
= x_1 * (x_1 * x_2 + q_1)
$$
\n
$$
= x_1 * (x_1 * x_2 + q_1)
$$
\n
$$
= x_1 * (x_1 + x_2) - x_1x_2
$$
\n
$$
= x_1 * x_2 + q_1
$$
\n
$$
x_1 + x_2 = x_1 + x_1 - q_1
$$
\n
$$
x_1 + x_2 = x_1 + x_1 - q_1
$$
\n
$$
x_1 + x_2 = x_1 + x_1 - q_1
$$
\n
$$
x_1 = x_1 + x_1 - q_1
$$
\n
$$
x_1 = x_1 + x_1 - q_1
$$

References

@ Fulton & Woodward, On the quantum product of Schubert classes.

9 S. Fonnin, S. Gelfond and A. Postnika. quantum Schubert pahytnomiah.

8 A. Givental and B. Kim, quantum cohomology ub flag manifolds and Toda lattices

Then $y * o(\sigma_w) = \Sigma (\cdots) o(\sigma_w)$

We finally show when y is linear.

\n

Wte fwrdt ₃ show when y is linear.	
utab > u	utab < u
qutab \leq u	2
qutab \leq u	2
qutab \leq u	2

$$
\underline{\text{Thm}} \qquad R^{\omega_0}(x) = \sum_{U \in S_n} \underline{\epsilon}^{l(u,v)} v
$$
\n
$$
l(u,v) = \text{shortest point in } \text{QBG from } u \text{ to } v
$$

First show when $z=1$. Note that $Q_{i,i+1} u = \begin{cases} u s_i & \text{if } l(u s_i) = l(u) + 1 \\ u s_i & \text{if } l(u s_i) = l(u) - 1 \end{cases}$ $=$ usi $R_{i,i+1} = 1 + (Right si)$ (Right si) $R_{i,i+1} = R_{i,i+1} = R_{i,i+1}$ (Rightsi) \Rightarrow $R^{\nu_{\phi}}(u s_i) = R^{U_{\phi}}(u) = R^{U_{\phi}}(u) s_i$ \Rightarrow $R^{U_{o}}(u) = R^{U_{o}}(id) = Comit) \sum_{l} v^{l}$ \Rightarrow shue coefficient of wo is 1

The case for general & follows from a choke of orclaring of (a<b) by lexicographical order.