Bumpless pipe dreams meet Puzzles arXiv:2309.00467
 (joint with Neil J.Y. Fan and Peter L. Guo)

Rui Xiong

January 17, 2024

meet

Linear algebra

Denote the standard opposite flag

$$
F^{0}=\mathbb{C}^{n} \geq \cdots \geq F^{n-2}=\left\langle\mathbf{e}_{n}, \boldsymbol{e}_{n-1}\right\rangle \geq F^{n-1}=\left\langle\mathbf{e}_{n}\right\rangle \geq F^{n}=0
$$

For each $V \leq \mathbb{C}^{n}$ of dimension k, we have a decreasing flag

$$
V=F^{0} \cap V \geq \cdots \geq F^{n-2} \cap V \geq F^{n-1} \cap V \geq F^{n} \cap V=0
$$

We can assign the set of "jumping indices" λ, i.e.

$$
\begin{aligned}
& \lambda_{i}=1 \Longleftrightarrow \operatorname{dim}\left(F^{i-1} \cap V\right)>\operatorname{dim}\left(F^{i} \cap V\right) \\
& \lambda_{i}=0 \Longleftrightarrow \operatorname{dim}\left(F^{i-1} \cap V\right)=\operatorname{dim}\left(F^{i} \cap V\right)
\end{aligned}
$$

Grassmannians

Denote

$$
\operatorname{Gr}(k, n)=\left\{V \leq \mathbb{C}^{n} \mid \operatorname{dim} V=k\right\}
$$

Let us denote Schubert cell for $\lambda \in\binom{[n]}{k}$

$$
\begin{aligned}
& \Sigma_{\lambda}^{\circ}=\{V \in \operatorname{Gr}(k, n) \mid \text { jumping indices of } V=\lambda\} . \\
& \Sigma_{\lambda}=\text { closure of } \Sigma_{\lambda}^{\circ}, \quad \sigma_{\lambda}=\left[\Sigma_{\lambda}\right] \in H^{\bullet}(\operatorname{Gr}(k, n)) .
\end{aligned}
$$

It is known that

$$
H^{\bullet}(\operatorname{Gr}(k, n))=\bigoplus_{\lambda \in\binom{[n]}{k}} \mathbb{Q} \cdot \sigma_{\lambda} \quad \text { (as a vector space) }
$$

Example

Let us identify

$$
\operatorname{Gr}(2,4)=\left\{\text { lines in } \mathbb{P}^{3}\right\}
$$

Littlewood-Richardson coefficients

Assume

$$
\sigma_{\lambda} \cdot \sigma_{\mu}=\sum_{\mu \in\binom{[n]}{k}} c_{\lambda \mu}^{v} \cdot \sigma_{v}
$$

The coefficients $c_{\lambda \mu}^{v} \in \mathbb{Z}_{\geq 0}$ are known as Littlewood-Richardson (LR) coefficients.

It also appears in the study of representation theory and symemtric functions. These coefficients admit a lot of combinatorial models like

\[

\]

Robinson-Schensted correspondence

Schur operators

Geometric meaning

Let us denote

$$
c_{\lambda \mu \nu}=c_{\lambda \mu}^{v^{o p}}
$$

Then for generic $x, y, z \in \mathrm{GL}_{n}$

$$
c_{\lambda \mu v}=\#\left\{v \in \operatorname{Gr}(k, n) \mid x V \in \Sigma_{\lambda}, y V \in \Sigma_{\mu}, z V \in \Sigma_{v}\right\} .
$$

If it is empty or infinite, then it is understood as zero.

Examples

We can compute:

$$
c_{1010,1010,0110}=1 \quad c_{1010,1010,1001}=1
$$

As a result,

$$
\sigma_{1010} \cdot \sigma_{1010}=\sigma_{0110}+\sigma_{1001}
$$

Puzzles

Let us use the following convention

$$
\operatorname{red}=1, \quad \text { blue }=0
$$

Theorem (A. Knutson, T. Tao, and C. Woodward)
The number $c_{\lambda \mu}^{v}$ is the number of puzzles

Warning: $\square \square$ are not allowed (we cannot reflect puzzles).

Examples

Generalization A $\quad H^{\bullet}(\operatorname{Gr}(k, n)) \rightsquigarrow K(\operatorname{Gr}(k, n))$

Let us denote

$$
\begin{gathered}
\mathcal{O}_{\lambda}=\left[\mathcal{O}_{\Sigma_{\lambda}}\right]=\text { structure sheaf for } \Sigma_{\lambda} \\
\mathcal{I}_{\lambda}=\left[\mathcal{O}_{\Sigma_{\lambda}}\left(-\partial \Sigma_{\lambda}\right)\right]=\text { ideal sheaf for } \partial \Sigma_{\lambda}=\Sigma_{\lambda} \backslash \Sigma_{\lambda}^{\circ}
\end{gathered}
$$

It is known that they are dual basis under the Poincare pairing.
Similarly, we have

$$
K(\operatorname{Gr}(k, n))=\bigoplus_{\lambda \in\binom{[n]}{k}} \mathbb{Q} \cdot \mathcal{O}_{\lambda}=\bigoplus_{\lambda \in\binom{[n]}{k}} \mathbb{Q} \cdot \mathcal{I}_{\lambda} .
$$

We call the coefficients of their expansion the structure constants.

Theorem (Vakil)

The structure constant for \mathcal{O}_{λ} is the number of puzzles

Theorem (Wheeler and Zinn-Justin)
The structure constant for \mathcal{I}_{λ} is the number of puzzles

Examples

$$
\mathcal{O}_{1010} \cdot \mathcal{O}_{1010}=\mathcal{O}_{0110}+\mathcal{O}_{1001}+\mathcal{O}_{0101}
$$

$\mathcal{I}_{1010} \cdot \mathcal{I}_{1010}=\mathcal{I}_{0110}+\mathcal{I}_{1001}+\mathcal{I}_{0101}+\mathcal{I}_{0011}$.

Generalization B $\quad H^{\bullet}(\operatorname{Gr}(k, n)) \rightsquigarrow H_{T}^{\bullet}(\operatorname{Gr}(k, n))$

Here we are considering the toric equivariant cohomology. We have

$$
\left.H_{T}^{\bullet}(\operatorname{Gr}(k, n))\right)=\bigoplus_{\lambda \in\binom{[n]}{k}} \mathbb{Q}\left[t_{1}, \ldots, t_{n}\right] \cdot \sigma_{\lambda}
$$

Similarly, we have toric equivariant K -theory

$$
\begin{aligned}
\left.K_{T}(\operatorname{Gr}(k, n))\right) & =\bigoplus_{\lambda \in\binom{[n]}{k}} \mathbb{Q}\left[\tau_{1}^{ \pm 1}, \ldots, \tau_{n}^{ \pm 1}\right] \cdot \mathcal{O}_{\lambda} \\
& =\bigoplus_{\lambda \in\binom{[n]}{k}} \mathbb{Q}\left[\tau_{1}^{ \pm 1}, \ldots, \tau_{n}^{ \pm 1}\right] \cdot \mathcal{I}_{\lambda} .
\end{aligned}
$$

Theorem (Knutson and Tao)
The structure constant for $\dot{H}_{T}^{\bullet}(\operatorname{Gr}(k, n))$ can be computed by

Theorem (Pechenik and Yong, Wheeler and Zinn-Justin) The structure constant for $K_{T}(\operatorname{Gr}(k, n))$ can be computed by

Examples

$$
\sigma_{1010} \cdot \sigma_{1010}=\left(t_{3}-t_{2}\right) \cdot \sigma_{1010}+\sigma_{0110}+\sigma_{1001}
$$

Summary

Flag varieties

Now we turn to flag varieties

$$
\operatorname{Fl}(n)=\left\{0=V_{0}<V_{1}<\cdots<V_{n}=\mathbb{C}^{n}\right\} .
$$

For each flag $V_{\bullet} \in \operatorname{Fl}(n)$, we can similarly assign a permutation w such that

$$
w(i)=j \Longleftrightarrow \operatorname{dim} \frac{F^{i-1} \cap V_{j}+F^{i}}{F^{i-1} \cap V_{j-1}+F^{i}}=1
$$

We can similarly define

$$
\begin{aligned}
& \Sigma_{w}^{\circ}=\left\{V_{\bullet} \in \operatorname{Fl}(k, n) \mid \text { permutations of } V=w\right\} \\
& \Sigma_{w}=\text { closure of } \Sigma_{w}^{\circ}, \quad \sigma_{w}=\left[\Sigma_{w}\right] \in H^{\bullet}(\operatorname{Fl}(n))
\end{aligned}
$$

Littlewood-Richardson coefficients

It is known that

$$
H^{\bullet}(\operatorname{Fl}(n))=\bigoplus_{w \in S_{n}} \mathbb{Q} \cdot \sigma_{w} \quad \text { (as a vector space) }
$$

The central problem in Schubert calculus is to compute the coefficients $c_{u v}^{w}$ in the expression

$$
\sigma_{u} \cdot \sigma_{v}=\sum_{w \in S_{n}} c_{u v}^{w} \cdot \sigma_{w}
$$

There is no general combinaotrial model for $c_{u v}^{w}$ up to now.

Schubert poylnomials

To study it, we define Schubert polynomials. For $w \in S_{\infty}$

$$
\begin{aligned}
\mathfrak{S}_{n \cdots 21} & =x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-1}, \\
\mathfrak{S}_{w(i, i+1)} & =\frac{\mathfrak{S}_{w}-\left.\mathfrak{S}_{w}\right|_{x_{i} \leftrightarrow x_{i+1}}}{x_{i}-x_{i+1}}, \quad w_{i}<w_{i+1}
\end{aligned}
$$

It turns out the structure constant can be computed by

$$
\mathfrak{S}_{u} \cdot \mathfrak{S}_{v}=\sum_{w \in S_{\infty}} c_{u v}^{w} \cdot \mathfrak{S}_{w}
$$

Thus we translate a geometric problem to an algebraic problem.

Examples

We have

$$
\sigma_{213} \cdot \sigma_{132}=\sigma_{231}+\sigma_{312} .
$$

Bumpless pipe dream

There is an amazing combinatorial model for Schubert polynomials called bumpless pipe dream.
Theorem (Lam, Lee, and Shimozono)
Schubert polynomial \mathfrak{S}_{w} is the weighted sum of

such that each pair of pipes crosses at most once

Examples

Generalization A

Similarly,

$$
K(\mathrm{Fl}(n))=\bigoplus_{w \in S_{n}} \mathbb{Q} \cdot \mathcal{O}_{w} \quad \text { (as a vector space). }
$$

The structure constant of \mathcal{O}_{w} is the same as the the structure constant of Grothendieck polynomials:

$$
\begin{aligned}
\mathfrak{G}_{n \cdots 21} & =x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-1} \\
\mathfrak{G}_{w(i, i+1)} & =\frac{\left(1+\beta x_{i+1}\right) \mathfrak{G}_{w}-\left.\left(1+\beta x_{i}\right) \mathfrak{G}_{w}\right|_{x_{i} \leftrightarrow x_{i+1}}}{x_{i}-x_{i+1}}, \quad w_{i}<w_{i+1}
\end{aligned}
$$

Theorem (Weigandt)

Grothendieck polynomial \mathfrak{G}_{w} is the weighted sum of

such that each pair of pipes crosses at most once in each the J-pipe $>$ the Γ-pipe

Generalization B $\quad H^{\bullet}(\operatorname{Fl}(k, n)) \rightsquigarrow H_{T}^{\bullet}(\operatorname{Fl}(n))$

We have

$$
\begin{aligned}
& H_{T}^{\bullet}(\mathrm{Fl}(n))=\bigoplus_{w \in S_{n}} \mathbb{Q}\left[t_{1}, \ldots, t_{n}\right] \cdot \sigma_{w} \\
& K_{T}(\mathrm{Fl}(n))=\bigoplus_{w \in S_{n}} \mathbb{Q}\left[\tau_{1}^{ \pm 1}, \ldots, \tau_{n}^{ \pm 1}\right] \cdot \mathcal{O}_{w}
\end{aligned}
$$

The corresponding polynomial is known as double Schubert/Grothendieck polynomial.

Theorem (Lam, Lee, and Shimozono)
Double Schubert polynomial \mathfrak{S}_{w} is the weighted sum of bumpless pipe dreams but with double weight:

Theorem (Weigandt)
Double Grothendieck polynomial \mathfrak{G}_{w} is the weighted sum of bumpless pipe dreams but with double weight:

Examples

$\left(x_{1}-t_{1}\right)\left(x_{2}-t_{1}\right)$

$$
\left(x_{1}-t_{1}\right)\left(x_{1}-t_{2}\right)
$$

Seperated descents

Assume $u, v \in S_{n}$ have seperated descents

$$
\max (\operatorname{des}(u)) \leq k \leq \min (\operatorname{des}(v))
$$

There is a very recent combinatorial rule by Knutson and Zinn-Justin for the expansion of

$$
\mathcal{O}_{u} \cdot \mathcal{O}_{v}=\sum_{w} c_{u v}^{w}(t) \cdot \mathcal{O}_{w}
$$

We generalize it to the triple version.

Our main result

single	double	triple
Schubert calculus	Schubert calculus	Schubert calculus
non-equivariant	equivariant	\star
$\mathfrak{G}_{u}(x) \mathfrak{G}_{v}(x)$	$\mathfrak{G}_{u}(x, t) \mathfrak{G}_{v}(x, t)$	$\mathfrak{G}_{u}(x, t) \mathfrak{G}_{v}(x, y)$

We can view triple Schubert calculus as the universal rule for

$$
\mathfrak{G}_{u}(x, t) \cdot \mathfrak{G}_{v}(x, w t)
$$

which geometrically corresponds to the intersection of Schubert varieties of different transversality.
Theorem (FGX)
There is a combinatorial rule for $c_{u v}^{w}(y, t)$ in the expansion

$$
\mathfrak{G}_{u}(x, y) \cdot \mathfrak{G}_{v}(x, t)=\sum_{w \in S_{\infty}} c_{u v}^{w}(y, t) \cdot \mathfrak{G}_{w}(x, t)
$$

Pipe Puzzles

Let us first state the rule for cohomology, i.e. $\beta=0$.

For K-theory, it can be computed by using one more piece .

Example

Recall

$$
\begin{aligned}
\mathfrak{S}_{213}(x, y)=x_{1}-y_{1} & \mathfrak{S}_{132}(x, t)=x_{1}+x_{2}-t_{1}-t_{2} \\
\mathfrak{S}_{231}(x, t)=\left(x_{1}-t_{1}\right)\left(x_{2}-t_{1}\right) & \mathfrak{S}_{312}(x, t)=\left(x_{1}-t_{1}\right)\left(x_{1}-t_{2}\right) \\
k=1, & u=2 \mid 13, \\
& v=1 \mid 32 . \\
& 32
\end{aligned}
$$

$\mathfrak{S}_{213}(x, y) \cdot \mathfrak{S}_{132}(x, t)=\left(t_{1}-y_{1}\right) \mathfrak{S}_{132}(x, t)+\mathfrak{S}_{231}(x, t)+\mathfrak{S}_{312}(x, t)$.

On the proof

Our proof is based on the classical 6-vertex model, and is significantly simple! What we need is to prove

$$
\text { I. induction on } y \quad \text { II. induction on } t \quad \text { III. initial cases. }
$$

Historically, people realized that equivariant cohomology is usually easier than usual cohomology.

It turns out the same happens for

$$
\text { double } \Longrightarrow \text { triple }
$$

Specialization A - seperated descents puzzles

If we set $y_{i}=t_{i}$, then on the diagonal \square has weight 0 . So it suffices to count those with or IIJ on the diagonal; so all pipes must go straight down under the diagonal. So we only need the upper triangle. This specializes to Knutson and Zinn-Justin's puzzle.

Specialization B — bumpless pipe dream

If we set $k=n$, then $v=\mathrm{id}$. Taking $x=t$ on both sides of

$$
\mathfrak{G}_{u}(x, y) \cdot \mathfrak{G}_{v}(x, t)=\sum_{w \in S_{\infty}} c_{u v}^{w}(y, t) \cdot \mathfrak{G}_{w}(x, t)
$$

we will get

$$
\mathfrak{G}_{u}(t, y)=c_{u \text { id }}^{\mathrm{id}}(y, t) .
$$

By reflecting against the diagonal and changing the labels, we recover the Weigandt's model of bumpless pipe dream.

Specialization C - classical puzzles

When u and v are both k-Grassmannian (i.e. at most one descent at k), we can recover the Grassmannian puzzles introduced in the first part. First, let us color pipes $\leq k$ by red and $\geq k$ by blue. Then we replace

Then rotate 120° anticlockwise.

Algebraic version

Let

$$
V(z)=\mathbb{Q}(z) \mathbf{e}_{0} \oplus \cdots \oplus \mathbb{Q}(z) \mathbf{e}_{n} .
$$

We can define a linear map

$$
\begin{aligned}
R(t-y): V(t) \otimes V(y) & \rightarrow V(y) \otimes V(t) \\
\mathbf{e}_{a} \otimes \mathbf{e}_{b} & \mapsto \sum_{p, q} c_{a b}^{p q}(t-y) \cdot \mathbf{e}_{p} \otimes \mathbf{e}_{q} \\
\text { where } \quad c_{a b}^{p q}(t-y) & =\text { weight of tile } \quad p \quad a
\end{aligned}
$$

For example,

$$
\mathbf{e}_{1} \otimes \mathbf{e}_{0} \mapsto \operatorname{weight}(\|) \cdot \mathbf{e}_{0} \otimes \mathbf{e}_{1}+\operatorname{weight}(\sqrt{2}) \cdot \mathbf{e}_{1} \otimes \mathbf{e}_{0}
$$

Quantized loop algebra

So our pipe puzzle is computing the matrix coefficients of

$$
\begin{gathered}
V\left(y_{1}\right) \otimes \cdots \otimes V\left(y_{n}\right) \otimes V\left(t_{1}\right) \otimes \cdots \otimes V\left(t_{n}\right) \\
\downarrow \\
V\left(t_{1}\right) \otimes \cdots \otimes V\left(t_{n}\right) \otimes V\left(y_{1}\right) \otimes \cdots \otimes V\left(y_{n}\right) .
\end{gathered}
$$

Following Knutson and Zinn-Justin, this matrix could be viewed as a shadow of representation of quantized loop algebra $U_{q}(L \mathfrak{g})$ of type \mathfrak{a}_{n} (i.e. $\left.\mathfrak{g}=\mathfrak{s l}_{n+1}\right)$.

But why the matrix coefficients computes the triple Schubert coefficients?

Nakajima quiver varieties

By Nakajima, there is an action of $U_{q}(L \mathfrak{g})$ on the equivariant K-(co)homology of Nakajima's quiver varieties.

We will need the special cases like

$$
\mathfrak{M}\left(\begin{array}{l}
\begin{array}{|c}
\boxed{5} \\
4-4-3-2-2
\end{array}
\end{array}\right) \cong T^{*} \mathcal{F} \ell(2,3,4 ; 5)
$$

a cotangent bundle of partial flag varieties. Its equivariant K -(co)homology is the component of

$$
V\left(z_{1}\right) \otimes \cdots \otimes V\left(z_{5}\right)
$$

of weight $5 \Lambda_{1}-4 \alpha_{1}-4 \alpha_{2}-3 \alpha_{3}-2 \alpha_{4}-2 \alpha_{5}$.

Stable envelope

By Okounkov and Maulik, and Okounkov, R-matrices can be realized geometrically by stable envelope.

In particular, the coefficients of R-matrices compute the coefficients of two sets of stable basis for different alcoves.

Example

$$
\begin{aligned}
& \mathfrak{M}\left(\begin{array}{ll}
\frac{5}{1} & \\
4-3-2-0-0
\end{array}\right) \times \mathfrak{M}\binom{\frac{5}{1}}{5-5-5-2-1} \\
& \mathfrak{M}\binom{\frac{10}{\mid}}{9-8-7-2-1} \\
& \mathfrak{M}\left(\begin{array}{ll}
\begin{array}{|c}
5 \\
\mid \\
5
\end{array} & \\
5-5-0-0
\end{array}\right) \times \mathfrak{M}\left(\begin{array}{l}
\begin{array}{|c}
5 \\
1 \\
4 \\
\hline
\end{array} \\
\end{array}\right)
\end{aligned}
$$

Conclusion

As a result, in our case, the R-matrices are computing the coefficients of $\operatorname{Stab}^{\nabla}(u \oplus v)$ in $\operatorname{Stab}^{\Delta}\left(1_{n} \oplus w\right)$.

It turns out

- When $w=1_{n}$, the coefficients coincide with triple Schubert coefficients.
- These coefficients have the inductive formula we want.

As a result, by induction,
R-matrix coefficients $=$ triple Schubert coefficients.
If we translate everything above in terms of 6-vertex model, this is our combinatorial proof in the paper.

Thanks

Thanks

