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Linear algebra

Denote the standard opposite flag

F 0=Cn ≥ · · · ≥ F n−2=⟨en,en−1⟩ ≥ F n−1=⟨en⟩ ≥ F n=0.

For each V ≤ Cn of dimension k , we have a decreasing flag

V=F 0∩V ≥ · · · ≥ F n−2∩V ≥ F n−1∩V ≥ F n∩V=0.

We can assign the set of “jumping indices” λ, i.e.

λi = 1 ⇐⇒ dim(F i−1 ∩ V ) > dim(F i ∩ V )

λi = 0 ⇐⇒ dim(F i−1 ∩ V ) = dim(F i ∩ V )



Grassmannians

Denote
Gr(k , n) =

{
V ≤ Cn | dimV = k

}
.

Let us denote Schubert cell for λ ∈
([n]
k

)
Σ◦
λ =

{
V ∈ Gr(k , n)

∣∣∣∣ jumping indices of V = λ

}
.

Σλ = closure of Σ◦
λ, σλ = [Σλ] ∈ H•(Gr(k , n)).

It is known that

H•(Gr(k , n)) =
⊕

λ∈([n]k )

Q · σλ (as a vector space)



Example

Let us identify

Gr(2, 4) =

{
lines in P3

}
.
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Littlewood–Richardson coefficients

Assume
σλ · σµ =

∑
µ∈([n]k )

cνλµ · σν.

The coefficients cνλµ ∈ Z≥0 are known as Littlewood–Richardson
(LR) coefficients.

It also appears in the study of representation theory and
symemtric functions. These coefficients admit a lot of
combinatorial models like

1 2 ← 2

2
Robinson–Schensted

correspondence

1 1

2

1
jeu de taquin

2 → =

crystal
Schur operators



Geometric meaning

Let us denote
cλµν = cν

op

λµ

Then for generic x , y , z ∈ GLn

cλµν = #

{
v ∈ Gr(k , n)

∣∣∣∣ xV ∈ Σλ, yV ∈ Σµ, zV ∈ Σν

}
.

If it is empty or infinite, then it is understood as zero.



Examples
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c1010,1010,0110 = 1 c1010,1010,1001 = 1

As a result,
σ1010 · σ1010 = σ0110 + σ1001.



Puzzles

Let us use the following convention

red = 1, blue = 0.

Theorem (A. Knutson, T. Tao, and C. Woodward)
The number cνλµ is the number of puzzles

��AA↑ ��AAAA����AA |
λ · · · · · · µ

| ��AA · · · ��AA ↓
��AAAA����AA · · ·��AAAA����AA

− ν →
using

AAAA ����

Warning: are not allowed (we cannot reflect

puzzles).



Examples

0 1

1 0

0
�
���
�� 1

1
A

AAA
AA

0

0 1 1 0

0 1

1 0

0
A
AAA
AA

1

1
�
���
�� 0

1 0 0 1

σ1010 · σ1010 = σ0110 + σ1001.



Generalization A H•(Gr(k , n))⇝ K (Gr(k , n))

Let us denote

Oλ = [OΣλ
] = structure sheaf for Σλ.

Iλ = [OΣλ
(−∂Σλ)] = ideal sheaf for ∂Σλ = Σλ \ Σ

◦
λ.

It is known that they are dual basis under the Poincaré pairing.

Similarly, we have

K (Gr(k , n)) =
⊕

λ∈([n]k )

Q · Oλ =
⊕

λ∈([n]k )

Q · Iλ.

We call the coefficients of their expansion the structure constants.



Theorem (Vakil)
The structure constant for Oλ is the number of puzzles

��AA↑ ��AAAA����AA |
λ · · · · · · µ

| ��AA · · · ��AA ↓
��AAAA����AA · · ·��AAAA����AA

− ν →
using

AAAA ����
����AAAA

Theorem (Wheeler and Zinn-Justin)
The structure constant for Iλ is the number of puzzles

��AA↑ ��AAAA����AA |
λ · · · · · · µ

| ��AA · · · ��AA ↓
��AAAA����AA · · ·��AAAA����AA

− ν →
using

AAAA ����
AAAA����



Examples

0 1
1 0

0 ���� 1
1 AAAA 0
0 1 1 0

0 1
1 0

0 AAAA 1
1 ���� 0
1 0 0 1

0 1
1 0

0 ����AAAA 1
1 AAAA ���� 0
0 1 0 1

O1010 · O1010 = O0110 +O1001 +O0101

0 1
1 0

0 ���� 1
1 AAAA 0
0 1 1 0

0 1
1 0

0 AAAA 1
1 ���� 0
1 0 0 1

0 1
1 AAAA���� 0

0 1
1 AAAA ���� 0
0 1 0 1

0 1
1 AAAA���� 0

0 1
1 AAAA AAAA���� ���� 0
0 0 1 1

I1010 · I1010 = I0110 + I1001 + I0101 + I0011.



Generalization B H•(Gr(k , n))⇝ H•
T (Gr(k , n))

Here we are considering the toric equivariant cohomology. We
have

H•
T (Gr(k , n))) =

⊕
λ∈([n]k )

Q[t1, . . . , tn] · σλ

Similarly, we have toric equivariant K-theory

KT (Gr(k , n))) =
⊕

λ∈([n]k )

Q[τ±1
1 , . . . , τ±1

n ] · Oλ,

=
⊕

λ∈([n]k )

Q[τ±1
1 , . . . , τ±1

n ] · Iλ.



Theorem (Knutson and Tao)
The structure constant for H•

T (Gr(k , n)) can be computed by

��AA↑ ��AAAA����AA |
λ · · · · · · µ

| ��AA · · · ��AA ↓
��AAAA����AA · · ·��AAAA����AA

− ν →
using

AAAA ����

▲
▼

1 ti − tj

Theorem (Pechenik and Yong, Wheeler and Zinn-Justin)
The structure constant for KT (Gr(k , n)) can be computed by

▲
▼
AAAA ����

AAAA����

for Oλ

▲
▼
AAAA ����

����AAAA

for Iλ



Examples

0 1

1 0

0 ▲ 1

1 ▼ 0

1 0 1 0

0 1

1 0

0 �
��
� 1

1
A
AA
A

0

0 1 1 0

0 1

1 0

0
A
AA
A

1

1 �
��
� 0

1 0 0 1

σ1010 · σ1010 = (t3 − t2) · σ1010 + σ0110 + σ1001.



Summary

tiles K-tiles equivariant tiles

AAAA ����

����AAAA or
AAAA����

▲
▼

0 1
1 0

0 ▲ 1
1 ▼ 0
1 0 1 0

0 1
1 0

0 ���� 1
1 AAAA 0
0 1 1 0

0 1
1 0

0 AAAA 1
1 ���� 0
1 0 0 1

0 1
1 0

0 ����AAAA 1
1 AAAA ���� 0
0 1 0 1

0 1
1 AAAA���� 0

0 1
1 AAAA ���� 0
0 1 0 1

0 1
1 AAAA���� 0

0 1
1 AAAA AAAA���� ���� 0
0 0 1 1



Flag varieties

Now we turn to flag varieties

Fl(n) = {0=V0 < V1 < · · · < Vn=Cn}.

For each flag V• ∈ Fl(n), we can similarly assign a permutation
w such that

w(i) = j ⇐⇒ dim
F i−1 ∩ Vj + F i

F i−1 ∩ Vj−1 + F i
= 1.

We can similarly define

Σ◦
w = {V• ∈ Fl(k , n) |permutations of V = w } .

Σw = closure of Σ◦
w , σw = [Σw ] ∈ H•(Fl(n)).



Littlewood–Richardson coefficients

It is known that

H•(Fl(n)) =
⊕
w∈Sn

Q · σw (as a vector space)

The central problem in Schubert calculus is to compute the
coefficients cwuv in the expression

σu · σv =
∑
w∈Sn

cwuv · σw .

There is no general combinaotrial model for cwuv up to now.



Schubert poylnomials

To study it, we define Schubert polynomials. For w ∈ S∞
Sn···21 = xn−1

1 xn−2
2 · · · xn−1,

Sw(i ,i+1) =
Sw −Sw |xi↔xi+1

xi − xi+1
, wi < wi+1.

It turns out the structure constant can be computed by

Su ·Sv =
∑

w∈S∞
cwuv ·Sw .

Thus we translate a geometric problem to an algebraic problem.



Examples

S321= x21x2

x1x2 =
x21 x2−x22 x1

x1−x2
=S231 S312=

x21 x2−x21 x3
x2−x3

= x21

x1 =
x1x2−x1x3
x2−x3

=S213 S132=
x21−x22
x1−x2

= x1 + x2

S123= 1

We have
σ213 · σ132 = σ231 + σ312.



Bumpless pipe dream

There is an amazing combinatorial model for Schubert
polynomials called bumpless pipe dream.

Theorem (Lam, Lee, and Shimozono)
Schubert polynomial Sw is the weighted sum of

· · · w1

· · · w2
...

...
. . .

...
...

· · · wn

1 2 · · · n

using
1 xi

such that each pair of
pipes crosses at most once



Examples

S321= x21x2

3
2
1

1 2 3

S231= x1x2

2
3
1

1 2 3

S312= x21

3
1
2

1 2 3

S213= x1

2
1
3

1 2 3

S132= x1 + x2

1
3
2

1 2 3

1
3
2

1 2 3

S123= 1

1
2
3

1 2 3



Generalization A H•(Fl(n))⇝ K (Fl(n))

Similarly,

K (Fl(n)) =
⊕
w∈Sn

Q · Ow (as a vector space).

The structure constant of Ow is the same as the the structure
constant of Grothendieck polynomials:

Gn···21 = xn−1
1 xn−2

2 · · · xn−1,

Gw(i ,i+1) =
(1+ βxi+1)Gw − (1+ βxi )Gw |xi↔xi+1

xi − xi+1
, wi < wi+1.



Theorem (Weigandt)
Grothendieck polynomial Gw is the weighted sum of

· · · w1

· · · w2
...

...
. . .

...
...

· · · wn

1 2 · · · n

using
1 β 1+ βxi xi

such that
each pair of pipes crosses at most once
in each , the J-pipe > the Γ -pipe



Generalization B H•(Fl(k , n))⇝ H•
T (Fl(n))

We have

H•
T (Fl(n)) =

⊕
w∈Sn

Q[t1, . . . , tn] · σw

KT (Fl(n)) =
⊕
w∈Sn

Q[τ±1
1 , . . . , τ±1

n ] · Ow

The corresponding polynomial is known as double
Schubert/Grothendieck polynomial.



Theorem (Lam, Lee, and Shimozono)
Double Schubert polynomial Sw is the weighted sum of bumpless
pipe dreams but with double weight:

1 xi − tj

Theorem (Weigandt)
Double Grothendieck polynomial Gw is the weighted sum of bumpless
pipe dreams but with double weight:

1 β 1+ β(xi − tj) xi − tj



Examples

3
2
1

1 2 3
(x1 − t1)(x1 − t2)(x2 − t1)

2
3
1

1 2 3
(x1 − t1)(x2 − t1)

3
1
2

1 2 3
(x1 − t1)(x1 − t2)

2
1
3

1 2 3
(x1 − t1)

1
3
2

1 2 3

1
3
2

1 2 3
(x2 − t2) + (x1 − t1)

1
2
3

1 2 3
1



Seperated descents

Assume u, v ∈ Sn have seperated descents

max(des(u)) ≤ k ≤ min(des(v)).

There is a very recent combinatorial rule by Knutson and
Zinn-Justin for the expansion of

Ou · Ov =
∑
w

cwuv (t) · Ow ,

We generalize it to the triple version.



Our main result

single
Schubert calculus

double
Schubert calculus

triple
Schubert calculus

non-equivariant equivariant ⋆
Gu(x)Gv (x) Gu(x , t)Gv (x , t) Gu(x , t)Gv (x , y)

We can view triple Schubert calculus as the universal rule for

Gu(x , t) ·Gv (x ,wt)

which geometrically corresponds to the intersection of
Schubert varieties of different transversality.

Theorem (FGX)
There is a combinatorial rule for cwuv (y , t) in the expansion

Gu(x , y) ·Gv (x , t) =
∑

w∈S∞
cwuv (y , t) ·Gw (x , t).



Pipe Puzzles

Let us first state the rule for cohomology, i.e. β = 0.

θ1v θ2v · · · · · · θnv
0 · · · · · · κ1u
0 · · · · · · κ2u...

...
...

. . . . . .
...

......
...

...
. . . . . .

...
...

0 · · · · · · κnu
ω1

wω
2
w · · · · · ·ωn

w

using
1 tj − y i

in each , the hori. pipe < the vert. pipe

For K-theory, it can be computed by using one more piece .



Example

Recall

S213(x , y) = x1 − y1 S132(x , t) = x1 + x2 − t1 − t2

S231(x , t) = (x1 − t1)(x2 − t1) S312(x , t) = (x1 − t1)(x1 − t2)

k = 1, u = 2 | 13, v = 1 | 32.

3 2

1

1 3 2
t1 − y1

3 2

1

3 1 2
1

3 2

1

2 3 1
1

S213(x , y)·S132(x , t) = (t1−y1)S132(x , t)+S231(x , t)+S312(x , t).



On the proof

Our proof is based on the classical 6-vertex model, and is
significantly simple! What we need is to prove

I. induction on y II. induction on t III. initial cases.

Historically, people realized that equivariant cohomology is
usually easier than usual cohomology.

single =⇒ double

It turns out the same happens for

double =⇒ triple



Specialization A — seperated descents puzzles

If we set yi = ti , then on the diagonal has weight 0. So it
suffices to count those with or on the diagonal; so all
pipes must go straight down under the diagonal. So we only
need the upper triangle. This specializes to Knutson and
Zinn-Justin’s puzzle.

3 2
0

1

1 3 2

→ 0

3 2

1

3 1 2

cut→
3 2

3
1 1

2

3 2

1

2 3 1

cut→
3 2

2
3 1

1

S213(x , t) ·S132(x , t) = S231(x , t) + S312(x , t).



Specialization B — bumpless pipe dream

If we set k = n, then v = id. Taking x = t on both sides of

Gu(x , y) ·Gv (x , t) =
∑

w∈S∞
cwuv (y , t) ·Gw (x , t),

we will get
Gu(t, y) = c idu id(y , t).

By reflecting against the diagonal and changing the labels, we
recover the Weigandt’s model of bumpless pipe dream.

3
1
2

1 2 3

reflect−→ 1
2
3

3 1 2

relabel−→ 2
3
1

1 2 3



Specialization C — classical puzzles

When u and v are both k-Grassmannian (i.e. at most one
descent at k), we can recover the Grassmannian puzzles
introduced in the first part. First, let us color pipes ≤ k by red
and ≥ k by blue. Then we replace

→ ▲▼→ �� �� �� �� AAAA → AAAA��

Then rotate 120◦ anticlockwise.

color−→ replace
−→ ���� AAAA

AAAA���� 120◦−→
����AAAA

AAAA ����



Algebraic version

Let
V (z) = Q(z)e0 ⊕ · · · ⊕Q(z)en.

We can define a linear map

R(t − y) :V (t)⊗ V (y)→V (y)⊗ V (t)
ea ⊗ eb 7→∑p,q c

pq
ab (t − y) · ep ⊗ eq

where cpqab (t − y) = weight of tile
a

p b
q

For example,

e1 ⊗ e0 7→ weight( ) · e0 ⊗ e1 + weight( ) · e1 ⊗ e0.



Quantized loop algebra

So our pipe puzzle is computing the matrix coefficients of

V (y1)⊗ · · · ⊗ V (yn)⊗ V (t1)⊗ · · · ⊗ V (tn)↓
V (t1)⊗ · · · ⊗ V (tn)⊗ V (y1)⊗ · · · ⊗ V (yn).

Following Knutson and Zinn-Justin, this matrix could be
viewed as a shadow of representation of quantized loop
algebra Uq(Lg) of type an (i.e. g = sln+1).

But why the matrix coefficients computes the triple Schubert
coefficients?



Nakajima quiver varieties

By Nakajima, there is an action of Uq(Lg) on the equivariant
K -(co)homology of Nakajima’s quiver varieties.

We will need the special cases like

M

 5
|

4 −4−3−2−2

 ∼= T ∗Fℓ(2, 3, 4; 5),

a cotangent bundle of partial flag varieties. Its equivariant
K-(co)homology is the component of

V (z1)⊗ · · · ⊗ V (z5)

of weight 5Λ1 − 4α1 − 4α2 − 3α3 − 2α4 − 2α5.



Stable envelope

By Okounkov and Maulik, and Okounkov, R-matrices can be
realized geometrically by stable envelope.

V1(t)⊗

��

V2(y)

R(y−t)

��
V2(y)⊗V1(t)

KGw1×Gw2
(M(w1)×M(w2))

Stab
��

KGw (M(w))

Stab−1

��
KGw2×Gw1

(M(w2)×M(w1))

In particular, the coefficients of R-matrices compute the
coefficients of two sets of stable basis for different alcoves.



Example

M

 5
|

4 −3−2−0−0

×M

 5
|

5 −5−5−2−1


|↓

M

 10
|

9 −8−7−2−1


|↓

M

 5
|

5 −5−5−0−0

×M

 5
|

4 −3−2−2−1





Conclusion

As a result, in our case, the R-matrices are computing

the coefficients of Stab∇(u ⊕ v) in Stab∆(1n ⊕ w).

It turns out
▶ When w = 1n, the coefficients coincide with triple Schubert

coefficients.
▶ These coefficients have the inductive formula we want.

As a result, by induction,

R-matrix coefficients = triple Schubert coefficients.

If we translate everything above in terms of 6-vertex model,
this is our combinatorial proof in the paper.



Thanks

Thanks

6 8 9 7 5

1

3
4

2

6 8 1 5 2 9 7 3 4


