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Linear algebra

Denote the standard opposite flag
FO=C" > ... > F"2=(ep, e, 1) > F"'=(e,) > F"=0.
For each V < C" of dimension k, we have a decreasing flag
V=F°nV > ... > F"?nV > F"'nV > F'nv=0.
We can assign the set of “jumping indices” A, i.e.

Ai=1 < dim(F'nV)>dim(F nV)
Ai=0 & dim(F'NnV)=dim(F nV)



Grassmannians

Denote
Gr(k,n) = {VS(C"IdimV:k}.

Let us denote Schubert cell for A € ([Z])

I = {V € Gr(k, n)

jumping indices of V = )\} .
I, = closure of X3, oy = [ZA\] € H*(Gr(k, n)).
It is known that

H*(Gr(k,n)) = EB Q- oy (as a vector space)
re()



Example

Let us identify
Gr(2,4) = {lines in IP’3}.
ALL LINES \ // /%‘/
1100 HH 1010 o110 [
;\ // \I// A LINE
A\ 72\
1001 o101 FH 0011 FH




Littlewood—Richardson coefficients

Assume
OA* Ou = Z Cap * Ov-
he()
The coefficients ¢y, € Zx>o are known as Littlewood—Richardson
(LR) coefficients.

It also appears in the study of representation theory and
symemtric functions. These coefficients admit a lot of
combinatorial models like
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Geometric meaning

Let us denote
vOoP
C}\p‘V = C)\u

Then for generic x,y,z € GL,

v = # {v € Gr(k, n)

xV e yel, zVeZV}.

If it is empty or infinite, then it is understood as zero.



Examples

WM 2K

1010 FH o110 [ 1001

We can compute:

P

A7 \

N

€1010,1010,0110 = 1  €1010,1010,1001 = 1

As a result,
01010 * 01010 = 00110 + 01001-



Puzzles
Let us use the following convention
red = 1, blue = 0.

Theorem (A. Knutson, T. Tao, and C. Woodward)

The number cy, is the number of puzzles

NyAVAY AVAV

SN )

— v =

Warning;: U D <> are not allowed (we cannot reflect
puzzles).



Examples

01010 - 01010 = 00110 + 01001-



Generalization A H*(Gr(k, n)) ~ K(Gr(k,n))

Let us denote
O\ = [Os,] = structure sheaf for Z,.

) =[Oz, (—0Z%,)] = ideal sheaf for 0X) = X, \ Z3.

It is known that they are dual basis under the Poincaré pairing.

Similarly, we have

K(Grk,n) = ) Q- 0= P Q- T

re(') Ae ()

We call the coefficients of their expansion the structure constants.



Theorem (Vakil)
The structure constant for Oy is the number of puzzles

NEAVAS AV AV

n

/ \ using UQOV

Theorem (Wheeler and Zinn-Justin)
The structure constant for Iy is the number of puzzles

OO AVAV

v
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Examples

71010 - Z1010 = Zo110 + Z1001 + Zo1o1 + Zoo11-



Generalization B H*(Gr(k, n)) ~ HY(Gr(k, n))

Here we are considering the toric equivariant cohomology. We
have

H%(Gr(k, n) @ Qlty, ..
Ae(')

Similarly, we have toric equivariant K-theory

Grkn @QT]_, ] 0?\)

Ae ()

@@Tl yeeosT ] I}\'

Ae (M)



Theorem (Knutson and Tao)
The structure constant for HY-(Gr(k, n)) can be computed by

Aoee e p

7 \ AV AV <>
ST using UQO
)

ti—t;

Theorem (Pechenik and Yong, Wheeler and Zinn-Justin)
The structure constant for K1 (Gr(k, n)) can be computed by

Oavav  QAVAV

TRAQN TRV

for Oy for Iy



Examples

01010 * 01010 = (t3 — t2) - 01010 + O0110 + O1001-



Summary

tiles K-tiles equivariant tiles

rab VoA 6

0/\1 0/\1 0/\1
0 0 0
0 1 0 1 0 1
0 0 0

1010 0110 1001




Flag varieties

Now we turn to flag varieties
Flln)={0=\ < V1 < --- < V,=C"}.

For each flag V, € F1(n), we can similarly assign a permutation
w such that

FinVi+F
FlnVig+F

w(i) =j & dim
We can similarly define

X, =1{V, € Fl(k, n) | permutations of V = w}.

L, = closure of L}, ow = [Xy] € H*(F1(n)).



Littlewood—Richardson coefficients

It is known that

H*(F1(n)) = @ Q- oy (as a vector space)

WESn

The central problem in Schubert calculus is to compute the
coefficients ¢, in the expression

w
o, 0, = E cl - O
weS,

There is no general combinaotrial model for ¢, up to now.



Schubert poylnomials

To study it, we define Schubert polynomials. For w € S

n—1_n—2
(‘5,7...21 = X1 X2 s Xp—1y
6W - 6W|X‘(—>X‘
_ i i+1 ) 3
Swiiit1) = , w; < Wiy1.
Xi — Xit+1

It turns out the structure constant can be computed by

6u'6V: Z CZ‘\//'GW'

WESs

Thus we translate a geometric problem to an algebraic problem.



Examples

G321 = xx2
X12X2 _X2 X1 X12X2 _X12X3 2
X2 =" = =G6231 G312 = Too—s . X
X1X2—X1X3 x{—x5
xp = 2= =613 Cip=72=x1+x
Gi3=1

We have
0213 - 0132 = 0231 + 0312.



Bumpless pipe dream

There is an amazing combinatorial model for Schubert
polynomials called bumpless pipe dream.

Theorem (Lam, Lee, and Shimozono)
Schubert polynomial &, is the weighted sum of

... Wl -
2 1 Xi

-.W such that each pair of
1 2 ... n

pipes crosses at most once
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Generalization A H*(F1(n)) ~ K(F1(n))

Similarly,

K(Fl(n)) = @ Q- -0, (as a vector space).

WGSn

The structure constant of O, is the same as the the structure
constant of Grothendieck polynomials:
Gpoo1 = xS X,
(1 + Xi+1)®w - (1 + Xi)®w|x,-<—)x,-+1

Suiirl) = X — Xio1 J Wi < Wit1.
1T A4




Theorem (Weigandt)

Grothendieck polynomial &, is the weighted sum of

1+ Xi

Xi

1 2

W i, BEEW
PR W2

R such that
- e . Wi each pair of pipes crosses at most once
. in each g, the J-pipe > the I'-pipe



Generalization B H*(Fl(k, n)) ~» H$(F1(n))

We have
H%(F1(n) = €P Qlty,..

weS,

@QT1> HT ]OW

weS,

The corresponding polynomial is known as double
Schubert/Grothendieck polynomial.



Theorem (Lam, Lee, and Shimozono)

Double Schubert polynomial &, is the weighted sum of bumpless
pipe dreams but with double weight:

_ﬁﬁill =

X,'—t:,'

Theorem (Weigandt)

Double Grothendieck polynomial &, is the weighted sum of bumpless
pipe dreams but with double weight:

ELELIE

B

14+ B3(x— tj)

X,'—t:,'




Examples

(x1 —t1)

(x1 —t1)(x1 — t2)(x2 — t1)

1
3
2

<

1
3
2
(x2 — t2) + (x1 — t1)

i Or

3

: L
123 123

(x1 — t1)(x2 — t1)

123
(x1 — t1)(x1 — t2)



Seperated descents

Assume u, v € S, have seperated descents
max(des(u)) < k < min(des(v)).

There is a very recent combinatorial rule by Knutson and
Zinn-Justin for the expansion of

Oy 0y =) c(t)-Ou,

We generalize it to the triple version.



Our main result

single double triple
Schubert calculus | Schubert calculus | Schubert calculus
non-equivariant equivariant *
Bu(x)&y(x) Bulx, t)&y(x,t) | Bulx, t)By(x,y)

We can view triple Schubert calculus as the universal rule for
qu(X, t) : Q5V(X) Wt)

which geometrically corresponds to the intersection of
Schubert varieties of different transversality.

Theorem (FGX)

There is a combinatorial rule for ¢, (y, t) in the expansion

Gju(X))/)'@v(X)t): Z Cm(y)t)'ﬁw(xat)-

WGSoo



Pipe Puzzles

Let us first state the rule for cohomology, i.e. 5 = 0.

] e 1 :
0 - ...... .z%’ using Ei .

G—Yi

P each , the hori. pipe < the vert. pipe
N W O heon e v

For K-theory, it can be computed by using one more piece .



Example

Recall

Go13(x,y) = x1 —y1 Gizn(x,t) =x1+x —t1 — B
G231(x,t) = (x1 —t1)(x2 — t1) Gz12(x,t) = (x1 — t1)(x1 — t2)

k=1, u=2|13 v=1_]32.

ﬁ%ﬁﬁ'ﬁﬁ 1

t1 —J/1
G213(X, y)-B132(x, t) = (t1—y1)G132(x, t)+G231 (X, t)+S312(x, t).



On the proof
Our proof is based on the classical 6-vertex model, and is
significantly simple! What we need is to prove
I. induction on y II. induction on t III. initial cases.

Historically, people realized that equivariant cohomology is
usually easier than usual cohomology.

single | => | double

It turns out the same happens for

double | = | triple




Specialization A — seperated descents puzzles

If we set y; = t;, then on the diagonal JJ has weight 0. So it
suffices to count those with J§ or [l}j on the diagonal; so all
pipes must go straight down under the diagonal. So we only
need the upper triangle. This specializes to Knutson and
Zinn-Justin’s puzzle.

32 32 32 32 32
0] cut3“ cut2
1—0 1= 4 1 1% 3ﬁ1
2 | 1
132 312 231

Ga13(x, t) - G132(x, t) = Go31(x, t) + G312(x, t).



Specialization B — bumpless pipe dream

If we set k = n, then v = id. Taking x = t on both sides of
Gulx,y) - Bulx,t) = D cmly,t) - Bulx,t),
WE S

we will get .
Bu(t,y) = CLlldid()/) t).

By reflecting against the diagonal and changing the labels, we
recover the Weigandt’s model of bumpless pipe dream.

LIk Bigs | Hes
L el SR 2 its! EHIRING ©

123 312 123




Specialization C — classical puzzles

When v and v are both k-Grassmannian (i.e. at most one
descent at k), we can recover the Grassmannian puzzles
introduced in the first part. First, let us color pipes < k by red
and > k by blue. Then we replace

nNsEan-/NNNNLT
nsgaAs-NNAN N[ %L

Then rotate 120° anticlockwise.

Q-7
LI



Algebraic version

Let
V(z) =Q(z)eo ®--- D Q(z2)e,.

We can define a linear map

R(t—y):V(t)® V(y) = V(y )®V()
€a®€b'—>qu ab (t—y)-e,®eq

a
where cP(t—y) =weightof tile p [l b
q

For example,

e1 ® eo — weight(Jl]) - eo ® e1 + weight(&l]) - e1 ® eo.



Quantized loop algebra

So our pipe puzzle is computing the matrix coefficients of

Vi) @@ Viya) @ V(t1) @ --- @ V(ts)
]
V(i) @@ V(th) @ Viy1) @ - @ Viyn).

Following Knutson and Zinn-Justin, this matrix could be
viewed as a shadow of representation of quantized loop
algebra Ug(Lg) of type a, (i.e. g = sly11).

But why the matrix coefficients computes the triple Schubert
coefficients?



Nakajima quiver varieties
By Nakajima, there is an action of U,(Lg) on the equivariant
K-(co)homology of Nakajima’s quiver varieties.

We will need the special cases like

m( = T*FU(2,3,4;5),
4-4-3-2-2

a cotangent bundle of partial flag varieties. Its equivariant
K-(co)homology is the component of

V(iz1) ® - @ V(z)

of weight 5A; — 401 — 40t — 303 — 204 — 2.



Stable envelope

By Okounkov and Maulik, and Okounkov, R-matrices can be
realized geometrically by stable envelope.

Vi(t) e Va(y) KGy, x Gy, (M(W1) X M(W3))
\LStab
R(y—t) Kg,, (O (w))
J/Stab*1
Va(y) @ Vi(t) KGryy x Gy, (M(W2) X M(W1))

In particular, the coefficients of R-matrices compute the
coefficients of two sets of stable basis for different alcoves.



Example

d

4 —3-2—0-0

5 —-5-5—-0-0

m

9—8-7—2—-1 )

)=

)=

5 -5-5-2-1

4-3-2-2-1

|

|



Conclusion

As a result, in our case, the R-matrices are computing
the coefficients of Stab (u @ v) in Stab®(1, ® w).

It turns out

» When w = 1,, the coefficients coincide with triple Schubert
coefficients.

» These coefficients have the inductive formula we want.

As a result, by induction,
R-matrix coefficients = triple Schubert coefficients.

If we translate everything above in terms of 6-vertex model,
this is our combinatorial proof in the paper.



Thanks



