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1. REVIEW OF FINITE THEORY

Coxeter groups.

1.1. Definition. A Coxeter system (W,S) is a group W and S ⊂ W
such that

W =

〈
s ∈ S :

s2 = id
st · · ·︸ ︷︷ ︸
mst

= ts · · ·︸ ︷︷ ︸
mst

〉
where for each s ̸= t ∈ S
mst ∈ {2, 3, · · · } ∪ {∞}.

We define Coxeter diagram

s• t• s• t• s• 4 t• · · ·
s• ∞ t•

mst = 2 mst = 3 mst = 4 · · · mst =∞
st = ts sts = tst stst = tsts · · · no relation

Usually, we reparametrize S by {si : i ∈ I} and mij = msisj .

1.2. Geometric representation. We define

h∗R =
⊕
i∈I

Rαi.

We equip a symmetric bilinear form such that

length of αi ̸= 0, angle of αi and αj is π−
π

mij
.

This form is unique up to a positive rescalar of αi. We define the geo-
metric representation of W on h∗R by

S ∋ si 7−→ (reflection with respect to α⊥
i ) ∈ GL(h∗).

That is,

si(λ) = λ− (αv
i , λ)αi, where αv =

2α

⟨α,α⟩
.

For any Coxeter group, its geometric representation is faithful.
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1.3. Finite Coxeter groups. A Coxeter group W is finite if and only if
the bilinear form defined above is positive definite. The corresponding
Coxeter diagram is a disjoint union of the following diagrams.

An • • ··· • • BCn • 4 • ··· • •

Dn
•
• • ··· • • I2(m) • m • (3 ≤ m <∞)

E6

•

• • • • •

E7

•

• • • • • •

E8

•

• • • • • • •

F4 • • 4 • •

G2 • 6 •

H3 • 5 • •

H4 • 5 • • •

We have

D2 = A1 ×A1, D3 = A2, A2 = I2(3), BC2 = I2(4), G2 = I2(6).

1.4. Example. The dihedral group Dm of order 2m is the Coxeter group
of type I2(m). We take h∗R to be the complex plane C, and

α1 = 1, α2 = −e−
2π

√
−1

m .

Weyl groups.
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1.5. Weyl group. If a finite Coxeter group W stablizes the root lattice

Q =
⊕
i∈I

Zαi ⊂ h∗R,

we call W a Weyl group and define the root system

R =
{
wαi : w ∈ W, i ∈ I

}
.

A Weyl group could only have mij ∈ {2, 3, 4, 6}. We define the Dynkin
diagram

mij = 2 mij = 3 mij = 4 mij = 6

i•
j
• i•

j
• i•

j
•ks i•

j
•jt

αi

αj

αi

αj

αi

αj

αi

αj

1.6. Finite Weyl group. Up to graph isomorphism, here is the classi-
fication of irreducible Weyl groups

An • • ··· • • Bn • •ks ··· • •

Dn
•
• • ··· • • Cn • +3 • ··· • •

E6

•

• • • • •

E7

•

• • • • • •

E8

•

• • • • • • •

F4 • • +3 • •

G2 • +3 •

We have
D2 = A1 ×A1, D3 = A3, B2 = C2.
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1.7. Example. The symmetric group

Sn =

{
bijections {1, . . . , n} w→ {1, . . . , n}

}
is the Coxeter group of type An−1. The Coxeter generator

si =

[
the permutation exchanging i and

i+1 with other numbers fixed

]
∈ Sn

labaled as
•
1

•
2

··· •
n−2

•
n−1

The geometric representation

h∗R =
{
(a1, . . . , an) : a1+ · · · +an = 0

}
⊂ Rn.

The natural pairing over Rn restricts to h∗R. We define

αi = ei − ei+1, 1 ≤ i ≤ n− 1.

We have a diagram notation

1.8. Example. The Coxeter group of type BCn is known as the signed
symmetric group

BCn =

{
bijections {±1, . . . ,±n}

w→ {±1, . . . ,±n} : w(−i) = −w(i)

}
.

Using the monotone bijection

{±1, . . . ,±n} ∼= {1, . . . , 2n}
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We can describe it as the subgroup of S2n generated by

so = sn, si = sn−isn+i (1 ≤ i ≤ n− 1).

That is,

so =

[
the permutation exchanging 1 and

-1 with other numbers fixed

]
∈ BCn

si =

[
the permutation exchanging ±i and
±(i+1) with other numbers fixed

]
∈ BCn

The label is like this

•
o

4 •
1

··· •
n−2

•
n−1

The geometric representation h∗R = Rn with natural pairing and

αo =

{
e1, type B,
2e1, type C,

αi = ei+1 − ei (1 ≤ i ≤ n− 1).

We have a diagram notation

1.9. Example. The Coxeter group of type Dn is known as the even-
signed symmetric group.

Dn =

{
w ∈ BCn : #{i < 0 : w(i) > 0} is even

}
.

Note that the s0 /∈ Dn while the si ∈ Dn for 1 ≤ i ≤ n− 1. We define

se = s0s1s0 ∈ Dn.
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That is,

se =

[
the permutation exchanging ±1 and

∓2 with other numbers fixed

]
∈ BCn

The label is
e•

•
1

•
2

··· •
n−2

•
n−1

The geometric representation h∗R = Rn with natural pairing and

αe = e1 + e2 αi = ei+1 − ei (1 ≤ i ≤ n− 1).

We have a diagram notation

Miscellany.

1.10. Remark. From now, we will assume W is a Weyl group, i.e. we
are equipped with a underlying root system. The same result holds
for any Coxeter group if we replace R by the set of root directions

R⃗ =

{
wαi

∥wαi∥
: w ∈ W, i ∈ I

}
⊂ h∗R.

1.11. Reflections. For α ∈ R, denote

rα = the reflection with respect to α ∈ W.

If α = wαi, then rα = wsiw
−1. We define reflections by{

reflections
}
=
{
wsiw

−1 : w ∈ W, i ∈ I
}
= {rα : α ∈ R}.

We call si (i ∈ I) a simple reflection.
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1.12. Positive roots. The set of positive/negative roots

R± = {α ∈ R : ±α ∈ span≥0(αi)i∈I}.

We have R = R+ ⊔ R−. For α ∈ R, we denote α > 0 if α ∈ R+ and α < 0
otherwise. We call αi (i ∈ I) a simple root.

1.13. Hyperplanes. Let us consider

hR = dual space of h∗R ∼= h∗R.

For any α ∈ R, we denote

Hα = {x ∈ hR : ⟨x, α⟩ = 0} ⊂ hR.

1.14. Fundamental coweights. Denote fundamental (co)weight ϖi ∈
h∗R (ϖv

i ∈ hR) be such that

⟨ϖi, α
v
j ⟩ = ⟨ϖv

i , αj⟩ = δij.

1.15. Chamber. We define chambers by{
chambers

}
= connected components of

(
hR \

⋃
α∈R

Hα

)
.

We define the dominant chamber to be the cone

C0 = {x ∈ hR : ⟨αi, x⟩ > 0} = span≥0(ϖ
v
i : i ∈ I).

Here we colloect example in samll dimensions.
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1.16. Theorem. We have a bijection

W −→ {chambers}, w 7−→ wC0.

Under this bijection,

the chamber of siw =
reflection of the chamber

of w with respect to αi

the chamber of wsi =
the chamber sharing the wall
wHαi

with the chamber of w

1.17. Length. For any w ∈ W, we define

ℓ(w) =
minimal length of writing w as
a product of simple reflections

If
w = si1si2 · · · siℓ , ℓ = ℓ(w).

We call (i1, i2, . . . , iℓ) is a reduced word of w.

1.18. Length formula. In terms of chambers,

ℓ(w) = # {hyperplanes separating C0 and wC0}

In terms of roots,

ℓ(w) = # Inv(w), Inv(w) = {α ∈ R+ : wα ∈ R−}.

There is a bijection between hyperplanes and Inv(w−1).
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1.19. Bruhat order. We define the Bruhat order over W to be the fol-
lowing equivalent order

• the order generated by

u < w if w = urα and ℓ(w) = ℓ(u) + 1.

• the order generated by

u < w if w = urα and ℓ(w) > ℓ(u).

• u ≤ w if there is a subword of u in a reduced word of w.
• u ≤ w if there is a subword of u in any reduced word of w.

We remark that for α ∈ R+,

urα > u ⇐⇒ uα > 0 ⇐⇒ α ∈ Inv(u).
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2. TWO REALIZATIONS

Realization A. Let W be a finite Weyl group with root system R. Let
{αi : i ∈ I} ⊂ R be the set of simple roots.

2.1. Root lattice. Recall the definition of αv for α ∈ R. Let us denote
the (co)root lattice

Q =
⊕
i∈I

Zαi ⊂ h∗R Qv =
⊕
i∈I

Zαv
i ⊂ hR.

2.2. Definition. The affine Weyl group is

Wa = W ⋉Qv.

For λ ∈ Qv, we define tλ ∈ Wa the corresponding element. That is,

tλtµ = tλ+µ, t−1
λ = t−λ, t0 = id, wtλw

−1 = tw(λ).

2.3. Example. For type A1,

the Weyl group W = {id, s} = S2

the coroot lattice Qv = Zαv.

Let us denote t = tαv . Then we have

Wa =

〈
s, t :

s2 = id
sts = t−1

〉
s0=ts
=========

〈
s, s0 : s

2 = s20 = id
〉

= the Coxeter group of
[

s• ∞ s0◦
]

2.4. Two Actions. The affine Weyl group acts

on Qv affinely:

(wtλ) · µ = w(λ+ µ).

on Q⊕ Zδ linearly:

(wtλ) · (α+ kδ) = wα+ (k− ⟨λ, α⟩)δ.

Here δ is a formal variable, called the null root. Note that the same
formula defines an action on

hR = R⊗Z Qv, h∗R ⊕ Rδ = R⊗Z (Q⊕ Zδ).
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2.5. Example. Here are the example of type A1. We denote ϖv = 1
2α

v

and ϖ = 1
2α.

2.6. Exercise. Find the action of s0 = ts in the above example.

2.7. Example. Let us consider A2. Let θv = αv
1 + αv

2. Consider s0 =
tθvs1s2s1. The following figure shows the action of Wa on Qv.
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With more efforts, we can see

Wa = the Coxeter group of


s0◦

•
s1

•
s2


2.8. Roots. We define the set of real affine roots

Ra =
{
α+ kδ : α ∈ R, k ∈ Z

}
⊂ Q⊕ Zδ.

We define the set of positive real roots

R+
a =
{
α+ kδ : k > 0 or (k = 0 and α ∈ R+)

}
⊂ Ra.

We similarly define the set of negative roots R−
a = −R+

a .

2.9. Examples. Here is the illustration of affine root systems of type
A1 and A2

2.10. Reflections. For each root α+ kδ ∈ Ra, we define the reflection

rα+kδ = rαtkαv ∈ Wa.

The action of rα+kδ on Q⊕ Zδ is given by a linear reflection

rα+kδ(β+ nδ) = β+ nδ− ⟨αv, β⟩(α+ kδ).
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The action of rα+kδ on Qv is given by the affine reflection along the
hyperplane

Hα+kδ = Hα,k = {x ∈ hR : ⟨x, α⟩+ k = 0} ⊂ hR.

2.11. Simple roots. Let θ ∈ R+ be the unique highest root. We denote

α0 = −θ+ δ ∈ R+
a , s0 = rα0

= tθvrθ ∈ Wa, Ia = I ∪ {0}.

Realization B.

2.12. Affine Dynkin diagram. The following are untwisted affine Dynkin
diagrams

Ã1 • ks +3 ◦

Ãn

(n ≥ 2)

◦

• • ··· • •

D̃n

(n ≥ 4)

• ◦

• • ··· • •

B̃n

(n ≥ 3)

◦

• •ks ··· • •
C̃n

(n ≥ 2)
• +3 • ··· • • ◦ks

Ẽ6

◦

•

• • • • •

Ẽ7

•

◦ • • • • • •

Ẽ8

•

• • • • • • • ◦

F̃4 ◦ • • +3 • •

G̃2 ◦ • +3 •

The twisted affine Dynkin diagrams are their dual.

2.13. Theorem. The affine Weyl group Wa constructed above is a Cox-
eter group with Coxeter generator {si : i ∈ Ia}.
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2.14. Example. Let n ≥ 2. For type An−1, the Weyl group is Sn and
the coroot lattice

Qv =
{
(a1, · · · , an) : a1 + · · ·+ an = 0

}
⊂ Zn.

The affine Weyl group admits the following realization

S̃0
n =

{
Z f→ Z

bijection
:

f(i+ n) = f(i) + n∑n
i=1(f(i) − i) = 0.

}
.

An element in S̃n is determined by its values at 1 ≤ i ≤ n. The
identification is given by

wtλ(i) = w(i) + λin (1 ≤ i ≤ n).

Denote si for i ∈ Z/nZ by

si =
the affine permutation exchanging j and j+ 1
when i ≡ j mod n with other numbers fixed ∈ S̃0n.

This equips the Coxeter group structure over S̃0n, where the Coxeter
diagram is (n ≥ 3)

0◦

•
1

•
2

··· •
n−2

•
n−1

2.15. Example. Let n ≥ 2. For type Cn, the Weyl group is BCn, and
the coroot lattice is

Qv = Ze1 ⊕ Z(e2 − e1)⊕ · · ·Z(en − en−1)

= Ze1 ⊕ · · · ⊕ Zen.
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We can realize the affine Weyl group as

C̃n =

{
Z f→ Z

bijection
:

f(−i) = −f(i)
f(2n+ 2+ i) = f(i)

}
.

Note that for any a ∈ Z(n+1) = {· · · , -(n+1), 0, n+1, 2n+2, · · · }, we
have

f(a+ i) + f(a− i) = 2a.

An element of C̃n is determined by its value at 1 ≤ i ≤ n. The identifi-
cation is give by

wtλ = w(i) − λi(2n+ 2).

The Coxeter generators are

so =

[
the permutation exchanging a+1 and a-1 for

a ∈ Z(2n+2) with other numbers fixed

]
∈ B̃Cn

s0 =

[
the permutation exchanging a+1 and a-1 for
a ∈ (n+1) + Z(2n+2) with other numbers fixed

]
∈ B̃Cn

and 1 ≤ i ≤ n− 1,

si =

[
the permutation exchanging a± i and a± (i+ 1)

(a ∈ Z(2n+2)) with other numbers fixed

]
∈ B̃Cn.

The Dynkin diagram is

•
o
+3 •
1

··· •
n−2

•
n−1

◦
0

ks
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2.16. Example. We will not go into details of affine type B/D. But we
mention that

D̃n ⊂ B̃n ⊂ C̃n

with generators described by
e• 0◦

•
1

•
2

··· •
n−2

•
n−1

0◦

•
o

•
1

ks ··· •
n−2

•
n−1

sDe = sos1so
sD0 = s0sn−1s0

sB0 = s0sn−1s0

Alcoves.

2.17. Alcove. For each root α+ kδ ∈ Ra, we defined a hyperplane

Hα+kδ = Hα,k = {x ∈ hR : ⟨x, α⟩+ k = 0} ⊂ hR.

We define alcoves by

{alcoves} = connected components of hR \
⋃
α,k

Hα,k.

Let us consider the fundamental alcove, i.e. the unique alcove A0 with

A0 ⊂ C0, 0 ∈ closure of A0.

It can be described as

A0 = {x ∈ hR : 0 < ⟨x, α⟩ < 1 for all α > 0}

= {x ∈ hR : 0 < ⟨x, αi⟩ for i ∈ I and ⟨x, θ⟩ < 1}

= bounded convex set cut by Hαi
for i ∈ Ia

= interior of Conv
(
{0} ∪

{
1

⟨ϖv
i ,θ⟩

ϖv
i : i ∈ I

})
.

Here θ is the highest root. Note that

⟨ϖv
i , θ⟩ = coefficient of αi in θ
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Here we collect some example in small dimensions

2.18. Theorem. We have a bijection

Wa −→ {alcoves}, wtλ 7−→ wtλ(A0).

Under this bijection,

the alcove of siwtλ =
reflection of the alcove

of w with respect to Hαi

the alcove of wtλsi =
the alcove sharing the wall
wHαi

with the alcove of w
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2.19. Example. The following shows how “alcove move” corresponds
to a reduced word
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3. LENGTH FORMULA

Iwahori–Matsumoto Formula.

3.1. Inversion. For any wtλ ∈ Wa, we define set of inversions

Inv(wtλ) = {α+ kδ ∈ R+
a : wtλ(α+ kδ) ∈ R−

a }.

Then the length function is given by

ℓ(wtλ) =
minimal length of writing wtλ as

a product of simple reflections
= # {hyperplanes separating A0 and wtλA0}

= # Inv(wtλ)

There is a bijection between hyperplanes and Inv((wtλ)
−1).

3.2. Left inversions. Let us denote the set of left inversions

LInv(wtλ) = Inv((wtλ)
−1) = {−wtλ(α+ kδ) : α+ kδ ∈ Inv(wtλ)}

= R+
a \wtλR

+
a .

There is a bijection between hyperplanes and left inversions.

3.3. Example. Let us consider A1. The fundamental alcove A0 is the
interval (0,ϖ) and

sA0 = (−ϖ, 0), s0A0 = (ϖ, 2ϖ), tA0 = (2ϖ, 3ϖ).

So we have
ℓ(s) = ℓ(s0) = 1, ℓ(t) = 2.

Alternatively, it is not hard to compute

Inv(s) = {α}, Inv(s0) = {−α+ δ}, Inv(t) = {α,α+ δ}.

This confirms the computation of the lengths.

· · · Hα+2δ Hα+δ Hα H−α+δ H−α+2δ · · ·
· · · −2ϖv −ϖv 0 ϖv 2ϖv · · ·
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Here is the diagram

3.4. Theorem. We have

ℓ(wtλ) =
∑
α>0

∣∣∣∣⟨α, λ⟩+ δwα<0

∣∣∣∣.
Here δp = 1 if a statement p is true and equals 0 otherwise.

Proof. Fix a positive root α ∈ R+. We want to compute the contribu-
tion of

±α+ kδ ∈ Inv(wtλ)

Note that
wtλ(±α+ kδ) = ±wα+ (k∓ ⟨λ, α⟩)δ.

For this vector in R−
a , we summarize four cases in the following table

wα > 0 wα < 0

± = +
i.e. k ≥ 0

k− ⟨λ, α⟩ < 0
i.e. 0 ≤ k < ⟨λ, α⟩

k− ⟨λ, α⟩ ≤ 0
i.e. 0 ≤ k ≤ ⟨λ, α⟩

± = −
i.e. k > 0

k+ ⟨λ, α⟩ ≤ 0
i.e. 0 < k ≤ −⟨λ, α⟩

k+ ⟨λ, α⟩ > 0
i.e. 0 < k < −⟨λ, α⟩

Total # |⟨λ, α⟩| |⟨λ, α⟩+ 1|

This completes the proof. □
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3.5. Corollary. Let us record the set of inversions for future references.
For α ∈ R+, we denote

Invα(wtλ) = {±α+ kδ ∈ Inv(wtλ)}

the contribution of the affine positive roots as in the proof. Then the
above table shows

Invα(wtλ) =

{{
α+ kδ : 0 ≤ k < ⟨λ, α⟩+ δwα<0

}
, ⟨λ, α⟩ ≥ 0,{

− α+ kδ : 0 < k ≤ −⟨λ, α⟩− δwα<0

}
, ⟨λ, α⟩ < 0.

3.6. Example. Consider the case A1. Recall the hyperplanes are in
bijection with left inversions.

3.7. Exercise. Note that (wtλ)
−1 = t−λw

−1 = w−1t−wλ. Check that

ℓ(wtλ) = ℓ((wtλ)
−1).

3.8. Example. In type Ãn−1, we realized the affine Weyl group as S̃0
n.

For f ∈ S̃n
0 , we can compute the length

ℓ(f) = #

{
(i, j) :

1 ≤ i ≤ n
i < j, f(i) > f(j)

}
.

In terms of Iwahori–Matsumoto formula 3.4,

ℓ(wtλ) =
∑
i<j

∣∣λi − λj + δw(i)>w(j)

∣∣.
Actually, (i, j+ nk) corresponds to ei − ej + kδ.
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3.9. Rank 2 cases. You can visualize alcoves in rank 2 here

https://www.jgibson.id.au/lievis/affine_weyl/

https://www.jgibson.id.au/lievis/affine_weyl/
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Examples.

3.10. In this paragraph, we will use a lot of facts about parabolic
subgroups, which is summarized at the appendix of this section.

— Length of translations.

3.11. Cartan vector. Let us denote

ρ =
1

2

∑
α>0

α =
∑
i∈I

ϖi ∈ h∗R.

It satisfies

ρ−wρ =
∑

α∈Inv(w−1)

α.

3.12. Dominant case. Let λ ∈ Qv be dominant. Then

ℓ(tλ) =
∑
α>0

∣∣⟨α, λ⟩+ δα<0

∣∣ =∑
α>0

⟨α, λ⟩ = 2⟨ρ, λ⟩.

3.13. General case. For general λ ∈ Qv, we can always find w ∈ W
such that

wλ0 = λ, λ0 is dominant.

Then

ℓ(tλ) =
∑
α>0

∣∣⟨α, λ⟩∣∣ =∑
α>0

∣∣⟨α,wλ0⟩
∣∣

=
∑
α ′>0

∣∣⟨w−1α, λ0⟩
∣∣ = ∑

α ′>0

∣∣⟨α ′, λ0⟩
∣∣

=
∑
α ′>0

⟨α ′, λ0⟩ = 2⟨ρ, λ0⟩ = ℓ(tλ0).

Here α ′ = ±w−1α > 0.
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3.14. Example. Consider the case A2. Recall that θv = αv
1 + αv

2. Then
ρ = θ. So

ℓ(tθv) = ℓ(twθv) = 2⟨ρ, θ⟩ = 4.

This can be seen from the first diagram of Example 2.19.

3.15. Inversion set. It would be useful to compute the set of inver-
sions. We have

Invα(tλ) =


{
α+ kδ : 0 ≤ k < ⟨λ, α⟩

}
, ⟨λ, α⟩ > 0,

∅, ⟨λ, α⟩ = 0,{
− α+ kδ : 0 < k ≤ −⟨λ, α⟩

}
, ⟨λ, α⟩ < 0.

— Minimal representatives.

3.16. Formulation. We have a bijection

Qv 1:1−→Wa/W, λ 7−→ tλW.

We will describe the parabolic decomposition

tλ = uλvλ, uλ = min(tλW) and vλ ∈ W.
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3.17. Example. Let us consider type A1. The set of minimal represen-
tative is

λ 0 αv −αv 2αv −2αv · · ·
tλ id s0s ss0 (s0s)

2 (ss0)
2 · · ·

uλ id s0 ss0 s0ss0 ss0ss0 · · ·
vλ id s id s id · · ·

Equivalently, we want to find v ∈ W such that u−1 = vt−λ has min-
imal length

ℓ(u) = ℓ(u−1) =
∑
α>0

∣∣− ⟨α, λ⟩+ δvα<0

∣∣.
To minimize ℓ(u), we wish that each summand is minimal, i.e.

⟨α, λ⟩ ≤ 0 =⇒ vα > 0,

⟨α, λ⟩ > 0 =⇒ vα < 0.

We will see, this is achievable.

3.18. Antidominant case. Let λ ∈ Qv be antidominant, i.e. −λ is dom-
inant. To minimize ℓ(u−1), it suffices to take v = id.

3.19. General case. Let us pick w ∈ W such that

λ = wλ0, λ is anti-dominant.

Such w’s form a coset of W/WP for WP the stabilizer of λ0. Let us pick
the minimal one, i.e. w ∈ WP. Then

⟨α, λ⟩ = ⟨w−1α, λ0⟩ < 0 =⇒ w−1α > 0

⟨α, λ⟩ = ⟨w−1α, λ0⟩ = 0 =⇒ w−1α ∈ RP
w∈WP

=⇒ w−1α ∈ R+
P ,

⟨α, λ⟩ = ⟨w−1α, λ0⟩ > 0 =⇒ w−1α < 0.

It suffices to take v = w−1.
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3.20. Dominant case. Let λ ∈ Qv be dominant. Let WP = w0Wλw0

be the stabilizer of w0λ. By above computation, vλ = (wP
0 )

−1 for wP
0 =

max(WP) the maximal element of WP. Actually,

vλ = max(Wλ).

This is because wP
0 = max(WP) = w0 ·w0,P, so

vλ = w−1 = w0,P ·w0 = w0 ·w0,λ = max(Wλ).

3.21. Summary v1. In the parabolic decomposition

tλ = uλvλ,

the element vλ is the minimal element v ∈ W such that vλ is anti-
dominant.

3.22. Summary v2. Let λ ∈ Qv be anti-dominant. Denote WP the
stabilizer of −λ. Then for w ∈ WP, the expression

twλ = (wtλ) ·w−1

gives the parabolic decomposition. In particular,

wtλ = min(wtλW) ⇐⇒ λ is anti-dominant and w ∈ Wλ.

3.23. Example. Consider type A1. We have

λ 0 αv −αv 2αv −2αv · · ·
min(tλW) id s0 ss0 s0ss0 ss0ss0 · · ·

λ 0 −αv αv −2αv 2αv · · ·
min(Wtλ) id s0 s0s s0ss0 s0ss0s · · ·
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3.24. Example. The case A2. We mark the minimal element in the
cosets. Each right coset corresponds to

Each left coset corresponds to a W-orbit

3.25. Exercise. Prove that

wtλ = min(Wtλ) ⇐⇒ wtλA0 ⊂ C0.

This gives a bijection.

3.26. Example. For θv ∈ Qv, recall that

s0 = tθvrθ.

We actually have

uθv = s0, vθv = rθ ∈ W.
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This implies

2⟨ρ, θv⟩ = ℓ(rθ) + 1.

3.27. Example. Let us consider the case of An−1. For any f ∈ S̃0
n, it is

clear that in the decomposition

f = uv, u = min(fW) and v ∈ Sn

we have
u(1) = min(f(1), . . . , f(n)),

· · · = · · ·
u(n) = max(f(1), . . . , f(n)).

— Double cosets.

3.28. Double cosets. We have a bijection

Qv
dom

1:1−→W\Wa/W, tλ 7−→WtλW.

Recall that wtλw
−1 = twλ. We actually have

WtλW =
⋃

w∈W
twλW.

Similar to one-side case, there is also a unique minimal element in each
double coset.

3.29. Summary v3. Let λ ∈ Qv be anti-dominant. Denote WP the
stabilizer of −λ. By Summary 3.22 above,

WP ×W
1:1−→WtλW, (w,u) 7−→ wtλu,

with

ℓ(wtλu) = −ℓ(w) + ℓ(tλ) + ℓ(u).

By taking inverse, we have a dominant version.
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3.30. Summary v4. Let λ ∈ Qv be dominant, with stabilizer WP. We
have a bijection

W ×WP −→WtλW, (u,w) 7−→ utλw
−1

with
ℓ(utλw

−1) = ℓ(u) + ℓ(tλ) − ℓ(w).

As a result,
min(WtλW) = min(tλW).

Appendix: Parabolic subgroups.

3.31. Defintion. Let IP be a subset of I. Then we denote the parabolic
subgroup

WP =
(
subgroup generated by si with i ∈ IP

)
⊂ W

and RP ⊂ R the root system of WP.

3.32. Minimal representative. For any w ∈ W, there is a minimial ele-
ment, called the minimal representative, in the right coset wWP under
the Bruhat order. Let us denote the set of minimal representative

WP = {min(wWP) : w ∈ W}.

We have a length-additive bijection

WP ×WP −→W, (u, v) 7−→ uv.

Note that

w ∈ WP ⇐⇒ Inv(w) ⊂ R+
P

w ∈ WP ⇐⇒ Inv(w) ⊂ R+ \ R+
P .

3.33. Parabolic Bruhat order. For two cosets uWP, wWP, we define

uWP ≤ wWP ⇐⇒ uv ≤ wv ′for some v, v ′ ∈ WP.

The the bijection

WP −→W/WP, w 7−→ wWP

is an isomorphism of posets.
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3.34. Stabilizer. For a dominant λ ∈ hR, the stabilizer

Wλ = WP = {w ∈ W : wλ = λ}

is a parabolic subgroup with

IP = {i ∈ I : ⟨x, αi⟩ = 0}.

We denote
Wλ = WP.

Then we have a bijection

Wλ −→Wλ, w 7−→ wλ.
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4. EXTENDED AFFINE WEYL GROUPS

Definition.

4.1. Weight lattice. Recall the definition of ϖv
i for i ∈ I. Let us denote

the (co)weight lattice

P =
⊕
i∈I

Zϖi ⊂ h∗R, Pv =
⊕
i∈I

Zϖv
i ⊂ hR.

From the axiom of root system, we have

Q ⊆ P, Qv ⊆ Pv.

In general, they are not equal.

4.2. Definition. The extended affine Weyl group is

We = W ⋉ Pv.

For λ ∈ Pv, we define tλ ∈ Wa the corresponding element.

4.3. Two Actions. The extended affine Weyl group acts

on Pv affinely:

(wtλ) · µ = w(λ+ µ).

on Q⊕ Zδ linearly:

(wtλ) · (α+ kδ) = wα+ (k− ⟨λ, α⟩)δ.

It is not hard to see Ra is stable under We, so the set of inversions also
makes sense. We define the length

ℓ(wtλ) = # Inv(wtλ).

It is also computed by Iwahori–Matsumoto formula 3.4.

4.4. Remark. However, We is not a Coxeter group in general. Ac-
tually, there would be many elements in We of length 0. The main
purpose of this section is to study them.
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4.5. The group Ω. Let us denote

Ω = {π ∈ We : ℓ(π) = 0} = {π ∈ We : πA0 = A0}.

Note that the norm vector of facets of A0 are simple roots. So we have

Ω ↪→ Aut(A0) = Aut(affine Coxeter diagram)

= Aut(affine Dynkin diagram).

The last equality follows from the classification, i.e. any automor-
phism of affine Coxeter group preserving length. Thus Ω acts on Wa,
and

We = Ω⋉Wa.

4.6. Fundamental group. In particular the composition is an isomor-
phism

Ω ⊂ We ↠ We/Wa = Pv/Qv.

The group Pv/Qv is known to be the fundamental group of the adjoint
algebraic group. Here is the table

An Z/(n+ 1)Z
Bn Z/2Z
Cn Z/2Z

Dn
Z/2Z× Z/2Z (n even)

Z/4Z (n odd)
E6 Z/3Z
E7 Z/2Z

E8, F4, G2 trivial

4.7. Example. Consider type A1.

Pv = Zϖv ⊂ Qv = Zαv.

The index is 2. Let t1/2 = tωv ∈ We. We see

π := t1/2s ∈ Ω.

It acts on Pv by reflection with respect to ϖv

2 . It acts on Q ⊕ Zδ by
interchanging α1 and α0.
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4.8. Example. Let us consider type A2.

4.9. Exercise. Prove that Qv has index 3 in Pv.
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4.10. Example. Let us consider type B2.

4.11. Example. Consider type An−1. Let us first give some remark
on the geometric representation. The geometric representation h∗R can
be chosen to be one of two isomorphic spaces (the subspace/quotient
space realization){

(a1, . . . , an) : a1+ · · · +an = 0
}

∼=

33
⊂ Rn ↠ Rn/R(1, . . . , 1)

Then we can realize

Qv

� _
��

{
(a1, . . . , an) ∈ Zn : a1+ · · · +an = 0

}

��

Zn

����
Pv Zn/Z(1, . . . , 1).

We thus have

Wa = Sn ⋉Qv ⊂ S̃n = Sn ⋉ Zn ↠ Sn ⋉ Pv = We.
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Here

S̃n =

{
Z f→ Z

bijection
: f(i+ n) = f(i) + n.

}
.

For any λ ∈ Zn, the corresponding translation tλ ∈ S̃n by

tλ(i) = i+ λin, 1 ≤ i ≤ n− 1.

Then the extended Weyl group

We = S̃n/⟨t(1,...,1)⟩.

Actually, all theory of extended Weyl groups can be lifted to S̃n. So
S̃n is also called the extended Weyl group of type A.

Denote π ∈ S̃n by
π(i) = i+ 1.

Note that π /∈ S̃0
n and πn = t(1,...,1). For i ∈ Z/nZ, we have

πsiπ
−1 = si+1.

We have

S̃n =

〈
s0, s1, . . . , sn−1

π
:
s2i = id, braid relations

πsiπ
−1 = si+1

〉
This shows

S̃n = πZ ⋉ S̃0
n, We = πZ/⟨πn⟩⋉ S̃0

n.

The diagram notation

Cominuscule node.
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4.12. Cominuscule node. We say a node k ∈ I is cominuscule if

⟨ωv
k, θ⟩ = 1.

Equivalently, for any positive roots α > 0,

⟨ωv
k, α⟩ ∈ {0, 1}.

Let us denote WP the stabilizer of ϖv
k.

4.13. Elements in Ω. For any cominuscule k ∈ I, by 3.20 or 3.30, the
parabolic decomposition is given by

tϖv
k
= πk ·wP

0 , wP
0 = max(WP) and πk = min(tϖv

k
W).

We have

ℓ(πk) = ℓ(tϖv
k
(wP

0 )
−1) = ℓ(wP

0t-ϖv
k
)

=
∑
α>0

∣∣− ⟨α,ϖv
k⟩+ δwP

0α<0

∣∣.
Note that

α ∈ R+
P =⇒ ⟨α,ϖv

k⟩ = 0, wP
0α > 0

α ∈ R+ \ R+
P =⇒ ⟨α,ϖv

k⟩ = 1, wP
0α < 0.

Each term is zero. Thus
πk ∈ Ω.

4.14. Example. In type An−1, each node is cominuscule. We have
ωv

k = e1 + · · · + ek in the quotient space realization. The following
diagram reads

tϖv
k
= πkwP

0 .
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4.15. Theorem. Denote π0 = id, and call 0 cominuscule. We have

Ω = {πk : k ∈ Ia is cominuscule}.

4.16. Description of the automorphism. Note that for any π ∈ Ω, we
have

παi = απ(i).

So if
wP

0αi = αj mod θ

we must have
πkαj = tϖv

k
(αi + (· · · )δ) = αi.

That is, π(j) = i. In particular, since wP
0αk < 0 we must have π(0) = k.

4.17. Type A. For type Ãn−1, every node is cominuscule. The auto-
morphism

πk(i) = i+ k mod n,
◦
⟲

• • ··· • •

4.18. Type B and type C. For type B̃n and C̃n, there is one cominus-
cule node

◦ jj
��

• •ks ··· • • • {{ ##+3 • xx &&··· • • ◦ks

4.19. Type D. For type D̃n, there are three cominuscule nodes. When
n is even,

•44




◦ jj
��

• • ··· • •

• vv )) ◦

• dd ::• hh 66··· • •

• nn

$$

◦

• zz

00

• hh 66··· • •

When n is odd,

•44




◦ jj
��

• • ··· • •

•
$$

◦vv

•

00

• ··· • •kk

• nn ◦((

• zz • ··· • •33
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4.20. Type E. For type Ẽ6 and Ẽ7, there are 2 and 1 cominuscule node
respectively.

◦

��

33

•
��

44

• dd • hh • • •

•

◦ ee 99• hh 66• hh 66• • • •

4.21. Corollary. A node k ∈ I is comiuscule if and only if k is in the
orbit of affine node under automorphism of affine Dynkin diagram.
Moreover,

Aut(Finite Dynkin diagram)⋉Ω = Aut(Affine Dynkin diagram).

Bruhat order.

4.22. Extending Bruhat order. We can define Bruhat order over We,
and extend it to Wa by the disjoint union of ordering over

We =
⋃
π∈Ω

πWa.

Note that for any π ∈ Ω,

utµ ≤ wtλ ⇐⇒ π(utµ)π
−1 ≤ π(wtλ)π

−1.

So it gives the same order if we use the left cosets.

4.23. Bruhat order. Let us describe the Bruhat order over

We/W
1:1←→ Pv.

We first mention that the above map is an isomorphism of We-sets. We
denote the Bruhat order

λ ≤ µ ⇐⇒ tλW ≤ tµW.

Note that a general fact of parabolic Bruhat order tells

tλW ≤ tµW :⇐⇒ uλ ≤ uµ⇐⇒ ∃x ∈ tλW and y ∈ tµW such that x ≤ y.
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Here uλ = min(tλW) the minimal representative.
The Bruhat order is generated by

λ < µ when µ = rα̂λ for some α̂ ∈ R+
a .

Note that
µ < rα̂µ ⇐⇒ α̂ ∈ LInv(tµ).

As we computed in 3.15 the inversion set of tλ, it is not hard to con-
clude

• When ⟨λ, α⟩ < 0, α ∈ LInv(tλ), i.e. rαtλ < tλ. We have

rαλ < λ.

• When ⟨λ, α⟩ > 0, −α + δ ∈ LInv(tλ), i.e. r−α+δtλ < tλ. Recall
that r−α+δ = tαvrα, we have

rαλ+ αv < λ.

This can also be seen from the alcove. As a result, the Bruhat order is
generated by

λ < λ+ α < α− α < α+ 2α < · · · ⟨λ, α⟩ = 0

λ < λ− α < α+ α < α− 2α < · · · ⟨λ, α⟩ = 1

4.24. Example. Consider type A1.
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4.25. Exercise. For α ∈ R+, denote

ℓα(wtλ) = # Invα(wtλ).

Prove that
⟨λ+ kαv, α⟩ · · · −8 −6 −4 −2 0 2 4 6 8 · · ·
ℓα(uλ+kαv) · · · 8 6 4 2 0 1 3 5 7 · · ·

⟨λ+ kαv, α⟩ · · · −7 −5 −3 −1 1 3 5 7 9 · · ·
ℓα(uλ+kαv) · · · 7 5 3 1 0 2 4 6 8 · · ·
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5. SEMI-INFINITY

Semi-infinite length.

5.1. Length. Recall for x ∈ We, we defined

Inv(x) = {α+ kδ ∈ R+
a : x(α+ kδ) ∈ R−

a }.

Then the length function is given by

ℓ(x) = # {hyperplanes separating A0 and x−1A0}

= # Inv(x)

There is a bijection between hyperplanes and inversions.

5.2. Semi-infinite length. For x ∈ We, we define

ℓ%(x) = ℓ(xtµ) − ℓ(tµ)

for µ sufficiently dominant. Here, sufficiently dominant means,

⟨µ, αi⟩ ≫ 0 for each i ∈ I.

In particular, ℓ%(πx) = ℓ%(x) for π ∈ Ω. Note that unlike the usual
length, ℓ%(x) might be negative and ℓ%(x) ̸= ℓ%(x−1) in general.

5.3. Computation. If we write x = wtλ, then Iwahori–Matsumoto for-
mula 3.4 implies

ℓ%(wtλ) =
∑
α>0

∣∣⟨α, λ+ µ⟩+ δwα<0

∣∣− ∣∣⟨µ, α⟩∣∣
=
∑
α>0

(
⟨α, λ⟩+ δwα<0

)
= ℓ(w) + 2⟨ρ, λ⟩.

5.4. Example. Let us consider A1 case. We have

x · · · s0ss0 ss0 s0 id s s0s ss0s (ss0)
2 · · ·

· · · st−2 t−2 st−1 id s t st t2 · · ·
ℓ%(x) · · · −3 −2 −1 0 1 2 3 4 · · ·
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5.5. Example. Compare length and semi-infinite length for Wa.

ℓ(x) on x−1A0 ℓ%(x) on x−1A0
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5.6. Example. Let us compute

ℓ%(rα+kδ) = ℓ%(rαtkαv) = ℓ(rα) + 2k⟨ρ, αv⟩.

We proved in 3.26 that

2⟨ρ, θv⟩ = ℓ(rθ) + 1.

So

ℓ%(s0) = ℓ(rθ) − 2⟨ρ, θv⟩ = −1.

5.7. A trick. Let α+ kδ ∈ Ra. Notet that

α+ (k+ ⟨µ, α⟩)δ

We have

t−µ(α+ kδ) ∈ R±
a for sufficiently dominant µ ⇐⇒ α ∈ R±.

5.8. Semi-infinite Inversion. Note that for α+ kδ ∈ R+
a ,

α+ kδ ∈ LInv(xtµ) for sufficiently dominant µ⇐⇒ t−µ(x
−1(α+ kδ)) ∈ R−

a for sufficiently dominant µ⇐⇒ x−1(α+ kδ) mod δ ∈ R−.

Let us denote

R±
% = {α+ kδ : α ∈ R± and k ∈ Z}.

We denote

LInv%(x) = {α+ kδ ∈ R+
a : x−1(α+ kδ) ∈ R−

%} ⊂ R+
a .

We denote

Inv%(x) = {a+ kδ ∈ R+
% : x(a+ kδ) ∈ R−

a } ⊂ R+
%.
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5.9. Computation. We have

wtλ(α+ kδ) = wα+ (k− ⟨λ, α⟩)δ.

So α+ kδ ∈ Inv%(x) if and only if

k− ⟨λ, α⟩ < δwa<0.

We see

Inv%(wtλ) =
{
α+ kδ : α ∈ R+ and k < ⟨λ, α⟩+ δwa<0

}
.

Compare with 3.5.

5.10. Theorem. We have

ℓ%(x) = #
(
Inv%(wtλ) \ Inv%(id)

)
− #
(
Inv%(id) \ Inv%(wtλ)

)
.

We can write it as

ℓ%(x) =
∑

α+kδ∈Inv(x)

{
1, α > 0

−1, α < 0

5.11. Half-space. For α+ kδ ∈ Ra, we defined

Hα+kδ =
{
x ∈ hR : ⟨x, α⟩+ k = 0

}
.

We define the half-space

H>0
α+kδ =

{
x ∈ hR : ⟨x, α⟩+ k > 0

}
.

Similarly, we define H<0
α+kδ etc. One can check

wtλ ·H>0
α+kδ = H>0

wtλ(α+kδ).

5.12. Alcove. Let x ∈ We. Let us justify the bijection

Inv(x)
1:1←→ #{hyperplanes separating x−1A0 and A0}.

The key observation is

α+ kδ ∈ R+
a ⇐⇒ A0 ⊂ H>0

α+kδ.
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As a result, for α+ kδ ∈ R+
a ,

the hyperplane Hα+kδ separates A0 and x−1A0⇐⇒ x−1A0 ⊂ H<0
α+kδ ⇐⇒ A0 ⊂ H<0

x(α+kδ) ⇐⇒ x(α+ kδ) ∈ R−
a⇐⇒ α+ kδ ∈ Inv(x).

The semi-infinite analogy is

α+ kδ ∈ R+
% ⇐⇒ A0 + µ ⊂ H>0

α+kδ for sufficiently dominant µ⇐⇒ C0 ∩H>0
α+kδ ̸= ∅.

Here C0 is the fundamental chamber. As a result, for α > 0,

the hyperplane Hα+kδ separates A0 + µ and x−1A0 for µ sufficiently dominant⇐⇒ x−1A0 ⊂ H<0
α+kδ ⇐⇒ A0 ⊂ H<0

x(α+kδ) ⇐⇒ x(α+ kδ) ∈ R−
a⇐⇒ α+ kδ ∈ Inv%(x).

As a result,

ℓ%(x) =
∑
H

{
1, A0 ⊂ H+ C0,

−1, A0 ⊂ H− C0,

with the sum over hyperplanes H separating x−1A0 and A0.

5.13. Example. Consider the case A2.
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5.14. Exercise. For x ∈ We, prove that

−ℓ(x) ≤ ℓ%(x) ≤ ℓ(x).

Semi-infinite Bruhat order.

5.15. Bruhat order. Recall the Bruhat order can be equivalently de-
scribed by

• the order generated by

x < xrα̂ when ℓ(xrα̂) = ℓ(x) + 1.

• the order generated by

x < xrα̂ when ℓ(xrα̂) > ℓ(x).

That is, α̂ ∈ R+
a and xα̂ ∈ R+

a .
• x ≤ y if there is a subword of x in a reduced word of y.
• x ≤ y if there is a subword of x in any reduced word of y.

5.16. Semi-infinite Bruhat order. For x, y ∈ We, we define the semi-
inifnite Bruhat order

x ≤% y ⇐⇒ xtµ ≤ ytµ for µ ∈ Qv sufficiently dominant.

The well-definedness follows from the description below. Note that
unlike Bruhat order, x ≤% y does not implies x−1 ≤% y−1.

5.17. Description. The semi-inifnite Bruhat order can be equivalently
described by

• the order generated by

x <% xrα̂ when ℓ%(xrα̂) = ℓ%(x) + 1.

• the order generated by

x <% xrα̂ when ℓ%(xrα̂) > ℓ%(x).

That is, α̂ ∈ R+
% and xα̂ ∈ R+

a .
• x ≤ y if there is a subword of xtµ in a reduced word of ytµ for

sufficiently dominant µ.
• x ≤ y if there is a subword of xtµ in a reduced word of ytµ for

sufficiently dominant µ.
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5.18. Exercise. Prove that

x ≤% y ⇐⇒ xw0 ≥% yw0

where w0 = max(W) the longest element in finite Weyl group.

5.19. Remark. This order is also known as the quantum Bruhat or-
der.

5.20. Example. Consider the case A1.

As usual, we mark the semi-infinite length ℓ%(x) on x−1A0.

5.21. Example. Consider the case A2.

Note that, we use x−1A0 to represent x, so

left multiplication by si = wall-crossing

5.22. Lemma. We have

ℓ(rα) ≤ 2⟨ρ, αv⟩− 1.
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Proof. Generally,
ρ = wρ+

∑
β∈LInv(w)

β.

Substituting w = rα, we get

⟨ρ, αv⟩α =
∑

β∈LInv(rα)

β.

Note that β ∈ Inv(rα) implies

β− ⟨αv, β⟩α < 0.

We must have ⟨αv, β⟩ ≥ 1. Note that α ∈ Inv(rα), with ⟨αv, α⟩ = 2.
Thus we get

2⟨ρ, αv⟩ =
∑

β∈LInv(rα)

⟨β,αv⟩ ≥ ℓ(rα) + 1.

This proves the inequality. □

5.23. Corollary. From the proof, for α ∈ R+, it is easy to see the in-
equality achieves

ℓ(rα) = 2⟨ρ, αv⟩− 1

exactly when

• α is long;
• the coefficient of each long simple root of α is 0.

In particular, it is always true for simply-laced types.

5.24. Computation. Let us give a more precise description of

x <% xrα̂ when ℓ%(xrα̂) = ℓ%(x) + 1.

Firstly, the order the translation invariant, i.e.

x ≤% y ⇐⇒ xtµ ≤% ytµ, ∀µ ∈ Pv.

Let us assume x = w ∈ W, α̂ = α+kδ for α > 0. Recall rα+kδ = rαtkαv .
We have

ℓ%(xrα+kδ) − ℓ%(x) = ℓ(wrα) + 2k⟨ρ, αv⟩− ℓ(w) = 1.

So
2k⟨ρ, αv⟩− 1 = ℓ(w) − ℓ(wrα).
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We have

−2⟨ρ, αv⟩+ 1 ≤ −ℓ(rα) ≤ 2k⟨ρ, αv⟩− 1 ≤ ℓ(rα) ≤ 2⟨ρ, αv⟩− 1.

Thus −1 < k ≤ 1. When k = 0, this is a cover relation in the finite
Bruhat order

w <% wrα when ℓ(xrα) = ℓ(x) + 1.

When k = 1, the equality must be achieved, i.e.

w <% wrαtkαv when ℓ(xrα) = ℓ(x) − ℓ(rα) for α in 5.23.

5.25. Theorem. The semi-infinite Bruhat order is generated by

wtλ <% wrαtα ℓ(wrα) = ℓ(w) + 1

wtλ <% wrαtα+αv ℓ(wrα) = ℓ(w) − ℓ(rα) for α in 5.23.

Grassmannian elements.

5.26. Minimal representative. Let x = wtλ. Recall that in 3.22, we get

x = min(xW) ⇐⇒ λ is anti-dominant and w ∈ Wλ.

This is also true for extended Weyl group. A general facts of Weyl
groups tells

x = min(xW) ⇐⇒ Inv(x) ∩ R+ = ∅.

From the computation of 3.5, we see that x ∈ min(xW) if and only if

Inv(x) ⊂ R−
%.

5.27. Proposition. By 5.10, we have

ℓ(x) = −ℓ%(x) ⇐⇒ x = min(xW).

5.28. Example. Recall that x = min(xW) if and only if x−1A0 ⊂ C0.
The above examples give examples of this theorem.

5.29. Lemma. When x = min(xW), any anti-dominant λ ∈ Pv, we
have

xtµ = min(xtλW), ℓ(x) + ℓ(tλ) = ℓ(xtλ).

This is obvious from above description.
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5.30. Theorem. When x = min(xW), for any y ∈ We

y ≤ x =⇒ y ≥% x,

y ≤% x =⇒ y ≥ x.

Proof. We have

y ≤ x =⇒ ytλ ≤ xtλ for sufficiently anti-dominant λ
=⇒ ytλw0 ≤ xtλw0 for sufficiently anti-dominant λ
=⇒ yw0tµ ≤ xw0tµ for sufficiently dominant µ = w0λ

=⇒ yw0 ≤% xw0

=⇒ y ≥% x (by 5.18).

y ≤% x =⇒ yw0 ≥% xw0 (by 5.18)

=⇒ yw0tµ ≥ xw0tµ for sufficiently dominant µ
=⇒ ytλw0 ≥ xtλw0 for sufficiently anti-dominant λ = w0µ

=⇒ y ≥ x (Lifting property below).

We are done. □

5.31. Lifting property. When ℓ(uv) = ℓ(u) + ℓ(v), we have

uv ≤ wv =⇒ u ≤ w.

Proof. It suffices to show when v = si. When wsi < w, then u ≤
usi ≤ wsi ≤ w it is obvious. When wsi > w, then

(a reduced word of w)⊕ si

is a reduced word of wsi. Since usi ≤ wsi, we can find a subword of
usi inside. If the last si is chosen, then drop it, we get u ≤ w. If the last
si is not chosen, then usi ≤ w, we also have u ≤ w. □

5.32. Corollary. For x = min(xW) and y = min(yW),

x ≤ y ⇐⇒ x ≥% y.
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5.33. Exercise. Prove that

xw0 ≤% yw0 ⇐⇒ xtλ ≤ ytλ for λ ∈ Qv sufficiently anti-dominant.

When λ is sufficiently anti-dominant, xtµ = min(xtµW) by above. So
it is equivalent to say xtλw0 ≤ ytλw0.
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6. COMBINATORICS IN TYPE A

Remind.

6.1. Two presentations. Recall that

S̃n =

{
Z f→ Z

bijection
: f(i+ n) = f(i) + n

}
.

Any λ ∈ Zn defines a translation tλ(i) ∈ S̃n by

tλ(i) = i+ λin 1 ≤ i ≤ n− 1.

This gives the first presentation

S̃n = Sn ⋉ Zn.

Denote si for i ∈ Z/nZ by

si =
the affine permutation exchanging j and j+ 1
when i ≡ j mod n with other numbers fixed ∈ S̃0n.

They generate the subgroup

S̃0
n =

{
Z f→ Z

bijection
:

f(i+ n) = f(i) + n
1
n

∑n
i=1(f(i) − i) = 0

}
.

Recall the element

π ∈ S̃n, given by π(i) = i+ 1.

We have the second presentation

S̃n = πZ ⋉ S̃0
n.

6.2. Dot notation. If we denote xi = tei , we have very explicit for-
mula

xi = (si−1 · · · s1)π(sn−1 · · · si).
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There is another diagram notation for S̃n.

6.3. Exercise. For any f ∈ S̃n, prove the average

av(f) =
1

n

n∑
i=1

(f(i) − i) ∈ Z, av(fg) = av(f) + av(g).

This proves av : S̃n → Z defines a group homomorphism. Actually
ker av = S̃0

n the affine Weyl group.

6.4. Length function. For f ∈ S̃n, the length

ℓ(f) = #

{
(i, j) :

1 ≤ i ≤ n− 1
i < j, f(i) > f(j)

}
.

Assume f = wtλ, then

ℓ(f) =
∑
i<j

|λi − λj + δw(j)>w(i)|.

In particular,

ℓ(si) = 1, ℓ(π) = 0, ℓ(xi) = n− 1

Actions of S̃n.

6.5. Exercise. Prove that Pv ∼= We/W is an isomorphism of We-sets.
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6.6. Remark. By the very definition, as a subgroup of SZ, the group
S̃n acts on any objects indexed by Z. Precisely, for any set X,

XZ = {(· · · , a-1, a0, a1, · · · ), ai ∈ X},

the group S̃n acts by

f(· · · , a-1, a0, a1, · · · ) = (· · · , af-1(-1), af-1(0), af-1(1)).

That is, ai is moves to the f(i)-th position, so the j-th entry is supposed
to be af-1(j).

6.7. Action on Zn. The group Sn acts on Zn linearly by

w(a1, . . . , an) = (aw-1(1), . . . , aw-1(n)).

We can extend this action non-linearly to S̃n by

wtλ(a1, . . . , an) = (a1 + λ1, . . . , an + λn).

This induces an isomorphism of S̃n-set Zn 1:1↔ S̃n/Sn. In particular,

• since s0 = t1t
−1
n s1n,

s0(a1, a2 . . . , an−1, an) = (an + 1, a2, · · · , an−1, a1 − 1),

• since π = t1s1 · · · sn−1,

π(a1, a2, . . . , an−1, an) = (an + 1, a1, · · · , an−2, an−1).

6.8. Example. Take n = 3. for simplicity, we denote −m = m̄.

000
π−→ 100

s1−→ 010
s0−→ 111̄

s2−→ 11̄1
s0−→ 21̄0

s2−→ 201̄

6.9. Idenfication A. Actually, we can extend any n-tuple (a1, . . . , an)

to (ai)i∈Z by akn+i = ai − k.

That is, we can embedding

Zn 1:1−→ {(ai)i∈Z :
ai ∈ Z

ai+n = ai − 1

}
⊂ ZZ.
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Then this can be includes in Remark 6.6 above. For example, (k̄ = -k)

201̄ 7−→ · · · | 310 | 201̄ | 11̄2̄ | · · ·
21̄0 7−→ · · · | 301 | 21̄0 | 12̄1̄ | · · ·
11̄1 7−→ · · · | 212 | 11̄1 | 02̄0 | · · ·
111̄ 7−→ · · · | 221 | 111̄ | 002̄ | · · ·
010 7−→ · · · | 121 | 010 | 1̄01̄ | · · ·
100 7−→ · · · | 211 | 100 | 01̄1̄ | · · ·
000 7−→ · · · | 111 | 000 | 1̄1̄1̄ | · · ·

Compare with the example above.

6.10. Identification B. For any n-tuple (a1, . . . , an), we can associate
a subset

A = taZ<0 = {i+ (ai − k)n : 1 ≤ i ≤ n, k < 0} ⊂ Z

Equivalently, we split Z into n copies of Z by

Z 1:1−→ (i+ nZ), d 7−→ i+ nd.

Then A is the union of the image of lower ideal {j < ai}. This defines a
bijection

Zn 1:1−→
A ⊂ Z :

i ∈ A⇒ i− n ∈ A
i ≪ 0⇒ i ∈ A
i ≫ 0⇒ i ∈ A

 ⊂ 2Z.

Then this can be includes in Remark 6.6 above. For example

201̄ 7−→ {· · · , 4, 1̄, 3̄}
21̄0 7−→ {· · · , 4, 4̄, 0}
11̄1 7−→ {· · · , 1, 4̄, 3}
111̄ 7−→ {· · · , 1, 2, 3̄}
010 7−→ {· · · , 2̄, 2, 0}
100 7−→ {· · · , 1, 1̄, 0}
000 7−→ {· · · , 2̄, 1̄, 0}

· · · 2̄ 1̄ 0 1 2 3 · · ·

· · · 8̄ 5̄ 2̄ 1 4 7 · · ·
· · · 7̄ 4̄ 1̄ 2 5 8 · · ·
· · · 6̄ 3̄ 0 3 6 9 · · ·
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6.11. Maya diagram. We represent any subset of Z by a Z-tuple of
{⊕,⊖}. That is, the a-th position is ⊕ if and only if a ∈ A. For example,

201̄ 7−→ · · · ⊕⊕⊕⊖|⊕⊖⊖⊕ · · ·
21̄0 7−→ · · · ⊕⊕⊖⊕|⊕⊖⊖⊕ · · ·
11̄1 7−→ · · · ⊕⊕⊖⊕|⊕⊖⊕⊖ · · ·
111̄ 7−→ · · · ⊕⊕⊕⊖|⊕⊕⊖⊖ · · ·
010 7−→ · · · ⊕⊕⊕⊕|⊖⊕⊖⊖ · · ·
100 7−→ · · · ⊕⊕⊕⊕|⊕⊖⊖⊖ · · ·
000 7−→ · · · ⊕⊕⊕⊕|⊖⊖⊖⊖ · · ·

6.12. Partitions. The set{
A ⊂ Z :

i ≪ 0⇒ i ∈ A
i ≫ 0⇒ i ∈ A

}
⊂ 2Z

can be identified with the set of partitions with charges.

{(λ,m) : λ is a partition,m ∈ Z} .

We say (λ,m) is of center charge if m = 0. We identify usual partitions
by a partition of center charge.

The identification is given by

(λ,m) 7−→ {m+ 1+ λi − i : i = 1, 2, 3, · · · }.
For example,

(∅,m) 7−→ (· · · ,
m-1
⊕ ,

m
⊕,

m+1
⊖ ,

m+2
⊖ , · · · ).

(□,m) 7−→ (· · · ,
m-1
⊕ ,

m
⊖,

m+1
⊕ ,

m+2
⊖ , · · · ).

6.13. Residue. For a partition with charge (λ,m) and a box (i, j) in λ,
we define

res(□) = j− i+m ∈ Z
Then the action of S̃n translated to operators on partitions. By

π(λ,m) = (λ,m+ 1), si(λ,m) = (siλ,m)

where

siλ = λ ∪
{
□ :

□ is addable
res(□) ≡ i mod n

}
\

{
□ :

□ is removable
res(□) ≡ i mod n

}
.
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6.14. Example. Take n = 3. We label the residues on the boxes.
0 1 2
-1 0 1
-2-1 0

π−→ 1 2 3
0 1 2
-1 0 1

s1−→ 1 2 3
0 1 2
-1 0 1

s0−→ 1 2 3
0 1 2
-1 0 1

s2−→ 1 2 3
0 1 2
-1 0 1

s0−→ 1 2 3
0 1 2
-1 0 1

s2−→ 1 2 3
0 1 2
-1 0 1

6.15. Identification C. Under the above discussion, we can identify

Zn 1:1−→ S̃n orbit of (∅, 0) = {(λ,m) : λ is n-core} .

Moreover, if we restrict to

Qv = {(ai)i∈Z : a1 + · · ·+ an = 0} ⊂ Zn,

it gives

Qv 1:1−→ S̃0
n orbit of (∅, 0) = {λ : λ is n-core} .

For example,
1 2 3
0 1 2
-1 0 1

· · · ⊕⊕⊕⊖|⊕⊖⊖⊕ · · ·
1 2 3
0 1 2
-1 0 1

· · · ⊕⊕⊖⊕|⊕⊖⊖⊕ · · ·
1 2 3
0 1 2
-1 0 1

· · · ⊕⊕⊖⊕|⊕⊖⊕⊖ · · ·
1 2 3
0 1 2
-1 0 1

· · · ⊕⊕⊕⊖|⊕⊕⊖⊖ · · ·
1 2 3
0 1 2
-1 0 1

· · · ⊕⊕⊕⊕|⊖⊕⊖⊖ · · ·
1 2 3
0 1 2
-1 0 1

· · · ⊕⊕⊕⊕|⊕⊖⊖⊖ · · ·
0 1 2
-1 0 1
-2-1 0

· · · ⊕⊕⊕⊕|⊖⊖⊖⊖ · · ·

6.16. n-core partition. A partition λ is an n-core partition if there ex-
ists no µ ⊆ λ such that λ/µ is a ribbon of length n. Removing a ribbon
of length n corresponds to the exchange

(· · ·
distance = n︷ ︸︸ ︷
⊖ · · ·⊕ · · · ) 7−→ (· · ·

distance = n︷ ︸︸ ︷
⊕ · · ·⊖ · · · ).

As a result, if we cannot exchange, then the corresponding subset sat-
isfies

i ∈ A =⇒ i− n ∈ A.
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6.17. Summary. Here is the summary of all three identification of Zn.

Minimal representatives.

6.18. Description. For any f ∈ S̃0
n, it is clear that in the decomposi-

tion

f = uv, u = min(fW) and v ∈ Sn

we have
u(1) = min(f(1), . . . , f(n)),

· · · = · · ·
u(n) = max(f(1), . . . , f(n)).
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and

v(i) = the position of f(i) in {f(1), . . . , f(n)}

= 1+ #{j : f(j) < f(i)}.

Now, let us give a combinatorial description of

tλ = uλvλ, uλ = min(tλW) and vλ ∈ W.

6.19. Description of tλ. There is a combinatorial way of constructing
tλ as follows.

Actually, each row is a reduced word of tµ with µ ∈ {0, 1}n. For exam-
ple, the above example is

t(1,5,6,3,5) = t(0,0,1,0,0)t
2
(0,1,1,0,1)t

2
(0,1,1,1,1)t(1,1,1,1,1).

Note that

ℓ(tλ) =
∑
i<j

|λi − λj|.
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This is compatible:

6.20. Description of vλ. When f = tλ, then

vλ(i) = 1+ #{j < i : λi ≤ λj}+ #{j > i : λi < λj}.
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6.21. Description of uλ. There is a combinatorial way of constructing
uλ as follows.

6.22. Compatible with length. Recall that the minimal representative
minimizes each summand of

ℓ(uλ) = ℓ(u−1
λ ) = ℓ(vλt−λ) =

∑
i<j

|− λi + λj + δvλ(j)>vλ(i)|.

That is,

ℓ(uλ) =
∑
i<j

{
λj − λi, λi ≤ λj,

λi − λj − 1, λi > λj.
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This is also compatible:

6.23. Remark. Let us identify compositions by a subset of Zn. Then
each box (i, j) corresponds the minimal affine permutation by “cre-
ating this box”, i.e. change the i-th component j-1 7→ j. Using our
identification A, the (i-n)-th component is j, we can just move it to the
i-th component. When moving, we need n − 1 simple reflections, but
once j meets another j, we do not need to exchange them, so it saves a
simple reflection.
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7. FUNNY BIJECTIONS

Stable affine permutations.

7.1. Stable affine permutations. The i-th car prefers the space ai.
If ai is occupied, then the i-th takes the next available space. We
call (a1, · · · , an) a parking function (of length n) if all cars can park.

n · · · 2 1 ← a1 a2

· · ·
an

7.2. Example. For example, when n = 2, all parking functions 11, 21, 12
are

2 1 ← 1 1

2 ← 1

2 1 ← 2 1

1 ← 1

2 1 ← 1 2

2 ← 2

While 22 is not:

2 1 ← 2 2

1 ← 2

7.3. Example. For example, when n = 3,

111 112 121 211 113 131 311 122
212 221 123 132 213 231 312 321

7.4. Theorem. There are exactly (n+ 1)n−1 parking functions.
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Proof. Consider the following parking procedure:

0 n · · · 2 1 ← a1 a2

· · ·
an

on a circular road (i.e. the next space of 0 is 1 ). Then we see all cars

can park for any preferences. It is a parking function if 0 is left empty.
The rotation symmetry tells that there are exactly (n+1)n

n+1 many parking
functions. □

7.5. Equivalent condition. We see (a1, . . . , an) is a parking function if
and only if

• at most 1 car prefers position n;
• at most 2 cars prefer position ≥ n− 1;
• at most 3 cars prefer position ≥ n− 2;
• etc.

That is,
{i : ai ≥ n− k+ 1} ≤ k.

In particular, does not depend on the order of cars.

7.6. Dyck path. Dyck path (of length n) is a lattice path from (0, 0) to
(n,n) below the diagonal. It is well-known that the number of Dyck
path is Catalan number

1

n+ 1

(
2n

n

)
=

1

2n+ 1

(
2n+ 1

n

)
.

7.7. Labelled Dyck path. A labeling of Dyck path is a labeling on
vertical steps by [n] which is increasing for consecutive vertical steps.
It is not hard to find a bijection

{parking functions} 1:1←→ {labelled Dyck paths}.

That is, the labels on the vertical steps over x = i gives an+1−i.
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7.8. Stable affine permutation. We say f ∈ S̃0
n is stable if

f(i+ n+1) = f(i+ 1) + n > f(i).

7.9. Enumeration. Note that every (x1, . . . , xn) ∈ Rn can be translated
into Qv

(x1, . . . , xn) −
x1 + · · ·+ xn

n
(1, . . . , 1).

It would be convenient to work with

h∗ = {(x1, . . . , xn) : x1 + · · ·+ xn = 0} ∼= R⊕n/R(1, . . . , 1).
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The fundamental alcove is

A0 = {(x1, . . . , xn) ∈ h∗ : x1 ≥ x2 ≥ · · · ≥ xn ≥ x1 − 1}.

Its centroid is

c = −
1

n
(1, 2, · · · , n) mod (1, . . . , 1) ∈ A0.

Explicit computation shows for f ∈ S̃n,

fc = −
1

n
(f(1), f(2), · · · , f(n)) mod (1, . . . , 1) ∈ A0.

So f is stable if and only if

fc ∈
{
−
1

n
(x1, . . . , xn) :

xi+1 + n ≥ xi
x1 + 2n ≥ xn

}
=

{
(x1, . . . , xn) :

xi ≥ xi+1 − 1
xn ≥ x1 − 2

}
=

{
(x1, . . . , xn) : x1 ≥ x2-1 ≥ x3-2 ≥ · · · > xn-(n-1) ≥ x1-(n+1)

}
The set is a union of alcoves, since it is bounded by hyperplanes. More-
over, its volume is the the volume of

(n+ 1)A0 = {(x1, . . . , xn) : x1 ≥ x2 ≥ · · · ≥ xn ≥ x1 − (n+1)}

(by a change of variable). This concludes

#{stable permutations} = (n+ 1)n−1.

7.10. Table of numbers. Let us fill all integers into [n]× Z such that

• 0 is filled in (0, 0) position;
• locally

a b then b = a+ n
a

b
then b = a+ n+1.

For example, when n = 3,

· · · -9 -6 -3 0 3 6 · · ·
· · · -5 -2 1 4 7 10 · · ·
· · · -1 2 5 8 11 14 · · ·

.
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7.11. A Dyck path. Let f be stable. Consider the set

∆ = {i ∈ Z : f(i) > 0}.

By periodicity and stability,

i ∈ ∆ =⇒ i+ n ∈ ∆, i+ n+1 ∈ ∆.

Let us shift ∆ such that it has minimum 0:

∆ ′ = ∆−min(∆).

Then coloring elements of ∆ in the table above, we will get a Dyck
path. We label f(i + min∆) on the leftmost colored box i in each
row. Note that the labels are exactly from [n]. This defines a bijection

{stable permutations} 1:1←→ {labelled Dyck paths}

7.12. Example.

7.13. References.

• Eugene Gorsky, Mikhail Mazin, Monica Vazirani. Affine per-
mutations and rational slope parking functions.

• T. Hikita. Affine Springer fibers of type A and combinatorics
of diagonal coinvariants.
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Bounded affine permutations.

7.14. Setup. We call a permutation w ∈ Sn an k-Grassmannian per-
mutation if

w(1) < · · · < w(k), w(k+ 1) < · · · < w(n).

The set of k-Grassmannian permutation is in bijection with k-subset of
[n]. In terms of Weyl group, we have

w = min(wWP), WP = Sk ×Sn−k ⊂ Sn,

i.e. the set of k-Grassmannian permutations is WP.

7.15. Description of Bruhat order in type A. For two k-subsets A,B
of [n], we define Bruhat order

A < B ⇐⇒

min(A) < min(B)

· · ·
max(A) < max(B)

Then obviously

A ≤ B ⇐⇒ [n] \A ≥ [n] \ B

7.16. Theorem. For two permutations u,w ∈ Sn,

u ≤ w ⇐⇒ u[k] ≤ w[k] for all 1 ≤ k ≤ n− 1,

where w[k] = {w(1), . . . , w(k)}.

7.17. Theorem. When w is Grassmannian,

u ≤ w ⇐⇒

u(1) ≤ w(1)

· · ·
u(k) ≤ w(k)

and


u(k+1) > w(k+1)

· · ·
u(n) > w(n)
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Proof. Firstly
u[1] ≤ w[1] ⇐⇒ u(1) ≤ w(1)

Since w(1) < w(2),

u[2] ≤ w[2]
u(1)≤w(1)⇐=====⇒ u(2) ≤ w(2).

Keep using this argument, we conclude the first set of condition is
equivalent to

u[1] ≤ w[1], . . . , u[k] ≤ w[k].

Here is the diagram:

u(1) u(2) · · · u(k)≤ ≤ · · · ≤

w(1)<w(2)< · · · <w(k)

Similarly, the the second set is equivalent to

u[k] ≤ w[k], . . . , u[n-1] ≤ w[n-1].

One need to notice that [n] \ u[i] = u{i+ 1, . . . , n}, and use the similar
argument. □

7.18. Affine bounded permutation. We say f ∈ S̃n is a bounded
affine permutation if

i ≤ f(i) ≤ i+ n.

We say it is k-affine permutation if

av(f) =
1

n

n∑
i=1

(f(i) − i) = k.

7.19. The map. Let us denote

ωv
k = e1 + · · ·+ ek = (1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
n−k

) ∈ Zn.

This is a lifting of the k-th fundamental coweight. We denote t = tϖv
k

for simplicity. For (u,w) ∈ Sn ×Sn, we define

fu,w = utw-1 ∈ S̃n.
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7.20. Bijection. The map (u,w) 7→ fu,w restricts to a bijection{
(u,w) :

u ≤ w, w is
k-Grassmannian

}
1:1−→ { k-affine bounded

permutations

}
.

Proof. The injectivity is not hard. Note that vt = tv for any v ∈ Sk ×
Sn−k. We can decompose

SntSn =
⋃

λ∈Sn·ϖv
k

Sntλ =
⋃

w is k-Grassmannian

Sntw
-1,

i.e. any element in WtW can be uniquely written as utw-1 where
u,w ∈ Sn and w is k-Grassmannian.

Let us check this is well-defined. Firstly, since av(t) = k, so av(fu,w) =
k. For 1 ≤ i ≤ n, we have

fu,w(i) = utw-1(i) =

{
u(w-1(i)) + n, 1 ≤ w-1(i) ≤ k,

u(w-1(i)), k+1 ≤ w-1(i) ≤ n.

In the first case, write a = w-1(i), we have

fu,w(i) = u(a) + n

{
≤ w(a) + n = i+ n,

≥ 1+ n ≥ i.
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In the second case, write b = w-1(i), we have

fu,w(i) = u(b)

{
≤ n ≤ i+ n,

≥ w(b) = i.

This proves the boundedness.
Lastly, let us check the surjectivity. Let f be a k-bounded affine per-

mutation. Consider

A = {i ∈ [n] : f(i) ≥ n}.

This must be an k-subset. The reason is the following: the bounded
condition implies

either f(i) ∈ [n] or f(i) − n ∈ [n].

The conditon av(f) = k implies there are exactly k many i satisifies
f(i) − n ∈ [n].

Let w be the k-Grassmannian permutation such that

{w(1), · · · , w(k)} = A.

Then we define u = fwt-1, so it rests to show u ∈ Sn and u ≤ w.
Explicitly,

u(i) =

{
f(w(i)) − n, 1 ≤ i ≤ k,

f(w(i)), k+1 ≤ i ≤ n.

In other case the value is in [n], so u ∈ Sn. In the first case,

u(i) = f(w(i)) − n ≤ w(i) + n− n = w(i)

In the second case
u(i) = f(w(i)) ≥ w(i).

Thus u ≤ w. □

7.21. Length formula. We proved what when w is k-Grassmannian,

ℓ(fu,w) = ℓ(u) + ℓ(t) − ℓ(w).

In our case, ℓ(t) = k(n− k), i.e.

ℓ(fu,w) = ℓ(u) + k(n− k) − ℓ(w).

In particular, for length to be maximal, it can only be

fw,w = tλ, λ = wϖv
k.
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7.22. Explicitly. Recall π ∈ S̃n the permutation of length 0:

π(i) = i+ 1.

Let wP
0 be the maximal k-Grassmannian permutation, i.e.

wP
0 (1) = n− k+ 1, . . . , wP

0 (k) = n,

wP
0 (k+ 1) = 1, . . . , wP

0 (n) = n− k.

We can write t = πkwP
0 . Then

fu,w = u · πk · (wP
0 ·w-1)

is length additive:

ℓ(fu,w) = ℓ(u) + 0+ ℓ(wP
0 ·w-1).

Note that
w 7→ wP

0w
-1

defines a order-reversed bijection between k-Grassmannian permuta-
tions and (n− k)-Grassmannian permutations.

7.23. Inversions. But it is still useful to compute the inversions. There
are three types of inversions (i < j). Denote a = w-1(i) and b = w-1(j).

• a ≤ k < b ≤ n. In this case f(i) > n ≥ f(j). They form the set{
(a, b) :

1 ≤ a ≤ k < b ≤ n
w(a) < w(b)

}
• a, b ≤ k or k < a, b. In this case we must have a < b and
u(a) > u(b). They form the set{

(a, b) :
1 ≤ a, b ≤ k or k < a, b ≤ n

u(a) > u(b)

}
• a ≤ k ≤ n+ k < b. In this case we must have u(b) > u(a+n).

They form the set{
(a, b+ n) :

1 ≤ a ≤ k < b ≤ n
u(a) > u(b)

}
.

The contribution of the first type is k(n−k)−ℓ(w). The rest contributes
ℓ(u).
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7.24. Theorem. The set{
k-affine bounded

permutations

}
=

{
f ∈ Sn :

f ≤ tλ for some
λ ∈ Snϖ

v
k.

}
Proof. It suffices to show the left-hand-side is a lower ideal. Let f be
an affine bounded permutation. We can pick a reduced word of f to be

(a reduced word for u)πk(a reduced word for wP
0w

-1).

Let f ′ be the affine permutation obtained by deleting a simple reflec-
tion and such that ℓ(f ′) = ℓ(f) − 1. We need to show f ′ is still an affine
bounded permutation.

• If we delete from u. Then f ′ = fu ′,w = u ′tw-1 for some u ′ ≤
u ≤ w.

• If we delete from wP
0w

-1. Then we get f ′ = fu,w ′ , where

w ′ = wsab > w, a ≤ k < b, ℓ(wsab) = ℓ(w) + 1.

This implies w ′ = wsab is also k-Grassmannian. We have u ≤
w ≤ w ′.

In both case, f ′ is a bounded affine permutation. □
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