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1. REVIEW OF FINITE THEORY

Coxeter groups.

1.1. Definition. A Coxeter system (W,S) is a group Wand S C W
such that

2_.
welscs. tS:}cd where for eachs #t € S
- : S\/_/—RS/_/ mst6{2,3,"'}U{00}-

Mgt Mst

We define Coxeter diagram

S t S t s 4 t S oo t
[} [ o———©O o———©O o———©O
Mg =2 Mg =3 mg =4 Mst = OO
st =1s sts = tst stst = tsts cee no relation

Usually, we reparametrize S by {s; : i € I} and myj; = ms;.

1.2. Geometric representation. We define

b = P Rexi.

iel

We equip a symmetric bilinear form such that

length of a; # 0, angle of &; and oy is 7T —

mij

This form is unique up to a positive rescalar of ;. We define the geo-
metric representation of W on b by

S > s; +— (reflection with respect to ocl-l) € GL(b").

That is,
20

(o, o)

si(A) = A — (af, A oy, where oY =

For any Coxeter group, its geometric representation is faithful.
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1.3. Finite Coxeter groups. A Coxeter group W is finite if and only if
the bilinear form defined above is positive definite. The corresponding
Coxeter diagram is a disjoint union of the following diagrams.

A—T‘L o—0———0—@ BCn .i.i...i.i.
Dp o= ———e—e  D(m) e (3<m<oco)
°
E¢
o—o—‘o—o—o Fs e—o—e6—0o
o G, e’ e
E; |
oe—90o—0—0—0—o Hj .i.i.
°
ES ‘ H4 o—eoe—o—o
e—9eo—0—0—0—0—o
We have

D, =A1 xA;, D3=A; A;=1(3), BC:=L#4), G;=I(6).

1.4. Example. The dihedral group D, of order 2m is the Coxeter group
of type I;(m). We take b} to be the complex plane C, and

Weyl groups.



4 RUI XIONG

1.5. Weyl group. If a finite Coxeter group W stablizes the root lattice
Q = (P Zoi C b,
iel
we call W a Weyl group and define the root system
R={wai:weWicl}.
A Weyl group could only have my; € {2, 3,4, 6}. We define the Dynkin
diagram

mij =2 mi]- =3 mi]' =4 mi]' =6
i j i j i j i j
° ° o—e oe=—e o=2e0
. (08 [0 6]
(X]_ O(J ) )

T x4 \/ X x4 X

1.6. Finite Weyl group. Up to graph isomorphism, here is the classi-
fication of irreducible Weyl groups

An e—o—-——0—80 Bn o=—0—-——0——0
Dn :>o—-~—o—o Cn e==0——0—0
°
Ee
oe—9o—0—0—o
° F4 o—eoe—=0——0
E; |
o—eo—0—0—0—0 G, oe==oe
°
Es |
e—eo——0—0—0—0—0
We have



LECTURES ON AFFINE WEYL GROUPS 5
1.7. Example. The symmetric group
G, = {bijections 1,....n} 5 {1,...,n}}

is the Coxeter group of type A,,_1. The Coxeter generator

| the permutation exchanging i and ce
ST i+1 with other numbers fixed "

labaled as
oe—eo—-——eoe—eo
1 2 n-2 n-1
The geometric representation
b = {(a,...,an) a1+ -+an =0} C R™

The natural pairing over R™ restricts to h. We define
QG = ej — €ii1, 1<i<n—1.
We have a diagram notation

\ 2 3 4

L |
il 1 213 ¢4
si=id §is; = sjsi SisinSi = SinSi Siwy

1.8. Example. The Coxeter group of type BCy, is known as the signed
symmetric group

BE, = {bijections (£1, ..., 0} B {£1,..., 1} w(—1) = —w(i)}.

Using the monotone bijection

{£1,...,&n} ={1,...,2n}
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We can describe it as the subgroup of Sy, generated by

So = Sn,y Si=SniSnyi (1 <i<n—1).
That is,
| the permutation exchanging 1 and c Be
o -1 with other numbers fixed "
~_ | the permutation exchanging +i and c Be
v +(i+1) with other numbers fixed "
The label is like this
o—eo——0—0
o 1 n—-2 n-1

The geometric representation b = R™ with natural pairing and
e, typeB, .

X = a=ceiy1—e (1<i<n—1).

0 {261, type C, 1 i+1 i ( =1>= )

We have a diagram notation

2 3 --.

}
j, < o $o
f. I

23 - =

i W

H U sy = )0 5iss

i

1.9. Example. The Coxeter group of type D,, is known as the even-
signed symmetric group.

Dn = {W eBC, :#{i<0:w({i) >0}is even}.

Note that the sy ¢ ©,, while the s; € D,, for 1 <1 <n — 1. We define

Se = S0S1S0 € D,
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That is,
| the permutation exchanging +1 and c Be
Se = T2 with other numbers fixed n
The label is .
[ ]
o — l ———— o —o
1 2 n—-2 n-I1

*

The geometric representation b = R™ with natural pairing and
Xe = €1 + € o=e1—e (1<i<n—1).

We have a diagram notation

Miscellany.

1.10. Remark. From now, we will assume W is a Weyl group, i.e. we
are equipped with a underlying root system. The same result holds
for any Coxeter group if we replace R by the set of root directions

ﬁ:{ hdad :weW,ieI} C b
[woi|

1.11. Reflections. For o € R, denote
To = the reflection with respect to o« € W.
If « = wa, then T, = ws;w~!. We define reflections by
{reflections} = {wsiw_] tweW,iel} ={ry:a€R

We call s; (i € I) asimple reflection.
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1.12. Positive roots. The set of positive/negative roots
RT ={xeR:+ac spans,(a)ier -
We have R = RTUR™. For « € R, we denote o > 0 if x € R" and o < 0
otherwise. We call «; (i € I) a simple root.
1.13. Hyperplanes. Let us consider
hr = dual space of by = bg.
For any « € R, we denote
Hy ={x € br : (x, &) = 0} C bg.
1.14. Fundamental coweights. Denote fundamental (co)weight @; €
br (@} € br) be such that
(@i, o) = (@7, o) = 8.

1.15. Chamber. We define chambers by

{chambers} = connected components of (bR\ U Hm> .
x€R
We define the dominant chamber to be the cone

Co ={x € br : (x4, x) > 0} = spano(@ : i € I).

Here we colloect example in samll dimensions.

S

K

1 2
oo

e—e
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$

1.16. Theorem. We have a bijection
W — {chambers}, w — wC.
Under this bijection,

reflection of the chamber

the chamber of s;w = of w with respect to o

the chamber sharing the wall

the chamber of ws; = wHg, with the chamber of w

1.17. Length. For any w € W, we define

minimal length of writing w as

tw) = a product of simple reflections
If
W = S{,8i, - Sip) {=1L(w).
We call (i, 1s,...,1¢) is a reduced word of w.

1.18. Length formula. In terms of chambers,
{(w) = #{hyperplanes separating Co and wCy}
In terms of roots,
{(w) = #Inv(w), Inv(w) = {0 € R" :wax € R}

There is a bijection between hyperplanes and Inv(w™).
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1.19. Bruhat order. We define the Bruhat order over W to be the fol-
lowing equivalent order

e the order generated by
u<wifw=uryand {(w) = £(u) + 1.
e the order generated by
u<wifw=uryand {(w) > {(u).

e u < w if there is a subword of u in a reduced word of w.
e u < w if there is a subword of u in any reduced word of w.

We remark that for o € RT,
Ury >uU < ux >0 & « € Inv(u).
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2. TWO REALIZATIONS
Realization A. Let W be a finite Weyl group with root system R. Let

{a : 1 € I} C R be the set of simple roots.

2.1. Root lattice. Recall the definition of «" for & € R. Let us denote
the (co)root lattice

Q=PzZxichiy Q' =Pzl Cbr.

iel i€l
2.2. Definition. The affine Weyl group is
W, =W x Q.
For A € QY, we define t), € W, the corresponding element. That is,

bty =taw Gl =t  to=id,  whw ! =t,n).

2.3. Example. For type Aj,
the Weyl group W = {id, s} = &,
the coroot lattice Q¥ = Za".

Let us denote t = t,v. Then we have

2 .
sc =id so=ts ) 2 _ .
Wa:<5)t: sts — ¢! >—<S,So~5 :So:1d>

= the Coxeter group of [ S % }

2.4. Two Actions. The affine Weyl group acts
on QY affinely:
(wta) - w=wA+p).

on Q @ Z4 linearly:
(wty) - (e +kd) =wa + (k— (A, ox))b.

Here 6 is a formal variable, called the null root. Note that the same
formula defines an action on

hr =R ®z QY, b PR =R ®z (Q @ Z3).



12 RUI XIONG

2.5. Example. Here are the example of type A;. We denote @' = Ja
and @ = %oc.
3

P s i ('/%éax .
A

o

(D)

2.6. Exercise. Find the action of sy = ts in the above example.

2.7. Example. Let us consider A;. Let 0¥ = &Y + of. Consider sy =
tgvs15281. The following figure shows the action of W, on QV.

<

N

AV

N
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With more efforts, we can see

S0
O
W, = the Coxeter group of / \
[ ]
s1

L]
$2

2.8. Roots. We define the set of real affine roots
Ro={a+ké:xeRkeZ} CQaLs.
We define the set of positive real roots
Ri={ax+kd:k>0o0r(k=0and x € R")} C Rq.

We similarly define the set of negative roots Ry = —R{.

2.9. Examples. Here is the illustration of affine root systems of type

A] and Az
N
<

2.10. Reflections. For each root & + kb € Ry, we define the reflection
Totks = Tatkar € Wa.
The action of ro4ks on Q @ ZJ is given by a linear reflection

Tarks (B + 1) =B +nd— (", B) (o + kd).
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The action of 415 on QV is given by the affine reflection along the
hyperplane

Hoqs = Hak = {x € br 1 (X, &) +k = 0} C bp.

2.11. Simple roots. Let 0 € R™ be the unique highest root. We denote

0(0:—9+5€R;r, So:f(xoztevngWa, I, =Tu{0}L
Realization B.

2.12. Affine Dynkin diagram. The following are untwisted affine Dynkin
diagrams

Aq ®e<—>0
A ° B |
n n
(n>2) ./...\. M23) g oo
Dy | | (nC>nZ) T
(n>4) e—eo——0—o -
o]
~ | Fy o—e—e==e—o
E6 o
| G, o—e==e
*o—O0—0—0—0
5 [ ]
E; |
O—— 00— 00— 00— 0 —0—0
5 [}
Es |
o —0— 00— 00— 00— 0—0—O

The twisted affine Dynkin diagrams are their dual.

2.13. Theorem. The affine Weyl group W, constructed above is a Cox-
eter group with Coxeter generator {s; : i € Io}.
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2.14. Example. Let n > 2. For type An_1, the Weyl group is &,, and
the coroot lattice

QV:{(ah"' )an):al+"'+an:0} c Z".
The affine Weyl group admits the following realization

g_) zhz  flitn)=fi)+n

bijection = 2 i (f(i) —1)=0. [~
An element in &, is determined by its values at 1 < i < n. The
identification is given by
wty(i) =wi) +Amn (1 <i<n).

Denote s; for i € Z/nZ by

the affine permutation exchanging j and j + 1

- S0
S when i = j mod n with other numbers fixed € Sn-
This equips the Coxeter group structure over S, where the Coxeter

diagram is (n > 3)

0
o
1 2 n—2 n-—1
3~2-(0'| 2 34'Y § 78 =3=2-[ 0'l 2 34'8 b 78
X Se >< S
3-2-[ 0 1 234 5 } 7% =3-2-( 0 1234 5} 7%
3-2-( 0'| 2 34'F } 7% 32~ 0'[ 2 34'S }§ 7%
A ; X s
32-2-( 0 1 234 8§} 7% 2-2-( 0 1 234 5} 7%

2.15. Example. Let n > 2. For type C,, the Weyl group is B¢, and
the coroot lattice is

Q' =Ze1®Z(es—e1) D Zlen —en1)
=7e1P--- D Zey.
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We can realize the affine Weyl group as

i) zhz . =) =—f()
" bijection = f(Zn+2+1) =f(i) [~

Note that for any a € Z(n+1) = {--- ,-(n+1),0,n+1,2n+2,---}, we
have
fla+1i) + fla—1) = 2a.

An element of €, is determined by its value at 1 <1i < n. The identifi-
cation is give by

wty =w(i) —A(2n + 2).
The Coxeter generators are

_ | the permutation exchanging a+1 and a-1 for c Be
o a € Z(2n+2) with other numbers fixed "

o — [ the permutation exchanging a+1 and a-1 for

a € (n+1) + Z(2n+2) with other numbers fixed ] € By

and1 <i<n-1,

6 — the permutation exchanging a £iand a4+ (i + 1) c Be
v (a € Z(2n+2)) with other numbers fixed n
The Dynkin diagram is
e—=0— — - —0—0=<—0
¢} 1 n—2 n-1 0
-6 o 6 2 -6 [ 6 1”2
S 432112234 5,7 89 0.0 S 4321412334 5,7 89 00

< S, " 5
Y s, RIZTTL «
X 2 A1 5

S 4 -3 - [] S 4 -3 2 -
_‘—1 1912345‘51 7'"":: _6431i0z34r‘737w"h
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2.16. Example. We will not go into details of affine type B/D. But we
mention that

D, C B, C ¢,
with generators described by
e 0 0
[ ] O (@]
e— 06— —0—o e=—e0¢e———0—9
1 2 n—-2 n-—1 [¢] 1 n—-2 n-—1
D

Se = S$0S1So

B
B & = S0Sn_150
S5 = S0Sn—180 0

-6 o 6 2 - ) 6 ”

S 4-3-2-41 234 5,7 8 %3m0 S 4-3-2-141234 §,2 8 9 w00

-5 -3 2 - 8 ) . 3o

_6-9 2 alzs4r‘7 ‘7w4,2 _6'5131!0!2143'678‘1::7'1“
Alcoves.

2.17. Alcove. For each root o« + kd € Ry, we defined a hyperplane
Haiks = Ho = {x € br : (x, &) + k =0} C hg.
We define alcoves by

{alcoves} = connected components of  hr \ U Ho k-
o,k
Let us consider the fundamental alcove, i.e. the unique alcove Ay with

Ay C Co, 0 € closure of Ay.
It can be described as
Ao={x€bhr:0< (x,x) < 1forall « > 0}
={xebr:0< (x,0) foriel and (x,0) < 1}
= bounded convex set cut by Hy, for i € I,
= interior of Conv ({O} U {ma)‘{ e I}) .
Here 0 is the highest root. Note that

(@}, 0) = coefficient of «; in 0
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Here we collect some example in small dimensions

S, S2
} + (\%} &.‘r t oio—o

S g S S
/ \ o et .$ o—

J O=<=‘o— om0 —oek

2.18. Theorem. We have a bijection
W, — {alcoves}, wit) — wip(Ap).
Under this bijection,

reflection of the alcove

the alcove of siwty = of w with respect to Hg,

the alcove sharing the wall

the alcove of whys; = wH,, with the alcove of w
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2.19. Example. The following shows how “alcove move” corresponds
to a reduced word

<o

/.

—e
g,* s
a:S'DSzg)sZ
b: So$) SoS2
c=55%S%%
d:sjgz §| g\)
C:-S;_goglso
f= 5% %S
E S S

i.#'

o= gvS]SDSZ S',§2

So
— %— b= B e e

= C:st|soggslgo
d=75509%2% %%
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3. LENGTH FORMULA

TIwahori-Matsumoto Formula.

3.1. Inversion. For any wt) € W, we define set of inversions
Inv(wty) = {a + k& € R, : wty(ox + k8) € R }.
Then the length function is given by

minimal length of writing wt; as

thwtn) = product of simple reflections

= #{hyperplanes separating Ao and wt Ao}

= #Inv(wt,)

There is a bijection between hyperplanes and Inv((wty) ™).

3.2. Left inversions. Let us denote the set of left inversions
LInv(wty) = Inv((wtp) ") = {—wty(a + k) : e + k& € Inv(wty)}
= RI\ wtaR{.
There is a bijection between hyperplanes and left inversions.
3.3. Example. Let us consider A;. The fundamental alcove Ay is the
interval (0, @) and
sAy = (—®,0), soAp = (@,2@), tA) = (2,3@).
So we have
€(s) =1L(so) =1, £(t) = 2.
Alternatively, it is not hard to compute
Inv(s) = {a}, Inv(sg) ={—a+ 0}, Inv(t) = {x, oc + &}.

This confirms the computation of the lengths.

Hot2s Hats Ho Hoows Heai2s
—2¥ —@¥ 0 ) 2@
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Here is the diagram

Hig  Hesd Ha  Hoaw H—uzi H_m;
} L s ——id — —4 —L

_dV —03\' o LDN dV 35\:
A~ 7

s &—1—>0s . .

s 1> *‘) . R\J

¢ &——> ¢ *

'} (:———) [ f: 3 .

o> j . ]

e E—1—> o ° e
S t (* = Llnv)

3.4. Theorem. We have

twty) = Z

>0

(0, A) + S0

Here 5, = 1 if a statement p is true and equals 0 otherwise.

Proof. Fix a positive root « € R*. We want to compute the contribu-
tion of

+a + kb € Inv(wty)
Note that
wix (£ +kd) = twa + (k F (A, «))d.

For this vector in R, we summarize four cases in the following table

wo > 0 woa < 0
+=+ k—(A o) <0 k—(Aa) <0
ie. k>0 ie. 0 <k <A\ ie. 0<k<(A\w
+=- k+ (A a) <0 k+ (A\ax) >0
iee k>0 | ie.0<k<—Aoa) | ie.0<k<—(A )
Total # I(A, o) [(Ay &) + 1]

This completes the proof.
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3.5. Corollary. Letusrecord the set of inversions for future references.
For « € R*, we denote

Invy(wty) ={Ffa+ kd € Inv(wty)}

the contribution of the affine positive roots as in the proof. Then the
above table shows

{a+k8:0 <k < (A &) + Sywaco } (A, ) >0,

Invy(wty) =
{—a+kd:0<k<—\ o) —dwaco}y (A &) <O.

3.6. Example. Consider the case A;. Recall the hyperplanes are in
bijection with left inversions.

Inv(st?)

Hosss  Haswr Mg Ha My  Praesd oy s
R L |._u__lv PPN N S S g

-j” -4a -7 0 [~ S W IsY
\——"’\_————-ﬁ__/
Tav (47)

3.7. Exercise. Note that (wty)~! = t_yw™! =w Tt_,,. Check that

Uwty) = L((wty) ™).

3.8. Example. In type A,,_1, we realized the affine Weyl group as &°,.
For f € &}, we can compute the length

wn=+{Gis S50 |

i<j, f(i) > (j)
In terms of Iwahori-Matsumoto formula 3.4,

Lwty) = Z ‘7\1 — N+ 5w(1)>w(j)“

i<

Actually, (i,j + nk) corresponds to e; — ej + k0.
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3.9. Rank 2 cases. You can visualize alcoves in rank 2 here

https://www.jgibson.id.au/lievis/affine_weyl/

23



https://www.jgibson.id.au/lievis/affine_weyl/

24 RUI XIONG

Examples.

3.10. In this paragraph, we will use a lot of facts about parabolic
subgroups, which is summarized at the appendix of this section.

— Length of translations.

3.11. Cartan vector. Let us denote
1 .
p:iZa:Z@ie b
o>0 iel

It satisfies

p—wp= Z .

aclnv(w—1)

3.12. Dominant case. Let A € Q¥ be dominant. Then

Uta) =) [(oA) + 8aco| = D (o, A) =2(p, A).

>0 o>0

3.13. General case. For general A € QY, we can always find w € W
such that

WAy = A, Ao is dominant.

Then

0ta) =) [ouA)| =D [{et,who)]

o>0 a>0

- Z W a, Ao)| = Z (s M)
/>0 />0

= > (o', 0 = 2(p, h0) = Llta,)-
/>0

Here o/ = +w 1o > 0.



LECTURES ON AFFINE WEYL GROUPS 25

3.14. Example. Consider the case A;. Recall that 0¥ = «f + 3. Then
p=20.So

l(tev) = L(twer) = 2(p,0) = 4.
This can be seen from the first diagram of Example 2.19.

+g.

<) 2
a=S,5555%
A’ 0 S) S2
c=55%%%
d=%5%¢% %
e=5%<15S

=% 5% %S

3.15. Inversion set. It would be useful to compute the set of inver-
sions. We have

{a+k86:0<k< (A )}, (A, ) >0,
Invy(ty) =< @, (A, O(> =0,
{—ax+k6:0<k<—(A )}, (A a)<O.

— Minimal representatives.

3.16. Formulation. We have a bijection

Q" L ww, AW
We will describe the parabolic decomposition

th = vy, uy, = min(th,W) and v, € W.
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3.17. Example. Let us consider type Aj. The set of minimal represen-
tative is

A0 o —« 2" 2

tya id sps  ssp  (sos)?  (ssg)?

uy, id sg  SSp  SpSS)  SS0SSo

vy id s id S id

Equivalently, we want to find v € W such that u™' = vt_j has min-
imal length

() =u ") =) |—(A) + dyxal-

>0

To minimize £(u), we wish that each summand is minimal, i.e.

(,A\) <0 = wva>0,
(6A) >0 = va<O.

We will see, this is achievable.

3.18. Antidominant case. LetA € QY be antidominant, i.e. —Ais dom-
inant. To minimize ¢(u™"), it suffices to take v = id.

3.19. General case. Letus pick w € W such that
A = WAy, A is anti-dominant.

Such w’s form a coset of W/W5p for Wp the stabilizer of Ag. Let us pick
the minimal one, i.e. w € W". Then

(6, A) = (Wl Ag) < 0= w >0
(o, A) = (Wl Ag) =0 = w 'a € Rp W%P wlae Ry,
(6, A) = (Wl Ag) >0 = w ' < 0.

It suffices to take v =w~'.
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3.20. Dominant case. Let A € QY be dominant. Let Wp = woWywy
be the stabilizer of woA. By above computation, v) = (WOP )~ for WOP =
max(WP) the maximal element of W Actually,

vy = max(WH).
This is because wf = max(W?) =wy - wo p, so

w=w'= Wo,p - Wo = Wo - Wo\ = max(WM).

3.21. Summary vl. In the parabolic decomposition

th = wawa,
the element v, is the minimal element v € W such that vA is anti-
dominant.

3.22. Summary v2. Let A € QV be anti-dominant. Denote Wp the
stabilizer of —A. Then for w € W, the expression

tur = (W) - w!
gives the parabolic decomposition. In particular,

wty, = min(wtyW) <= \is anti-dominant and w € W,

3.23. Example. Consider type A;. We have

A 0 o —« 208 -2«
min(taW) 1id sy SSg  S0SSo  S$S0SSo
A 0 —o o 2 2

min(Wt)) id sp  SoS S0SSp  S0SSoS

v v v
d

28 =& . ©
¢ ————

(SS0)* SSo W so

id  Se S8 So88, ~=-°
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3.24. Example. The case A;. We mark the minimal element in the
cosets. Each right coset corresponds to

[\

AVAVAVAV-VAVAY,
WAV VAVAV.: Y AVA VA

3.25. Exercise. Prove that
wt), = min(Wt,) < wt) Ay C Co.

This gives a bijection.

3.26. Example. For 6¥ € QVY, recall that
so = tovrg.
We actually have

Ugv = Sg, vgv =Tg € W.
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This implies
2<p) ev> = e(Te) +1.
3.27. Example. Let us consider the case of A,_j. Forany f € (75101, itis
clear that in the decomposition
f=uv, u=min(fW)andv € &,

we have

— Double cosets.

3.28. Double cosets. We have a bijection

Qéom L) W\Wa/ VV) th — Wt?\W
Recall that wtHyw ™! = t,,,. We actually have

WHW = U o W.
wew

Similar to one-side case, there is also a unique minimal element in each
double coset.

3.29. Summary v3. Let A € QY be anti-dominant. Denote Wp the
stabilizer of —A. By Summary 3.22 above,

WP x w1 wnw, (w, 1) — wtu,
with
Lwtyu) = —€(w) + £(tp) + L(u).

By taking inverse, we have a dominant version.
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3.30. Summary v4. Let A € QY be dominant, with stabilizer Wp. We
have a bijection
W x WP — wiw, (u, W) — utyw™!
with
Lutaw ™) = 0(u) + £(ty) — L(w).
As a result,
min(WtpyW) = min(t)W).
Appendix: Parabolic subgroups.
3.31. Defintion. Let Ip be a subset of I. Then we denote the parabolic
subgroup
Wp = (subgroup generated by s; withi e Ip ) c W
and Rp C R the root system of Wp.
3.32. Minimal representative. Forany w € W, there is a minimial ele-

ment, called the minimal representative, in the right coset wWp under
the Bruhat order. Let us denote the set of minimal representative

WP = {min(wW;p) : w € W}
We have a length-additive bijection
WP x Wp — W, (u,v) — uw.
Note that
weWp & Inv(w) C Ry
we WP & Inv(w) C RT\Ry.

3.33. Parabolic Bruhat order. For two cosets uWp, wWp, we define
uWp < wWp &= uv < wv'for some v,v' € Wp.
The the bijection
WP — W/ W, w—s WwWp

is an isomorphism of posets.
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3.34. Stabilizer. For a dominant A € hg, the stabilizer
Wir=Wp ={weW:wA=A}
is a parabolic subgroup with
Ip={iel:(x,04) =0}

We denote
WA =wP,
Then we have a bijection

WA — WA, wi—s WA,
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4. EXTENDED AFFINE WEYL GROUPS
Definition.

4.1. Weight lattice. Recall the definition of @} fori € I. Let us denote
the (co)weight lattice

P=Pzoichi, P =Pz} Chr

i€l i€l
From the axiom of root system, we have
QCP  QCP

In general, they are not equal.

4.2. Definition. The extended affine Weyl group is
W, =W x PY.

For A € PY, we define t) € W, the corresponding element.

4.3. Two Actions. The extended affine Weyl group acts

on PV affinely: on Q & Z9 linearly:
(wty) - u=w(A+ ). (wty) - (e + kb)) = wa + (k— (A, ox))b.

It is not hard to see R is stable under W,, so the set of inversions also
makes sense. We define the length

{(wty) = #Inv(wty).
It is also computed by Iwahori-Matsumoto formula 3.4.
4.4. Remark. However, W, is not a Coxeter group in general. Ac-

tually, there would be many elements in W, of length 0. The main
purpose of this section is to study them.
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4.5. The group Q. Let us denote
Q={meW,:ln) =0}={me W, : 1Ay = Ao}
Note that the norm vector of facets of A are simple roots. So we have
Q — Aut(Ap) = Aut(affine Coxeter diagram)
= Aut(affine Dynkin diagram).
The last equality follows from the classification, i.e. any automor-

phism of affine Coxeter group preserving length. Thus Q acts on W,
and

We = QO x W,.

4.6. Fundamental group. In particular the composition is an isomor-
phism

QO CWe - We/Wy = PV/QV°
The group P¥/QV is known to be the fundamental group of the adjoint
algebraic group. Here is the table

An Z/m+1)Z
B, 727
Cn 7./27
D 7./27, x 7./27. (n even)
" 7/47 (n odd)
Fe 7/3Z
E; 7/27
Eg, F4, Gz trivial

4.7. Example. Consider type A;.
P =Zo" C Q' =Zu".
The index is 2. Let t'/2 = t v € W.. We see
n=t"%s e Q.

It acts on PY by reflection with respect to 3. It acts on Q & Z8 by
interchanging o and oy.



NANNASNIN
\AANN NN/
FRWAVAVAVL' " AVAVA

NONNEIN/NN,
.>4>.<><>4>4.0<>
\AANANNN

4.8. Example. Let us consider type A;.

index 3 in PV.

that QY has

cise. Prove

4.9.
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4.10. Example. Let us consider type B;.

S S
o reX

—t(x\z’ SZ SI S)_

2

4.11. Example. Consider type A,_1. Let us first give some remark
on the geometric representation. The geometric representation h; can
be chosen to be one of two isomorphic spaces (the subspace/quotient
space realization)

{(ar,...;an) tay+---+an =0} < R - RY/R(1,...,1)
\:/

Then we can realize

Q"i{(ah...,an) EZ“:a1+---+an:O}
¢
ZTL

I

pv zr/Z(1,. .., 1).

We thus have

We=6,xQ" C G,=6,xZ" —» GyxP' =W..
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Here

5 f
&n = { LT fi4n) = f(i) +n.}.
bijection

For any A € Z", the corresponding translation t € &,, by
tA(i) =14+ An, 1<i<n-—1.
Then the extended Weyl group
We = G&n/(ta,..1)-

Actually, all theory of extended Weyl groups can be lifted to &,. So
G, is also called the extended Weyl group of type A.

Denote 7t € &,, by

(i) =i+1.
Note that T ¢ é?l and " = t(; 1. Fori € Z/nZ, we have
s = Sit1-
We have
& — < 50,81y eey Snl s? =id, bf?id relations >
7T TIS{TU = Siy]
This shows

Gp=rtx &, W, = /(") x &°.
The diagram notation
=3-2-( 0'| 2 34'%Y } 7%

A

=22~ 0 1 234 § | 7%

TUS;TT = Siws

P e
]

Cominuscule node.
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4.12. Cominuscule node. We say a node k € Iis cominuscule if
(wy,0) =1.
Equivalently, for any positive roots > 0,
(wy, o) €{0,1}.
Let us denote Wp the stabilizer of @y.

4.13. Elements in (). For any cominuscule k € I, by 3.20 or 3.30, the
parabolic decomposition is given by

toy = T - W, wp = max(W") and 7. = min(tey W).
We have
0(mm) = Ltoy (Wh) ') = Lwpt-ay)
= Z ’ - <(X) CD\O + 6w(';oc<0"
>0
Note that
x € Ry = (o, @) =0, who > 0
x €ERT\R) = (,@)) =1, wia<o.

Each term is zero. Thus
e € Q.

4.14. Example. In type A, _1, each node is cominuscule. We have
wy = ej + --- + e in the quotient space realization. The following

diagram reads
-‘/ﬂ
7z JJ/
toy = mWg. J’"—/rf =
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4.15. Theorem. Denote 1y = id, and call 0 cominuscule. We have
Q ={m : k € 14 is cominuscule}.

4.16. Description of the automorphism. Note that for any m € Q, we
have

X = Kp(i)-
So if
whog = ®; mod 0
we must have
O = ta)i(oq +(--)0) = o.

That is, 7(j) = i. In particular, since WOP o < 0 we must have 1(0) = k.

4.17. Type A. For type A,_1, every node is cominuscule. The auto-
morphism

(o)
(1) =1+ k mod n, O
. ./...\.

4.18. Type B and type C. For type B, and Ch, there is one cominus-

cule node
™ L

oe==—0——0—@ oio— —— 0 —@=(=0

4.19. Type D. For type D,,, there are three cominuscule nodes. When
n is even,

N Y S B G S
When n is odd, w o
SRR G N i
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4.20. Type E. For type Eg and E, there are 2 and 1 cominuscule node
respectively.

(e]

ﬁx w

4.21. Corollary. A node k € I is comiuscule if and only if k is in the
orbit of affine node under automorphism of affine Dynkin diagram.
Moreover,

Aut(Finite Dynkin diagram) x Q) = Aut(Affine Dynkin diagram).
Bruhat order.

4.22. Extending Bruhat order. We can define Bruhat order over W,,
and extend it to W, by the disjoint union of ordering over

W, = | nWa.
neQ)
Note that for any 7 € ),
ut, <wt), n(utu)ﬂ_1 < m(wty)m!

So it gives the same order if we use the left cosets.

4.23. Bruhat order. Let us describe the Bruhat order over
W,/ W L py,
We first mention that the above map is an isomorphism of W,-sets. We
denote the Bruhat order
A< &= HWw <t W
Note that a general fact of parabolic Bruhat order tells
LW <t Wi u <uy,
& IxetyaWandy € t,W such that x <v.
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Here u), = min(t,W) the minimal representative.
The Bruhat order is generated by

A < wwhen p = 13 for some & € R{.
Note that
H<Tan & & € Llnv(t,).

As we computed in 3.15 the inversion set of t,, it is not hard to con-
clude

e When (A, x) < 0, @ € LInv(ty), i.e. Tty < ty. We have
TN < Al

e When (A, ) > 0, —x + & € LInv(ty), i.e. T_gi5ty < ta. Recall
that r_,. 5 = tovTo, we have

TN + o < A

This can also be seen from the alcove. As a result, the Bruhat order is
generated by

A<Ata<oa—a<oa+2a<--- (Ax)=0
A<A—a<at+a<a—2a<--- Aa)=1

4.24. Example. Consider type A;.
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4.25. Exercise. For o € RT, denote

e (wty) = #Invy (wty).

Prove that
A+ ka¥yx) -+ =8 —6 —4 =2 0 2 4 6 8
boUpik) -+ 8 6 4 2 0 1 3 5 7
AN+ka¥y) -+ =7 =5 =3 -1 1 3 5 7 9
Co(Upiker) -+ 7 5 3 1 0 2 4 6 8

41
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5. SEMI-INFINITY

Semi-infinite length.

5.1. Length. Recall for x € W,, we defined
Inv(x) = {a+ k& € R; : x(ox + k&) € R}
Then the length function is given by

{(x) = #{hyperplanes separating Ay and x ' Ay}
= #Inv(x)

There is a bijection between hyperplanes and inversions.

5.2. Semi-infinite length. For x € W,, we define
17 (x) = 0(xt,) — £(t,)
for p sufficiently dominant. Here, sufficiently dominant means,
(hyo) >0  foreachiel
In particular, 0% (mtx) = €%(x) for m € Q. Note that unlike the usual

length, 0% (x) might be negative and 0% (x) £ %(x7 1) in general.

5.3. Computation. If we write x = wt,, then Iwahori-Matsumoto for-
mula 3.4 implies

E%(wt;\) = Z ‘(06,7\"‘ H) ‘|‘6wcx<0‘ - ‘<p'> OC>‘

>0

= Z (<oc, A) + 5wcx<0) ={(w) + 2(p, A).

o>0

5.4. Example. Let us consider A; case. We have

X o+ §0SSp  SSo So id s S0S SSpS (550)2
st2 t2 st id s ot st 2
%) -+ =3 =2 -1 01 2 3 4
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5.5. Example. Compare length and semi-infinite length for W,.

\v4

Y,
AVA
AV,

VAVAN
RAVA

AVAVAVA

-

o/

VALY
SAVAVA

00
&
SN

-

N\
aé 5

\V4

VA
/N
/

AR ok
NARAR X IAINY
( N\ p 9 IR
(43 > /&u\ 1% $\‘7 87 N A (D\/g
N3 \ N\
NEARR ?g N 74 5_\5 ARPALS
o N lC TS T s 621 o] T
[ANRFARANEIIAS PA e |
WNE |7/ INF[2 2 [2/108 [ 1< o]
RN |=\%: 1/ 7\:
\ 5|4/ % 7 7
I N VARGARNZIR
N U] 7S 7 PR P R
o NG [ %
AN P AN R
’31 i %7§ y 7\6\ 7g X‘)/(a P
N

K(

0% (x) onx A

43
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5.6. Example. Let us compute
0 (rars) = U (Tatiar) = Ura) + 2k(p, ").
We proved in 3.26 that
2(p,0Y) =L(rg) + 1.

So
(*(s0) = £(re) — 2(p, 0") = —1.

5.7. A trick. Let a4+ kb € Rq. Notet that
o+ (k+ (1, ®))d
We have

t_u(x+kd) € Rf for sufficiently dominant 1 = « € R,

5.8. Semi-infinite Inversion. Note that for o« + kb € R,

o+ kb € LInv(xt,) for sufficiently dominant u
= t_u(x*1 (x+kd)) € R for sufficiently dominant p
& x "(a+k&) mod § €R™.

Let us denote
Ry, ={ox+Kkd:x € R*and k € Z}.
We denote
LInvy(x) = {a+kd € R} 1 x ' (a+ k8) € Ry} C Ry
We denote

Invy (x) ={a+kd € Ry, : x(a+kd) € Ry} C Ry,.
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5.9. Computation. We have
wiy(x +kd) =wa+ (k— (A, «))d.
So ot + kb € Invg (x) if and only if
k— (A &) < dpa<o-
We see
Inveg, (wty) = {ac+kd: &« € R* and k < (A, &) + dya<o }-

Compare with 3.5.

5.10. Theorem. We have
1% (x) = #(Inve, (wiy) \ Inve, (id)) — #(Inve, (id) \ Inve, (wty)).
We can write it as

1 ox>0
% _ )
0 (x) = Z(){—L 0 <0

a+kdelnv(x

5.11. Half-space. For o + k& € Ry, we defined
Haks = {X € hr : (x, ) + k =0}.
We define the half-space
Hi s = {x € br: (x, ) +k > 0}.
Similarly, we define H3?, ; etc. One can check

>0 _ 1y4>0
wiy - Hohs = Hth(wks)-

5.12. Alcove. Let x € We. Let us justify the bijection

Inv(x) AL #{hyperplanes separating x 'Ag and Aq}.
The key observation is

a+ks eRL & Ag C HY .
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As aresult, for « + k6 € R,
the hyperplane H s separates Ag and x ' Ag
= xTA CHY s & Ao CH iy & x(x+k8) €Ry
& o+ kd € Inv(x).
The semi-infinite analogy is
x+kdeR), &= Ap+ucC HZ9,; for sufficiently dominant p
= ConHDO\; # 2.
Here Cj is the fundamental chamber. As a result, for o > 0,
the hyperplane H s separates Ag + tand x ' A for p sufficiently dom
= x A CHY s & Ao CH Ly & x(x+k8) €Ry
— o+ kd € Invg(x).

As a result,

e%(x)_z 1, Ao C H+ Cy,
~ 4= -1, Ap CH-Co,

with the sum over hyperplanes H separating x ' Ag and Ay.

5.13. Example. Consider the case A;.
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5.14. Exercise. For x € W,, prove that
—0(x) < F(x) < x).

Semi-infinite Bruhat order.
5.15. Bruhat order. Recall the Bruhat order can be equivalently de-
scribed by

e the order generated by

x < xrg when {(xrg) =4£(x)+1.
e the order generated by

x < xrag when {(xrg) > £(x).

That is, & € R and x& € R.
e x <y if there is a subword of x in a reduced word of y.
e x < if there is a subword of x in any reduced word of y.

5.16. Semi-infinite Bruhat order. For x,y € W,, we define the semi-
inifnite Bruhat order
x <gqy & xt, <yt, for u € Q" sufficiently dominant.

The well-definedness follows from the description below. Note that

unlike Bruhat order, x <, y does not implies x ' <¢, y~'.

5.17. Description. The semi-inifnite Bruhat order can be equivalently
described by
e the order generated by
x <¢, XTa wWhen R%(xr@) =0%(x) + 1.
e the order generated by
x <g Xra When 0% (xrg) > % (x).

That is, & € R;O and x& € R{.

e x <y if there is a subword of xt,, in a reduced word of yt,, for
sufficiently dominant p.

e x <y if there is a subword of xt,, in a reduced word of yt,, for
sufficiently dominant p.
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5.18. Exercise. Prove that
X <g Y = XWp >g Ywo
where wy = max(W) the longest element in finite Weyl group.
5.19. Remark. This order is also known as the quantum Bruhat or-
der.
5.20. Example. Consider the case A;.

Yl aYalala av
-3 2 1 0 - -2

| { 1 i { , [ Sé——ul
<357 - -9’ o Y & 33

As usual, we mark the semi-infinite length 0% (x) on x ' Ay.

5.21. Example. Consider the case A;.

)
se—=id
< XX S2

Note that, we use x ' A to represent x, so

left multiplication by s; = wall-crossing

5.22. Lemma. We have
e(Toc) S 2<p) O(v> -1
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Proof. Generally,
p=wp+ )Y B

BeLInv(w)
Substituting w = 14, we get
(py x")ox = Z B.
BeLInv(ry)

Note that 3 € Inv(r) implies

B — (', B)ax <O.
We must have (x", ) > 1. Note that « € Inv(ry), with (", ) = 2.
Thus we get

2p,0) = Y (Bya) = l(ra) +1.

BeLInv(ry)
This proves the inequality. O
5.23. Corollary. From the proof, for « € RT, it is easy to see the in-
equality achieves

Ure) = 2(p, o) — 1

exactly when

e o islong;
o the coefficient of each long simple root of « is 0.

In particular, it is always true for simply-laced types.

5.24. Computation. Let us give a more precise description of
x <¢ xr3 when 0% (xrg) = % (x) + 1.
Firstly, the order the translation invariant, i.e.
x<gqy & xt, <¢ yt,, Vu e PY.

Letusassumex =w € W, & = a+kd for & > 0. Recall vy x5 = Totikar-
We have

07 (xTgars) — £°(x) = L(wrg) + 2k({p, ¥) — £(w) = 1.

So
2k({p, ') — 1 = L(w) — L(wry).
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We have
—2(p, o) +1 < —(ro) < 2k(p, ’) =1 < L(ro) < 2(p, x*) — 1.

Thus —1 < k < 1. When k = 0, this is a cover relation in the finite
Bruhat order

W <oy WTy when £(xry) = £(x) + 1.
When k = 1, the equality must be achieved, i.e.

W <oy Wrytigy when £(xry) = £(x) — £(ry) for ain 5.23.

5.25. Theorem. The semi-infinite Bruhat order is generated by
wity <o Wrgty Lwry) =L(w) + 1

wiy <o Wratatar L(wry) = (w) — (1) for ocin 5.23.
Grassmannian elements.

5.26. Minimal representative. Letx = wt,. Recall thatin 3.22, we get
x = min(xW) <= A is anti-dominant and w € W*.

This is also true for extended Weyl group. A general facts of Weyl
groups tells

x = min(xW) <= Inv(x)NR" = 2.
From the computation of 3.5, we see that x € min(xW) if and only if

Inv(x) C Ry,.

5.27. Proposition. By 5.10, we have
{(x) = —"(x) & x=min(xW).

5.28. Example. Recall that x = min(xW) if and only if x 1Ay C Co.
The above examples give examples of this theorem.

5.29. Lemma. When x = min(xW), any anti-dominant A € PY, we
have

xty, = min(xta W), £(x) + £(ty) = £(xty).
This is obvious from above description.
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5.30. Theorem. When x = min(xW), for any y € W,

ysx =— Y2y
Yy<gx =— Y>X

Proof. We have

Yy <x = yt) < xty for sufficiently anti-dominant A
= ytwwy < xthiwyg for sufficiently anti-dominant A
= ywot, < xwot,  for sufficiently dominant u = woA
= Ywo <o, XWo

=Yy >gqx (by 5.18).
Y <g X = YyWp >g XWo (by 5.18)
= ywoty > xwot, for sufficiently dominant u
— ytawo > xtawy  for sufficiently anti-dominant A = wop
= y>x (Lifting property below).
We are done. O

5.31. Lifting property. When {(uv) = £(u) + £(v), we have
uw <wy — uw,.
Proof. It suffices to show when v = s;. When ws; < w, then u <
us; < ws; < witis obvious. When ws; > w, then
(a reduced word of w) & s;

is a reduced word of ws;. Since us; < ws;, we can find a subword of
us; inside. If the last s; is chosen, then drop it, we get u < w. If the last
s; is not chosen, then us; < w, we also have u < w. O

5.32. Corollary. For x = min(xW) and y = min(yW),
x<Yy = x2>gVy.
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5.33. Exercise. Prove that
xwy <g¢ ywy &= xt), < yty for A € QY sufficiently anti-dominant.

When A is sufficiently anti-dominant, xt, = min(xt, W) by above. So
it is equivalent to say xtywp < ytawo.
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6. COMBINATORICS IN TYPE A

Remind.

6.1. Two presentations. Recall that

&n = { biZjeiioZn (i n) = (i) + n} .
Any A € Z" defines a translation t) (i) € Sn by
t(i) =1+ An I<i<n-—1.
This gives the first presentation
S, =6, x Z".
Denote s; for i € Z/nZ by

the affine permutation exchanging j and j + 1
when i = j mod n with other numbers fixed

Si =

They generate the subgroup

éo:{ zhz | fli+n)=fi)+n }

bijection ~ > 1y (f(i) —1) =0
Recall the element
n € Gy, given by m(i) =i+ 1.
We have the second presentation

x 7 ., &0
Gn=71"xG,,.

eso.

53

6.2. Dot notation. If we denote x; = te,, we have very explicit for-

mula

Xi = (Si—1---81)7(Sn—1 - 8i).
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There is another diagram notation for &,.

% R= R =R

+ SiXi= XinSi SiXim = XS
7%

6.3. Exercise. Forany f € Sy, prove the average

av(f)=—> (fi)—i) €Z,  av(fg) =av(f)+av(g).

This proves av : &,, — Z defines a group homomorphism. Actually
ker av = &9 the affine Weyl group.

6.4. Length function. For f € Sy, the length

L 1<i<n—1
£(f) :#{(1>J)3 i<ij, f(i) > f(j) }

Assume f = wt), then

L(f) = Z Ai = Aj + 8y swii) -

i<
In particular,

U(sy) =1, {(m) =0, Ux) =n—1
Actions of &,

6.5. Exercise. Prove that PY = W, /W is an isomorphism of W,-sets.
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6.6. Remark. By the very definition, as a subgroup of &z, the group
G, acts on any objects indexed by Z. Precisely, for any set X,

X? ={(--,a-1,a0,a1,---),a; € X},
the group &, acts by
f(- -, a0, a0,a1,-+) = (-, @111y, A1), Q1 (1)-
That is, a; is moves to the f(i)-th position, so the j-th entry is supposed

to be ag1(;).

6.7. Action on Z". The group &,, acts on Z" linearly by
W(ary ..oy @n) = (Qy1(1)5 -0+ Qo1 () )
We can extend this action non-linearly to Sy by
wtr(agy...,an) = (a1 + A1y ...y an +An).

This induces an isomorphism of S,-set Z" ! Sn /Gn. In particular,

e since sp = t1tg1s1n,

so(ar,az...,an—1,an) = (an + 1,0z, - ,an_1,a; — 1),
e since 7T = ty87-- - Sp—1,

ﬂ(a1)a23---)an71)an) = (an+])a1)"' )an72>anf1)-

6.8. Example. Take n = 3. for simplicity, we denote —m = m.

000 %5 100 15 010 2% 117 225 171 2% 270 225 201

6.9. Idenfication A. Actually, we can extend any n-tuple (aj, ..., a,)
to (ai)iez by ainyi=ai—k.

That is, we can embedding

n 11 N a; €7Z 7
Z —>{(a1)1€Z. ai+n:ai—] }CZ.
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Then this can be includes in Remark 6.6 above. For example, (k = -k)

201 +—— ---]310]20T[112]---
210 = ---]301]210]121---
Ml - [212]711]020] - --
M - [221 11711002 ---
010 +— ---|121]010|10T]---
100 +—— -~ [211]700 0171 ]---
000 +— -+~ |111]000|T1T|---
Compare with the example above.
6.10. Identification B. For any n-tuple (ay,..., a,), we can associate

a subset
A=tZo={i+(ai—kn:1<i<n, k<0}CZ
Equivalently, we split Z into n copies of Z by
7z (i+nz), d—i+nd

Then A is the union of the image of lower ideal {j < a;}. This defines a
bijection

. icA=1i—meA
" -5 dACZ: i<0=1€A c 27,
i>0=>1€A

Then this can be includes in Remark 6.6 above. For example

201 — {---,4,1,3}
210 — {--- ,4,4,0} 2170123
11— {--,1,4,3}
M7 {-,1,2,3} 8 521 4 7
010 — {---,2,2,0} 7 41258
100 — {---,1,1,0} 6 30369
000 — {---,2,1,0}
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6.11. Maya diagram. We represent any subset of Z by a Z-tuple of
{®, ©}. Thatis, the a-th position is @ if and only if a € A. For example,

201 +— - - - OODO|DOOD - - -
210 — - - 008|006 - - -
Ml— - 0000000 - -
M — - aapeleass - --
010 — - DDDB|EDOO - - -
100 — - - - DODB|BOOS - - -
000 — - - - BEEBIeee6 - - -

6.12. Partitions. The set

l<<0:>l€A 7
{ACZ'1>Oéi€A}C2

can be identified with the set of partitions with charges.
{(A,m) : Ais a partition,m € Z}.
We say (A, m) is of center charge if m = 0. We identify usual partitions
by a partition of center charge.
The identification is given by
Am)—{m+1+A—-1:1=1,2,3,---}.
For example,

m-1 m m+l m+2

(®>m)’_>("') @)@) S, @>)
m-1 m m+l m+2

(D>m)’_>(> @)@) D, @>)

6.13. Residue. For a partition with charge (A, m) and a box (i,j) in A,
we define
res(0)=j—i+meZ
Then the action of &, translated to operators on partitions. By
7-[(}\) TTL) = ()\,TTI*F 1)) 51(7\) m) = (Si)\’m)
where

SIA =AU {D : O is addable } \ { ~ Ois removable }

res((J) = imod n " res(d) =imod n
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6.14. Example. Take n = 3. We label the residues on the boxes.

12 po123 g @23 g [23 5, @S s, MEE s, [2E
101 ——3y 012 %y 012 2yojr2 2y [ol12 22y [o]12 =3 [0]12
-2-10 -10 1 -101 -To1 Filo 1 Filo 1 -To1

6.15. Identification C. Under the above discussion, we can identify
zr 1, Sy, orbit of (2,0) = {(A,m) : A is n-core}.
Moreover, if we restrict to
Q' ={(ai)icz: a1+ - +an =0} CZ",
it gives
QY LN é?t orbit of (&,0) ={A : A is n-core}.

For example,

1

S SIS
1]2]3]
Pz - OPOB|OOOS - -
]2]3
%E; - BOOD|DOBO - - -
[1]2 3
L2 .. 20000000 -
23
012 HOOB|OBOS - -
123
L ekl ISTSIS R
012
SASRERERLlc-2Lo{STSISISTRE

6.16. n-core partition. A partition A is an n-core partition if there ex-
ists no p C A such that A/u is a ribbon of length n. Removing a ribbon
of length n corresponds to the exchange

distance =n distance =n
— —
As a result, if we cannot exchange, then the corresponding subset sat-
isfies
iteA=1i-—mnecA.
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6.17. Summary. Here is the summary of all three identification of Z".

'Izzj 00 ooloo oo %E:)? son 3ioloaia
B A|AK] ok (X ik
A E
S0
L I KKK
tn ://////// o I //////////
;-?:) >d B0 00O 5’%%5 ooo |||D°°|||

Minimal representatives.

6.18. Description. For any f € &9, it is clear that in the decomposi-
tion

f=uv, u =min(fW)andv € &,

we have



60 RUI XIONG

and

v(i) = the position of f(i) in {f(1),...,f(n)}
=T1+#j:f(j) <f(i)

Now, let us give a combinatorial description of
th = wpva, u), = min(tpaW) and vy € W.

6.19. Description of t). There is a combinatorial way of constructing
t, as follows.

pt A when et [] Z‘ﬂ(\ row {
puk B o et L] W”v{“” r
B +
4t rov { T4
P
'» rd 1w ( =P,
= +—
2d o RV,
= S
123458 Ist row ¢ /A7, 4,
2o

Actually, each row is a reduced word of t, with u € {0, 1}"™. For exam-
ple, the above example is
t1,5635) = 100,100/ Ho,1,1,011 o111t 1,1,1,1)-
Note that
0tn) =) A=Al

i
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This is compatible:

[Ai - Ajl

61

kK X

6.20. Description of vy. When f = t,, then

\))\(i):1+#{j<ii7\i§)\j}+#{j>ii7\i

VAGY = 4 emphy [ Sen —

—5

|
=

~Ht

v
“§

< 7\]'}.

1++—>1

3v—¢
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6.21. Description of wu,. There is a combinatorial way of constructing
u,, as follows.

pk P when et qu (S-H/\ %jj;%_fgg
pot B when et { i
N -~
i rd rew A+ PF,
= R
A
‘7~ P
TETE 1st row {7/~ Uy
el

6.22. Compatible with length. Recall that the minimal representative
minimizes each summand of

L) = Luy ') = Lwaty) = Z | = AL+ A + 00, () (i) -

i<

That is,

A=A A< A
e — ’) 1) 1 =7V
(1) Z{?\ N
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This is also compatible:

XN-N-1 Aj- Xi
when A 7 when XN
1 1 4 1

6.23. Remark. Let us identify compositions by a subset of Z". Then
each box (i,j) corresponds the minimal affine permutation by “cre-
ating this box”, i.e. change the i-th component j-1 — j. Using our
identification A, the (i-n)-th component is j, we can just move it to the
i-th component. When moving, we need n — 1 simple reflections, but
once j meets another j, we do not need to exchange them, so it saves a
simple reflection.
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7. FUNNY BIJECTIONS

Stable affine permutations.

7.1. Stable affine permutations. The i-th car @ prefers the space a;.

If a; is occupied, then the i-th @ takes the next available space. We
call (ay,- -, an) a parking function (of length n) if all cars can park.

ap az an

7.2. Example. Forexample, whenn = 2, all parking functions 11, 21,12
are

2 sl [l

While 22 is not:

7.3. Example. For example, whenn = 3,

111 112 121 211 113 131 311 122
212221 123 132 213 231 312 321

7.4. Theorem. There are exactly (n + 1)"! parking functions.
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Proof. Consider the following parking procedure:

A A ~A

ay az an

lo|n]- - [2]1]c 2a .- o

on a circular road (i.e. the next space of m is \ll) Then we see all cars

can park for any preferences. It is a parking function if IQI is left empty.

The rotation symmetry tells that there are exactly (T’::]) - many parking
functions. O
7.5. Equivalent condition. We see (ay,..., an) is a parking function if
and only if

e at most 1 car prefers position n;

e at most 2 cars prefer position > n —1;

e at most 3 cars prefer position > n — 2;

e etc.
That is,

fi:rqi>n—k+1} <k

In particular, does not depend on the order of cars.

7.6. Dyck path. Dyck path (of length n) is a lattice path from (0, 0) to
(n,n) below the diagonal. It is well-known that the number of Dyck
path is Catalan number

T (2n) 1 2n+1
n+l\n/) n+1\ n )’
7.7. Labelled Dyck path. A labeling of Dyck path is a labeling on

vertical steps by [n] which is increasing for consecutive vertical steps.
It is not hard to find a bijection

{parking functions} L, {labelled Dyck paths}.

That is, the labels on the vertical steps over x =i gives an 1.
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4 1 4

6'5‘4 3‘2!1\ N

L 4

6‘5“32%1‘

4

6|x32

4

IHZHES

4

Lol o M
YR 3 e
chases @by

2

7.8. Stable affine permutation. We say f € &2 is stable if
fl+n+1) =fi+ 1) +n > f(i).

7.9. Enumeration. Note thatevery (x1,...,xn) € R™ canbe translated

into QV

X1+ X
n

It would be convenient to work with

b* ={(X1y..oyXn) i X1 + -+ xp =0} = REY/R(T,...,1).

(X1yeeeyXn) — (1,...,1).
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The fundamental alcove is
Ag={(X1y..0yxn) €h 1x1 2% > - 2 xp 2 %1 — 1]

Its centroid is

1
c:—EU,Z,--- ,n) mod (1,...,1) € Ay.
Explicit computation shows for f € &,
1

fc:_a(f(]))f(Z),-” ,f(n)) mod (1,...,1) € Ao.

So f is stable if and only if

1 L Xt 2 xg
fce{—n(x'ly"')‘xﬂ)' X]—{—ZTLZXn

> e —
:{(Xh-'-)xn): = i ] }

Xn > X1 —2
= {(Xh'--)xn) X1 > x-1 >%x3-22> - > xp—(n-1) ZX1-(n+1)}

The set is a union of alcoves, since it is bounded by hyperplanes. More-
ovet, its volume is the the volume of
M+ DA ={(X1,..yXn) 1 X1 2 X2 > -+ > X > %1 — (n+1)}

(by a change of variable). This concludes

#{stable permutations} = (n + 1)"'.

7.10. Table of numbers. Let us fill all integers into [n] x Z such that

e 0is filled in (0, 0) position;
e locally

thenb=a+n n thenb = a + n+l.
b

For example, whenn = 3,
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7.11. A Dyck path. Let f be stable. Consider the set
A={ieZ:f(i) >0}
By periodicity and stability,
ieA = i+meAh i+n+leA
Let us shift A such that it has minimum 0:
A’ = A —min(A).

Then coloring elements of A in the table above, we will get a Dyck
path. We label f(i + minA) on the leftmost colored box in each
row. Note that the labels are exactly from [n]. This defines a bijection

{stable permutations} S {labelled Dyck paths}

7.12. Example.
0 3 6F  Flo (2134 (516 al
~4 - 2 34856(28 9001012 P
£ ( @3 0 72%5(4149 46130
A o & 121%2% 2
L 12 B 1§28 31
" 2 8|14 2026 22 35 4
e 3 9 Is 2127 3334 [
™ 4o 16 22 28 34 404 S2 5
& S 1z 23329 354 438359 - 9

7.13. References.

e Eugene Gorsky, Mikhail Mazin, Monica Vazirani. Affine per-
mutations and rational slope parking functions.

o T. Hikita. Affine Springer fibers of type A and combinatorics
of diagonal coinvariants.
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Bounded affine permutations.
7.14. Setup. We call a permutation w € &, an k-Grassmannian per-
mutation if
w(l) < -~ <w(k), wk+1)< - <wn).

The set of k-Grassmannian permutation is in bijection with k-subset of
[n]. In terms of Weyl group, we have

w = min(WWp), Wp = Gy X Gk C Gy,
i.e. the set of k-Grassmannian permutations is W".

7.15. Description of Bruhat order in type A. For two k-subsets A, B
of [n], we define Bruhat order

min(A) < min(B)
A<B &
max(A) < max(B)

Then obviously
A<B & J\A>MN\B

7.16. Theorem. For two permutations u,w € G,,,
u<w & ulkl]<wlklforalll1<k<n-—1,

where wlk] = {w(1),...,w(k)}.

7.17. Theorem. When w is Grassmannian,

u(1) <w(1) u(k+1) > w(k+1)
us<w & - and
u(k) <w(k) u(n) >w(n)
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Proof. Firstly
ull] <w(1] <= u(l1) <w(1)
Since w(1) < w(2),

M=<w(1)
@

ul2] < wl2] ¢ u(2) < w(2).

Keep using this argument, we conclude the first set of condition is
equivalent to

u[l] <wi,...,ulkl < wik].
Here is the diagram:
u(l) w2 -+ ulk)

IN IN IN
w(l)<w(2)<--- <w(k)

Similarly, the the second set is equivalent to
ulk] < wikl,...,un-1] <wnh-1].

One need to notice that [n] \ u[i] = w{i+ 1,...,n}, and use the similar
argument. O

7.18. Affine bounded permutation. We say f € &, is a bounded
affine permutation if

1< (i) <i+n.

We say it is k-affine permutation if

7.19. The map. Letus denote

Wl =e 4+ +e=(,...,1,0,...,0) € Z".
k n—k

This is a lifting of the k-th fundamental coweight. We denote t = tgy
for simplicity. For (u,w) € &, x &,, we define

fuw = utw! € én.
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(2 3 & §

= utu”

u (2 2 4 §

(2 2 4 x
(2 2 4« S _‘_
% ’

(2 2 4
(1 2 3 4« S

7.20. Bijection. The map (u,w) — fy,, restricts to a bijection

{ u<w, wis } 11 { k-affine bounded }
(u,w) : —

k-Grassmannian permutations

Proof. The injectivity is not hard. Note that vt = tv for any v € &y x
Gn—k. We can decompose

GntGn = | Guta= U Gntw,

AEGH @Y, w is k-Grassmannian

i.e. any element in WtW can be uniquely written as utw™! where
u,w € &, and w is k-Grassmannian.

Let us check this is well-defined. Firstly, since av(t) = k, so av(fy ) =
k. For 1 <i < n,wehave

uw (i) +n, T<wl(i) <Kk,
u(w (i), k+1 <w(i) <n.

fu,w(i) = tW_1 (l) = {

In the first case, write a = w' (i), we have

<w(a)+n=i+n,
>T4+n>i.

fuw(l) =ula)+n {
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In the second case, write b = w'(i), we have

o <n<i+4n,
Fup(i) = u(b) {> o) i
This proves the boundedness.

Lastly, let us check the surjectivity. Let f be a k-bounded affine per-
mutation. Consider

A={ien]:f(i) >nhL
This must be an k-subset. The reason is the following: the bounded
condition implies
either f(i) € [n] or f(i) — n € [n].
The conditon av(f) = k implies there are exactly k many 1 satisifies
f(i) —mn € [n].
Let w be the k-Grassmannian permutation such that

Then we define u = fwt™!, so it rests to show u € &, and u < w.
Explicitly,

flw(i)), k1 <i<m.

In other case the value is in [n], so u € &,,. In the first case,

. {f(w(i))—n, 1<i<Kk
u(i) =

ul) =flwi)) = n<wi)+n—n=w()
In the second case
u(i) = f(w(i)) = w(i).

Thus u < w. O
7.21. Length formula. We proved what when w is k-Grassmannian,
C(fuw) = €(u) +£(t) — L(w).

In our case, {(t) = k(n — k), i.e.
(fuw) = u) + k(n —k) —£(w).
In particular, for length to be maximal, it can only be

fw,w =1y, A= W(Dﬁ
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7.22. Explicitly. Recall 7t € S,, the permutation of length 0:

n(i) =1+ 1.
Let woP be the maximal k-Grassmannian permutation, i.e.
WOP(U :n—k+1,...,wg(k) =n,
wop(k—|—1) = 1,...,wop(n) =n-—k.

We can write t = *wj. Then

k

fuw=u-m ~(W0P-W_])

is length additive:
Ufumw) = L) + 0+ L(wg - w).

Note that

w i wiw!
defines a order-reversed bijection between k-Grassmannian permuta-
tions and (n — k)-Grassmannian permutations.

7.23. Inversions. Butit is still useful to compute the inversions. There
are three types of inversions (i < j). Denote a = wl(i)and b =w(j).

e a <k < b < n. Inthis case f(i) > n > f(j). They form the set
( b).1§a§k<b§n
GO wla) < w(b)

e a,b < kork < a,b. In this case we must have a < b and
u(a) > u(b). They form the set

( b)'1 <a,b<kork<ab<n
@ 0): u(a) > u(b)

e a <k <n+k < b. In this case we must have u(b) > u(a +n).
They form the set

{(a,b+n):1§a§k<b§n}

u(a) > u(b)

The contribution of the first type is k(n—k)—{(w). The rest contributes
2(u).
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7.24. Theorem. The set

k-affine bounded | fee. f <t for some
permutations - TN e 6Ly

Proof. It suffices to show the left-hand-side is a lower ideal. Let f be

an affine bounded permutation. We can pick a reduced word of f to be

k
(

(a reduced word for u)m*(a reduced word for wgw'1 ).

Let f’ be the affine permutation obtained by deleting a simple reflec-
tion and such that {(f’) = £(f) — 1. We need to show f’ is still an affine
bounded permutation.

o If we delete from u. Then f’ = f,/,, = u/tw™' for some u’ <
u < w.
e If we delete from wg w!. Then we get f' = f,,,/, where

w =wsqp > w, a<k<hb, Lwsqp) = L(w) + 1.
This implies w’ = wsgp, is also k-Grassmannian. We have u <
w < w'.

In both case, f’ is a bounded affine permutation. O

7.25. References.

e A. Knutson, T. Lam, D. E. Speyer. Positroid Varieties: Juggling
and Geometry.

e A. Knutson, T. Lam, D. E. Speyer. Projections of Richardson
varieties.
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