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0 Plan

This is a rough plan for the Reading group “Toric Varieties and its Appli-
cations”. The final purpose is to understand the proof of Read’s conjecture
stating that the absolute value of coefficients of the chromatic polynomial
of a graph is unimodal (sinkless). The proof is established in a series of
papers with main ideas originally from algebraic geometry, e.g.

• June Huh, Milnor numbers of projective hypersurfaces and the chromatic
polynomial of graphs, J. Amer. Math. Soc. [arXiv:1008.4749]

• June Huh, Eric Katz, Log-concavity of characteristic polynomials and
the Bergman fan of matroids 2011, Mathematische Annalen. [arXiv:1104.2519]

• Karim A. Adiprasito, June Huh, Eric Katz. Hodge theory for combina-
torial geometries, Annals Of Mathematics 2015. [arXiv:1511.02888]
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https://en.wikipedia.org/wiki/Chromatic_polynomial
https://arxiv.org/abs/1008.4749
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See also the following survey

• Eric Katz, Matroid theory for algebraic geometers. [arXiv:1409.3503]

Note that June Huh was awarded the Fields Medal in 2022 due to the
mentioned work and more work in this direction.

The main geometric object is toric variety, a sort of algebraic variety
parametrized by combinatorial objects — fans. It provides many examples
(and counterexamples) in algebraic geometry. The standard book of toric
variety is

• W. Fulton. Introduction to Toric Varieties.

Most of the combinatorial applications (including the proof we promised) of
toric variety use Hodge theory. For general information on combinatorial
applications, we recommend

• R.P. Stanley. Combinatorial Applications of the Hard Lefschetz Theo-
rem.

• J. Huh. Combinatorial Applications of the Hodge–Riemann Relations.

My plan is the following,

• I will give the talk for each meet except when any audience wants to
share. Actually, it seems to me that a detailed note directed to this
topic is not yet written.

In other words, you are not supposed to give any talk.

• To maximize the possible achievement each time, I will first review the
algebraic geometry I will use later.

In other words, if you are combinatorics-allergic and literally
lost in the discussion, at least, you would know some algebraic
geometry.

• There will be an offline talk each week. The exact time and room will
be announced later. It would probably be the unit just before Joint
Ottawa/Carleton Algebra Seminar.

• We need to require basic knowledge of algebra geometry, for example,

Try to figure out which ring R such that SpecR = C \ {0} .

https://arxiv.org/abs/1409.3503
https://en.wikipedia.org/wiki/June_Huh
https://kirillmath.ca/AS/
https://kirillmath.ca/AS/
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Actually, we will mainly use the complex algebraic geometry, so not
absolutely the style of Hartshorne.

If you are willing to join or have questions, please contact me: rxion043@

uOttawa.ca.

rxion043@uOttawa.ca
rxion043@uOttawa.ca
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1 Introduction and Constructioins

Introduction

1.1. Chromatic polynomials Let G be a graph. You definitely know the
story of four-color theorem. Historically, Birkhoff defined the chromatic
polynomial of a graph in an attempt to prove the four color theorem. To be
exact, chromatic polynomial χG is the unique polynomial such that

χG(q) = #{vertex q-colorings of G}.

It is a good exercise to prove this number is polynomial-dependent in q.

1.2. Example Here we list some examples

Graph chromatic polynomial remarks

• χG(q) = q
For G with n isolated vertices,
χG(q) = qn.

•−−−• χG(q) = q(q − 1) = q2 − q
More edges between two ver-
tices do not affect the polyno-
mial.

•

• •

χG(q) = q(q − 1)(q − 2)
= q3 − 3q2 + 2q

More general, we can find the
chromatic polynomial for Kn.

• •

• •

χG(q)
= q(q-1)(q-2)2+q(q-1)2

= q4 − 4q3 + 6q2 − 3q

A good exercise is to find the
chromatic polynomial of an n-
gon.

1.3. Coefficients of chromatic polynomials Assume

χG(q) = µ0 + µ1q + · · ·+ µnq
n.

By a pure algebraic approach, one can show that the sign is alternating.
Read’s conjecture says

|µ0| ≤ · · · ≤ |µk−1| ≤ |µk| ≥ |µk+1| ≥ · · · ≥ |µn|,

i.e. unimodal. This conjecture was first proved by Huh using algebraic
geometry. At the end of semester, we will discuss a simplified proof by Huh
and Katz. The vital geometric object in the proof is toric variety. The proof
goes as follows



1 Introduction and Constructioins 5

• We first construct a subvariety in the permutohedral variety encoding
information of the graph.

• By computing the product with two nef line bundles, we will translate
|µi| as an intersection number.

• Apply Hodge index theorem to conclude det
[
|µi−1|
|µi|

|µi|
|µi+1|

]
< 0. In

particular, the sequence |µi| is unimodal.

In particular, the knowledge of line bundles and cohomology ring of toric
variety is necessary. On the geometric side, positivity of algebraic geometry
(e.g. properties of nef bundles) and Hodge theory (e.g. Hodge–Riemman
relations) play important roles. We will deal with them step by step and we
will also meet other applications. Today’s topic is the construction of toric
varieties.

Definitions and Constructions

Assumption We fix an algebrally closed field k. We will identify a variety by
its closed points.

1.4. Semigroup ring Let Q be a subset of ZN of the form

Q = Z≥0u1 + · · ·+ Z≥0un ⊆ ZN .

Note that Q is a monoid. We can formulate the semigroup ring over a field
k,

k[Q] := k[xu]u∈Q ⊆ k[x±1
1 , . . . , x±1

N ],

which is a commutative k-algebra. Note that it is finitely generated and
integral.

1.5. Example Let us see some example when N = 1.

• When Q = 0, then k[Q] = k.

• When Q = Z≥0, then k[Q] = k[x] the ring of polynomials.

• When Q = Z≤0, then k[Q] = k[x−1], isomorphic the ring of polynomials.

• When Q = Z, then k[Q] = k[x±] the ring of Laurant polynomials.
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• In general:

– if Q = dZ≥0, for some d ∈ Z \ 0, then k[Q] = k[xd], isomorphic to
the ring of polynomials.

– If Q = dZ, for some d ∈ Z \ 0, then k[Q] = k[x±d], isomorphic to
the ring of Laurant polynomials.

1.6. Affine Toric Varieties are nothing but Speck[Q]. Recall that

Speck[Q] = Homk-Alg(k[Q],k) = HomMonoid(Q,k)

=

{
Q

f→ k :
f(0) = 1
f(u1 + u2) = f(u1)f(u2)

}
.

1.7. Example For example, for any d ∈ Z \ 0

Speck[xd] ∼= k =: A1 Speck[x±d] ∼= k \ 0 =: Gm.

For example, compare 2Z≥0 and 3Z
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It seems that d does not play an role in the theory. But actually the
morphisms induced by k[Q]→ k[x±1] are different when d varies.

Speck[x±1] // Speck[xd]
∼ // Speck[t]

k \ 0
x 7→xd // k.

When d = ±1, the morphism [x→ xd] is injective. We can recognize

Speck[x] = k,
Speck[x±1] = k \ 0,

Speck[x−1] = k \ 0 t {∞}.
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1.8. Torus action Denote Gm = k× the multiplication group. Let T = GNm
be a torus. Note that an action of T on Spec k[Q] is nearly the same thing as
a ZN -grading on k[Q]. We have a natural action Tyk[Q] by

xu
� z∈T // (zx)u =zuxu.

Due to geometric reason, we shall view it as a right action. The T -action on
Speck[Q] can be translated to be the following. For z ∈ T and f ∈ Speck[Q],

(z · f)(u) = zuf(u).

We call Spec k[Q] an affine toric variety.

For example, the image of
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under the action of t ∈ T = Gm is
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1.9. Example Note that

Speck[ZN ] = HomMnd(ZN ,k) = (k×)N = T. (∗)

Correspondingly, for any z ∈ T , it corresponds to

[u 7−→ zu] ∈ Speck[ZN ].

As a result, the identification (∗) is T -equivariant.

Here is an example whenN = 2, when (x, y) ∈ Gm×Gm, the corresponding
point is

· · · · · · · · · · · · · · · · · ·

· · · y2
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1.10. Dual notations Let

σ = R≥0v1 + · · ·+ R≥0vn ⊆ RN .

We assume it is

rational each vi ∈ QN
pointed σ ∩ (−σ) = 0 i.e. not line inside σ

We denote
Qσ = {u ∈ ZN : ∀x∈σ, 〈u, x〉 ≥ 0}.

We call Spec k[Qσ] the affine toric variety for σ. Later, we will always deal
with them.

1.11. Remark Note that Qσ is always finitely generated, and

of full rank, i.e. RQσ = RN
and saturated, i.e. Q = R≥0Q ∩ ZN .

Actually,
σ = {x ∈ RN : ∀u∈Q, 〈u, x〉 ≥ 0}.

For example, only d = ±1 is allowed for dZ≥0.

1.12. An open embedding Note that the inclusion k[Qσ]→ k[ZN ] induces

T −→ Speck[Qσ] (∗)

is an inclusion. Explicitly, for any z ∈ T ,

[u 7−→ zu] ∈ Speck[Qσ].

Actually, (∗) is an open embedding, since k[ZN ] can be obtained from k[Qσ] by
localization. In other words, the image of T contains those f ∈ Speck[Qσ] =
HomMonoid(Q,k) which can be extended globally to ZN .

1.13. Example Let σ ⊆ R2 be the fan

σ = span≥0(e2, 2e1 + e2).

Then
Qσ = Z≥0e1 + Z≥0(2e2 − e1) + Z≥0e2.
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σ

Qσ

As a result,
k[Qσ] = k[x, y, u]

/ 〈
u2 = xy

〉
.

Say,

y2 · · · u4 · · · · · · · · ·

· · · u3 · · · · · · · · ·

y u2 · · · · · · · · ·

u · · · · · · · · ·

1 x x2 · · ·

Thus Spec k[Qσ] is a quadratic cone.

1.14. Limit It turns out we can read some information about limit from σ.
Now we assume k = C. For any vector v ∈ RN , we define

exp(vt) = (ev1t, · · · , evN t) ∈ T,

where t ∈ R. We are going to compute

lim
t→−∞

exp(vt) · 1

where [1 : Qσ → C] ∈ Speck[Qσ] the constant map. Denote zt = exp(t) · 1,
i.e.

zt(u) = e(u1v1+···+uNvN )t = e〈u,v〉t.

Before going further, let us compute an example.



1 Introduction and Constructioins 10

The case v = (1, 1).

e2t e3t e4t e5t e6t

e2t e3t e4t e5t

et e2t e3t e4t

et e2t e3t

1 et e2t

−→

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

1 0 0

The case v = (2, 1).

1 e2t e4t e6t e8t

et e3t e5t e7t

1 e2t e4t e6t

et e3t e5t

1 e2t e4t

−→

1 0 0 0 0

0 0 0 0

1 0 0 0

0 0 0

1 0 0

The case v = (−1, 1).

e−6 e−5t e−4t e−3t e−2t

e−4t e−3t e−2t e−t

e−3t e−2t e−t 1

e−t 1 et

1 et e2t

−→

∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞

∞ ∞ ∞ 1

∞ 1 0

1 0 0

Now we can conclude the general result. Recall that

lim
t→−∞

eat =


0, a > 0,

1, a = 0,

∞ (∃
/

), a < 0.
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In particular, the limit zt exists if and only if (u1v1 + · · ·+uNvN ) ≥ 0 for any
u ∈ Qσ, i.e. v ∈ σ. In this case, assume the limit is z, then

z(u) =

{
1, 〈v,u〉 = 0,

0, 〈v,u〉 > 0,
=

{
1, u ⊥ τ
0, otherwise.

where τ is the maximal face of σ containing v. We summarize the discussion
above as follows.

1.15. Theorem For any face τ ⊆ σ, we define 1τ ∈ Speck[Qσ], to be

1τ (u) =

{
1, u ⊥ τ,
0, otherwise.

For example, 10 = 1. This is a monoid homomorphism since τ is a face:

+ ∈ τ⊥ /∈ τ⊥
∈ τ⊥ ∈ τ⊥ /∈ τ⊥
/∈ τ⊥ /∈ τ⊥ /∈ τ⊥

←→
∗ 1 0
1 1 0
0 0 0

Then

lim
t→−∞

exp(vt) · 1 =

{
1τ ,

τ is the minimal
face of σ containing v,

∃/ , v /∈ σ.
In other word, σ is the “local traffic map” at the point 1 telling the end of
different direction. See the figure in Example 1.13.

1.16. Toric Variety Let τ ⊆ σ be a face. Then Qσ ⊆ Qτ induces

Spec(k[Qτ ]) −→ Spec(k[Qσ]). (∗)

By our idenfication, this map is given by restricting any [Qτ → k] ∈ Spec(k[Qτ ])
to Qσ to get a new map [Qτ → k] ∈ Spec(k[Qσ]). Since everything is of full
rank, (∗) is injective. The philosophy is to glue using these morphisms.

Let ∆ be a fan. That is, a collection of cones which is closed under (1)
taking face and (2) taking intersection. We define toric variety

X(∆) = lim−→
σ∈∆

Speck[Qσ].

Note that the smaller σ is, the bigger Qσ is. Let us use the convention |∆| to
stand for the union of all cones in ∆.
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1.17. Points The closed point can be understood as follows

• Any point of X(∆) can be represented by a homomorphism [Qσ
f→ k]

for some σ ∈ ∆.

• Two points [Qσ1

f1→ k] and [Qσ2

f1→ k] represents the same point if there
exists a common extension [Qσ1∩σ2

→ k].

For example,
Speck[Q0] = Spec k[ZN ] = T

is the set of [ZN f→ k], i.e. globally defined homomorphism. Actually,
Speck[Q0] is an open (thus dense) subset of X(∆) isomorphic to T . The
reason X(∆) is called toric variety.

1.18. Example Consider the following fan

∆ = {R≥0, 0,R≤0}.

By the discussion, X(∆) = P1.
X(∆)

Speck[x]

??

Speck[x−1]

__

Speck[x±1]

??__

 =


P1

k

??

k \ 0 ∪ {∞}

__

k \ 0

??__


Actually, P1 can be understood as follows

0 · · · � � � � 1 0 0 0 0 · · ·
↑
|
|
|
|

1 · · · 1 1 1 1 1 1 1 1 1 · · ·
|
|

P1 3 z · · · 1
z4

1
z3

1
z2

1
z 1 z z2 z3 z4 · · ·

|
↓

∞ · · · 0 0 0 0 1 � � � � · · ·
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1.19. Theorem We similarly define 1σ for any σ ∈ ∆. Then

lim
t→−∞

exp(vt) · 1 =

{
1τ ,

τ is the minimal
cone in ∆ containing v,

∃/ , v /∈ |∆|.

1.20. Theorem Here we list some basic properties.

• The toric variety X(∆) is always normal and separable (=Hausdorff).

• The toric variety X(∆) is complete (=compact) if and only if |∆| = RN .

We refer Fulton’s book for a proof.

1.21. Projective Spaces Let ∆ be the fan of Rn with |∆| = Rn with one
dimensional cones spanned by

e1, . . . , en, −1,

where −1 = (−1, . . . ,−1) ∈ Rn. I claim that

Pn = X(∆). (∗)

Recall that

Pn = (kn+1 \ 0)/Gm =

{
[x0 : · · · : xn] : x 6= 0

}
.

There are two ways to see this — a dirty way, and a sophisticated way.

Dirty Way We will illustrate this way by analyzing the case n = 2. Recall
that P2 can be covered by

{x0 6= 0}, {x2 6= 0}, {x1 6= 0}.

Recall that we identify

A2 ⊆ P2, (x1, x2) identified as [1 : x1 : x2].

Moreover,
{x1 6= 0} ∼= A2, [x0 : x1 : x2] 7−→ (x0

x1
, x2

x1
).
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{x2 6= 0} ∼= A2, [x0 : x1 : x2] 7−→ (x0

x2
, x1

x2
).

When restricting to A2, i.e. x0 = 1, the two map correspond to

(x1, x2) 7−→
(

1
x1
, x2

x1

)
, (x1, x2) 7−→

(
1
x2
, x1

x2

)
.

We can find that P2 is glued from A2 by two A2 using above two maps respec-
tively.

∆

In this case, there are three cones of full dimension 2.

span≥0(e1, e2), span≥0(e1,−1), span≥0(e2,−1).

It is not hard to see the corresponding monoids are

Z≥0e1 + Z≥0e2, −Z≥0e2 + Z≥0(e1 − e2), −Z≥0e1 + Z≥0(e2 − e1).

As a result, the corresponding ring is

k
[
x1, x2

]
, k

[
1
x2
, x1

x2

]
, k

[
1
x1
, x2

x1

]
.

The first corresponds to A2 ⊆ P2. The last two corresponds to {x2 6= 0} and
{x1 6= 0}. We left to reader to check the identification.

{x2 6= 0} {x0 6= 0} {x1 6= 0}

{x0x2 6= 0}

OO ::

{x1x2 6= 0}

dd ::

{x0x1 6= 0}

OOdd

{x0x1x2 6= 0}

OOdd ::
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Sophisticated Way Consider ∆̃ to be the fan of proper faces of

R≥0e0 + · · ·+ R≥0en ⊆ Rn.

It is not hard to see
X(∆̃) = kn+1 \ 0.

We have a “morphism” of fan ∆̃→ ∆, which will “induce”

X(∆̃) −→ X(∆).

One can show that this map coincides with the quotient map (well, the prob-
lem is local)

kn+1 \ 0 −→ Pn.

Exercises

1.22. Complement of Coordinate Planes Let4 be a simplex over {1, . . . , n}.
That is, 4 is a family of subset of {1, . . . , n} such that

B ⊆ A ∈ 4 =⇒ B ∈ 4.

Let ∆ be the collection {
span≥0(ea)a∈A

}
A∈4

.

Note that ∆ is a fan. Show that

X(∆) = kk \
⋃
A∈4

(
coordinate plane of
{1, . . . , n} \A.

)
.

1.23. Product of Projective Lines Figure our what is X(∆) for ∆ the fan of
Rn with |∆| = Rn with one dimensional cones spanned by

±e1, . . . , ±en.

Say, ∆ is a direct product of n-copies of ∆1, with ∆1 the unique fan over R1

such that |∆1| = R.
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1.24.An singularity Actually, any 2 dimensional affine toric variety is of the
form

Qσ = span≥0(e1, e1 +me2) ∩ Z2,

up to an isomorphism. So that

k[Qσ] = k[x, y, u]
/
〈xy = um〉 .

Remark Actually,
Speck[Qσ] = C2/Cm,

where Cm is a cyclic group of degree m in SL2(C2). One way to think is

That is, we can introduce Q which isomorphic to Z≥0 ⊕ Z≥0 containing Qσ.
We define an action of Cm such that QCm = Qσ. Then it is easy to see
k[x, y]Cm = k[Q]Cm = k[Qσ]. The argument works for general simplicial σ.

Next Time

Next time, we will discuss line bundles/divisors.



2 Divisors and Line Bundles 17

2 Divisors and Line Bundles

Geometry Background

2.1. Let X be a variety over k.

2.2. Class Groups We denote the group of Weil divisors to be

Div(X) =
⊕

Y⊆X Z · [Y ], with each Y a subvariety of codimension 1.

Recall subvariety means integral (i.e. reduced and irreducible). For any
nonzero rational function f ∈ K (X) = Mor(X,P1), we can define

div f =
∑
U

vY (f)[Y ] ∈ Div(X).

Roughly speaking

div f = [zeros]− [poles] (counting multiplicity).

We define Class group by

Cl(X) = Div(X)/
〈
div f : f ∈ K (X)×

〉
.

Formally, class group can be putted in the following exact sequence

K (X)×
div−→ Div(X) −→ Cl(X) −→ 0.

2.3. Picard Groups We define Picard group

Pic(X) = {line bundles over X}/ ∼= .

Recall that line bundle is nothing but vector bundle of rank 1. It forms a group
under the multiplication induced by tensor product. When X is nonsingular
(or more generally, local factorial), we have a natural isomorphism

Cl(X) −→ Pic(X).

To be exact, for any D ∈ Div(X), we define a line bundle

O(D) : U 7−→ {f ∈ K (X) : div f +D|U ≥ 0},

where we take the convention that f = 0 always satisfies the condition. To
be exact, if locally D|U = div f , then O(D) is locally generated by f−1 as
OX -module. For example, when D = 0, locally, f can be any element of O,
thus O(D) = OX .
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2.4. Example For projective space Pn,

Cl(Pn) = Z[H]

where H is any hyperplane section. To be exact, for any codimension one
subvariety must be zero loci of a homogeneous f of degree d. Assume H =
{x0 = 0}, then f/xd0 ∈ K (Pn) with

div f
xd0

= [Y ]− d[H].

As a result, [Y ] = d[H] ∈ Cl(Pn). We remind reader that f /∈ K (Pn) if d > 0.
Actually,

O(dH) = O(d).

2.5. Positivities In algebraic geometry, there are two sorts of positivity

cycles sheaves
≥ 0 effective globally generated
∗ intersection product tensor product

Since we have a nice correspondence for line bundle and codimension 1 cycle,
there are a lot of terminologies. Let L = O(D) be a line bundle. We say L or
D

(i) is globally generated if L is;

(ii) is effective if D is equivalent to an effective class;

(iii) is very ample if it induces closed embedding into projective space;

(iv) is ample if one of the equivalent condition holds

(a) For any coherent sheaf F , L⊗n ⊗F is globally generated for n� 0;

(b) For any closed subvariety W ,
〈
DdimW ,W

〉
> 0;

(v) is numerically effective (nef) if
〈
DdimW ,W

〉
≥ 0 for any closed

subvariety W .

We have
very

ample
+3

��

globally
generated

��

+3 effective

ample +3 nef
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2.6. Asymptotic Riemann–Roch Let O(D) be a line bundle. Then

χ(O(mD)) =
〈Dn〉
n!

mn + o(mn), (∗)

where n = dimX,

χ(O(mD)) =
∑

(−1)i dimHi(X,O(md)),

and

〈Dn〉 = deg(D
n· · · D) =

number of points
on self-intersection.

When D is nef, then the LHS of (∗) can be replaced by dimension of global
sections

dim Γ(O(mD)) =
〈Dn〉
n!

mn + o(mn).

This fact is known as asymptotic Riemann–Roch.

Divisors over Toric Varieties

2.7. Let ∆ be a fan in RN . Let us denote ∆(i) to be the collection of all cones
of dimension i. For example ∆(0) = {0}.

2.8. Recall that

X(∆) =

⋃
σ∈∆

{
Qσ

f→ k :
f(0) = 1
f(u1 + u2) = f(u1)f(u2)

}
f ∼ g ⇐⇒ there is a common extension

.

Recall that for τ ∈ ∆, we defined

1τ : Qτ −→ k, u 7−→

{
1, u ∈ τ⊥,
0, u /∈ τ⊥.

.

Let us denote Oτ the orbit of 1τ . For example, O0 is T .

2.9. Theorem We have
X(∆) =

⋃
τ∈∆

Oτ .

Moreover, the codimension of Oτ is dim τ .
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Proof Since we can cover toric varieties by open affine toric varieties, it suffices
to show when ∆ is affine. Assume ∆ is the fan of all faces of σ. Then

X(∆) = Spec k[Qσ] = {Qσ
f→ k : f(u1 + u2) = f(u1)f(u2)}}.

For any [Qσ
f→ k] ∈ X(∆), we see

supp f = {u ∈ Qσ : f(u) 6= 0}

is a face of Qσ, correspondent to a face τ of σ, say Qσ ∩ τ⊥. Abstractly, a
face F of Qσ is a sub-monoid with

+ ∈ F /∈ F
∈ F ∈ F /∈ F
/∈ F /∈ F /∈ F

f−→
∗ 6= 0 = 0
6= 0 6= 0 = 0
= 0 = 0 = 0

Now,

{f ∈ X(∆) : supp f = τ} =

{
τ⊥ ∩Qσ

f→ k× :
f(0) = 1
f(u1 + u2) = f(u1)f(u2)

}
=

{
τ⊥ ∩ ZN f→ k× :

f(0) = 1
f(u1 + u2) = f(u1)f(u2)

}
= HomMnd(τ

⊥ ∩ ZN ,k×) ∼= GN−dim τ
m .

Here we use the fact that τ⊥ ∩ ZN is free of rank N − dim τ . Since τ⊥ ∩ ZN
is a direct summand of Qσ, we see this is a single T -orbits (containing 1τ ).
Q.E.D.

2.10. Closure We can prove that the closure

Oτ =
⋃
τ⊆σ

Oσ.

In particular,

∆(N)
1:1←→

{
T -fixed points of X(∆)

}
,

∆(N − 1)
1:1←→

{
T -equivariant curves

}
,

∆(1)
1:1←→

{
T -equivariant subvarieties

of codimension 1

}
,

∆(0)
1:1←→

{
T

}
= a single point.
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2.11. Rational Fields To figure out Cl(X(∆)), by definition

K (X)×
div−→ Div(X) −→ Cl(X) −→ 0.

Recall that the torus T is embedded in X(∆), say

T 3 z = [u 7−→ zu] ∈ Speck[Q0].

As a result,
K (X(∆)) = K (T ) = k(x1, . . . , xN ).

However, both K (X)× and Div(X) are too huge to control.

2.12. Lemma For a monomial xu ∈ k(x1, . . . , xN ) with u ∈ ZN , we have

div xu =
∑

`∈∆(1)

〈u,v`〉 [O`],

where v` is the first nonzero integer vector on the ray ` ∈ ∆(1).

Proof It is clear that div xu is T -equivariant, so it suffices to take [O`] into
consideration. The problem is local, and thus reduce to Spec k[Q`] — we can
assume v` = e1 = (1, 0, . . .). Note that

Q` ∼= Z≥0 × ZN−1, Speck[Q`] = k× (k×)N−1.

Under this identification

O` = (k× (k×)N−1) \ (k× × (k×)N−1) = 0× (k×)N−1.

Note that the restriction xu is xu1
1 xu2

2 · · ·x
uN
N whose zero loci is O` with multi-

plicity u1 (note that xu2
2 · · ·x

uN
N is a unit). So we can conclude the multiplicity

of O` in div xu is u1 = 〈u1,v`〉. Q.E.D.

2.13. Theorem We have

Cl(X(∆)) =
⊕
`∈∆(1)

Z · [O`]
/〈 ∑

`∈∆(1)

〈u,v`〉 [O`] : u ∈ ZN
〉
.

In other words, we have

ZN (∗)−→ Z∆(1) −→ Cl(X(∆)) −→ 0,

where (∗) is given by u 7→
∑
〈u,v`〉 e`.
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Proof We have excision sequence,

Z∆(1) (∗)−→ Cl(X(∆)) −→ Cl(T )︸ ︷︷ ︸
=0

−→ 0.

The kernel of (∗) is generated by div f for f ∈ K (X(∆)) which is invertible
over T . That is,

f ∈ k[x±1
1 , . . . , x±1

N ]× =
⋃
u

k×xu.

The proof is now complete. Q.E.D.

2.14. Example For Pn, we see

Zn (∗)−→ Zn+1 −→ Cl(Pn) −→ 0,

where (∗) sends ei to ei− e0. As a result, in Cl(Pn), all classes [O`] are equal
in Cl(Pn).

2.15. Cartier Divisor Note that whenX(∆) is smooth, Cl(X(∆)) = Pic(X(∆)).
In the general case, toric variety can be singular, there is one way to describe
Picard group, and one can find examples such that Cl(X(∆)) 6= Pic(X(∆)).
Speaking of this, we are at the position to discuss smoothness of toric varieties.

2.16. On smoothness Since smoothness is local, let us state the equivalent
condition for an affine toric variety. The affine toric variety Spec[Qσ] is non-
singular if and only if we have σ = span≥0(v1, . . . ,vr) for some r where

v1, . . . ,vn form a Z-base of ZN ⊆ RN . Note that in this case,

Spec[Qσ] = kr × (k×)N−r.

As a result, non-singular affine variety is boring.

Linear bundles over Toric Varieties

2.17. Linear bundles Let D be a Weil divisor. By definition

Γ(O(D)) = {f ∈ K (X(∆)) : div f +D ≥ 0}
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Let find when a monomial xu ∈ Γ(O(D)) for u ∈ ZN . Assume D =
∑
` c`[O`],

div xu +D =
∑

(〈u,v`〉+ c`) · [O`].

Thus we should define a convex set

PD = {u ∈ RN : 〈u,v`〉+ c` ≥ 0}.

2.18. Theorem For any Weil divisor D, we have

Γ(O(D)) =
⊕
u∈PD

k · xu.

In particular, dim Γ(O(D)) equals to the number of lattice points inside PD.

Proof Since D is T -equivariant, Γ(O(D)) is a T -representation. For any
f ∈ Γ(O(D)), by definition f has no pole over T , thus

f ∈ k[x±1
1 , . . . , x±1

N ].

This shows Γ(O(D)) decompose into weight modules, i.e. is spanned by mono-
mials in Γ(O(D)). Q.E.D.

2.19. Example Here is an example of P2. Consider

D = −[O`1 ] + [O`2 ] + 2[O`2 ].

≥−2

≥1

≥−1

.

In particular, dim Γ(O(D)) is 0 or a triangular number.
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2.20. Example For every property of line bundles mentioned at the beginning
of this section, there is an equivalent combinatorial description known. We
will not state the exact conditions, since it is sort of technical. But it will be
clear after seeing an example. Consider

.

The first line bundle is NOT generated by global section, actually, global
sections do not generate over X(σ) for the cone σ spanned by orange and
blue rays. That is,

Γ(O(D))⊗ OU −→ O(D)|U
is not surjective. Look at

.

The second is globally generated and thus nef. The last is ample and very
ample.

2.21. Remark In general,

• for toric varieties, nef is equivalent to globally generated;

• for non-singular toric varieties, ample is equivalent to very ample.
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• for toric varieties, nef implies cohomology trivial i.e. H≥1 = 0.

We refer Fulton’s book for a proof.

2.22. Corollary For any nef divisor D (in particular PD 6= ∅), we have〈
DN

〉
N !

= Vol(PD).

Proof By the asymptotic Riemann–Roch,

dim Γ(O(mD)) =

〈
DN

〉
N !

mN + o(mN ),

we have 〈
DN

〉
N !

= lim
m→∞

dim Γ(O(mD))

mN

= lim
m→∞

#(mPD ∩ ZN )

mN

= lim
m→∞

#(PD ∩ 1
mZN )

#([0,1]N ∩ 1
mZN )

= volume(PD).

2.23. As a result, the(
algebraic

cycles
, ∩, deg

)
v.s.

(
coherent
sheaves

, ⊗, χ
)

is reflected as (
volume

)
v.s.

(
lattice points

)
.

A finer Riemann–Roch over toric surface will give Pick theorem. We will meet
this later.

Exercises

2.24. Translation Assume D1 −D2 = div xu. Show that PD2
= PD1

+ u.

https://en.wikipedia.org/wiki/Pick%27s_theorem
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2.25. Mixed volume Let D1, D2 be two nef Weil divisors over a toric surface.
We known that

1

2
〈D1, D1〉 = area(PD1),

1

2
〈D2, D2〉 = area(PD2).

What is 〈D1, D2〉? Hint: think about 1
2 〈D1 +D2, D1 +D2〉. In particular, if

we translate them over P2, we will give the Bézout theorem for P2.

Next Time

Next time, we will discuss cohomology/Chow ring.
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3 Cohomology and Chow ring

Generalities on Chow rings

3.1. Chow Groups Let X be an algebraic variety. Define the group of alge-
braic cycles

Zk(X) =
⊕

Y⊆X Z · [Y ], with Y integral of codimension k.

We define Chow group

CHk(X) = Zk(X)
/( rational

equivalence

)
,

where two cycles [Y ] and [W ] are rational equivalent if there exists Y ∈ Zk(X×
P1) such that

[Y ] = [fibre of 0], [W ] = [fibre of ∞].

We call [Y ] the fundamental class of a subvariety Y of X. In particular,

CH0(X) = Z · [X], CH1(X) = Cl(X).

3.2. Chow Rings If X is smooth, CH•(X) is a graded ring under transversal
intersection and will be called Chow ring. To be exact, let Y,W be two
subvarieties,

[Y ] · [W ] =


0, dim(Y ∩W ) < expected dimension,

[Y tW ], Y intersects W (generically) transversally,

unknown, dim(Y ∩W ) > expected dimension,

where d = dimY + dimZ − dimX is the expected dimension.

3.3. Torus Fixed Loci Let X be a smooth complete variety acted by Gm
algebraically. Assume

X can be covered by Gm-invariant open affine subvarieties.

Let X0 be the fixed loci of X. For any connected component Z ∈ π0(X0),
denote

Attr(Z) =

{
x ∈ X : lim

t→0
t · x ∈ Z

}
,
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where the limit limt→0 tx means the value of 0 extending Gm
t 7→ t·x // X . Note

that X0 and Attr(Z) is always smooth. To be exact, for x ∈ Z ⊆ X0, assume

TX(x) =
⊕

i∈Z T i
X(x), T i

X(x) = {v ∈ TX(x) : t · v = tiv}.

Then

TX0
(x) = T 0

X(x), TAttr(Z)(x) = T +
X (x) :=

⊕
i≥0 T i

X(x).

3.4. Bia lynicki-Birula theorem The Bia lynicki-Birula theorem states that

X =
⊔

Z∈π0(X0)

Attr(Z), and Attr(Z)
limt→0 // Z

is an affine bundle.

In particular, if dimX0 = 0 (thus finite), X can be decomposed into strata
with each of them isomorphic to affine space A`(Z) for some `(Z).

3.5. Stratification Recall a stratification S on X is a decomposition

X =
⊔
S∈S

S, with
each S = finite union

of many members of S.

We call a stratification S affine if each of them S ∈ S is isomorphic to an
affine space A`(S) for some `(S). In this case,

CH•(X) = H2•(X) =
⊕

S∈S Z · [S].

In particular, Hodd(X) = 0.

3.6. General Tori Now, let T be a torus, and X be a smooth complete T -
variety. Assume

X can be covered by T -invariant open affine subvarieties.

For each one-parameter subgroup λ ∈ 1PS(T ) = HomAlgGrp(Gm, T ),

λ : Gm −→ T

defines a Gm-action on X. Then for general λ ∈ 1PS(T ), we have

XT = Xλ(Gm).

Actually, it suffices to avoid some hyperplanes determined by weights appear-
ing tangent bundle of XT . In particular, if dimXT = 0 (thus finite), X can
be decomposed into strata with each of them isomorphic to affine space A`(Z)

for some `(Z).
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3.7. Equivariant Cohomology Assume X is a T -variety, we can define equiv-
ariant cohomology H•T (X).

(1) We have
H•T (pt) = SymZ(ch(T )) = Z[t1, · · · , tN ].

To be exact, for an equivariant line bundle ku over a point corresponding
to character u ∈ ch(T ), we denote

u = c1(ku) ∈ H2
T (pt).

In particular Hodd
T (pt) = 0.

(2) For any H•T (X), we have two ring homomorphisms

structure morphism H•T (pt) −→ H•T (X)

forgetful morphism H•T (X) −→ H•(X).

Actually, there is a spectral sequence

Epq2 = Hp(X)⊗Hq
T (pt) =⇒ Hp+q

T (X).

(3) Assume X is a complete nonsingular variety, the spectral sequence always
degenerate (due to Deligne). In particular, we have

H•T (X) ∼= H•T (pt)⊗
Z
H•(X) as CHT (pt) modules

H•(X) = H•T (X) ⊗
H•T (pt)

Z =
H•T (X)

〈H2
T (pt) 〉

as a ring

We remark that equivariant Chow ring can be understood as the cohomology
theory for T -varieties with base ring H•T (pt).

Fundamental Classes of Toric Varieties

3.8. Let ∆ be a fan such that the toric variety X(∆) is smooth and complete.

3.9. Basis Recall that

• X(∆) can be covered by X(σ) = Spec k[Qσ] for σ ∈ ∆;

• X(∆)T is discrete and in bijection to ∆(N).

Thus, we can conclude that CH•(X(∆)) is a free Z-module.
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3.10. Remarks Actually, for a chosen λ ∈ 1PS(T ), we can compute the limit
limt→0 λ(t) · f for any f ∈ X(∆) following the same principle as we do for
f = 10. To be exact, assume

f ∈ Oτ ⊆ HomMnd(Qτ ,k).

Let σ be the maximal σ ∈ ∆ such that λ ∈ σ − τ . We have

lim
t→0

λ(t) · f ∈ Oσ ∈ HomMnd(Qσ,k).

3.11. Example Here is an example,

3.12. Generators By direct computation of limit above, for generic λ ∈ 1PS(T ),
and a fixed point corresponds σ ∈ ∆(N),

Attr(1σ) = Oτ for minimal τ ∈ ∆ such that λ ∈ σ − τ .

In particular,

CHk(X(∆)) =
∑

τ∈∆(k)

Z · [Oτ ].

3.13. Poincaré Polynomial We hope to read the Betti numbers

βk = rank CHk(X(∆))
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directly from the fan. Let us denote the Poincaré polynomial

P∆(t) =
∑

rank CHk(X(∆)) · tk.

By Poincaré duality, we have

P∆(t) = tNP∆(t−1).

Let us denote face polynomial

F∆(t) =
∑
σ∈∆

tdimσ =
∑

#∆(k) · tk.

Note that the orbit decomposition is a stratification. To be exact,

X(∆) =
⊔
τ

Oτ , with Oτ =
⊔
σ⊇τ

Oσ.

But this stratification is not affine,

Oσ ∼= GN−dimσ
m

rather than an affine space. But we see that by suitable combination, it will
become an affine stratification, thus

P∆(t) =
∑
σ∈∆

(t− 1)N−dimσ = (t− 1)NF∆

(
1
t−1

)
.

P∆(t) = tNP (t−1) = (1− t)NF∆

(
t

1−t
)
.

Equivalently, F (t) = tNP (1 + 1
t ).

3.14. Example For Poincaré polynomials, there is one way to compute the
coefficients using “difference operators”. Here we give two examples of com-
putation and left to readers to figure out the algorithm.
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1
1 4

1 3 6
1 2 3 4

1 1 1 1 0

1
1 6

1 5 12
1 4 7 8

1 3 3 1 0

Cup product over Toric Varieties

3.15. Recall Recall that

CH1(X(∆)) =
⊕
`∈∆(1)

Z · [O`]
/〈 ∑

`∈∆(1)

〈u,v`〉 [O`] : u ∈ ZN
〉
,

where v` is the first integer vector over the ray `.

3.16. Lemma For ` ∈ ∆(1) and σ ∈ ∆ not containing `, then

[Oσ] · [O`] =

{
[Oσ′ ], σ′ = span≥0(σ, `) ∈ ∆,

0, otherwise.

Proof In the first case, let us choose a maximal cone α ∈ ∆(N) containing σ′.
Since we assume X(∆) to be smooth, locally X(α) is nothing but kN . Note

Oσ ∩X(α), O` ∩X(α), Oσ′ ∩X(α)

are all coordinate subspaces. Thus, it is easy to see that the intersection is
transversal, thus

[Oσ] · [O`] = [Oσ′ ].

In the second case, Oσ and O` are actually disjoint. Q.E.D.

3.17. Remark It is funny to see what is the product when σ containing `1,
From the Lemma above, we see that

[Oσ] = [O`1 ] · · · [O`r ]

for σ = span≥0(`1, . . . , `r). We can use the relation for divisors to “move” [O`1 ]

such that it intersects [Oσ] “transversally”. Precisely, we can pick u ∈ ZN
such that

〈v`1 ,u〉 = 1, 〈v`2 ,u〉 = · · · = 〈v`r ,u〉 = 0,
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Then we have
[O`1 ] +

∑
`/∈{`1,...,`r}

〈u,v`〉 [O`] = 0.

Note that the condition of ` in the sum is equivalent to say ` is not contained
in σ. Then we successfully move [O`1 ] out of [Oσ]. So that

[Oσ] · [O`] = −
∑

`/∈{`1,...,`r}

〈u,v`〉 [Oσ] · [O`1 ]

= −
∑

`/∈{`1,...,`r}

〈u,v`〉 [Ospan≥0(σ,`)],

where [O···] is understood as zero if not defined.

3.18. Theorem The Chow ring CH•(X(∆)) = H2•(X(∆)) is generated by

D` = [O`]

for all ` ∈ ∆(1) with the following relations

• D`1 · · ·D`r = 0 if span≥0(`1, . . . , `r) /∈ ∆.

•
∑
〈u,v`〉D` for u ∈ ZN .

Proof Let A• be the ring generated by D` for ` ∈ ∆(1) with above relations.
It is clear that both of them are relations and we have an induced map

A• −→ CH•(X(∆)).

This is surjective. There are two ways to show it is injective.

(1) The first method is to “move” as above remark and to show that

{Dτ : Oτ = Attr(1σ) for some σ ∈ ∆(N)}

generates A•, where Dτ = D`1 · · ·D`r if τ = span≥0(`1, . . . , `r). We refer
Fulton’s book for details.

(2) The second method is to “lift” the result to equivariant Chow ring/cohomology
which we will explain now.
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3.19. Basis We have

H•T (X(∆)) =
⊕

σ∈∆(N)

H•T (pt) · [Attr(1σ)].

In particular,

H•T (X(∆)) =
∑
σ∈∆

H•T (pt) · [Oσ].

In particular, the Poincaré series is∑
rank CHk

T (X(∆)) · tk =
P∆(t)

(1− t)N
= F∆

(
t

1− t

)
.

3.20. Product The equivariant Chow ring CH•T (X(∆)) is generated by

D` = [O`]T

for all ` ∈ ∆(1) with the following relations

D`1 · · ·D`r = 0 if span≥0(`1, . . . , `r) /∈ ∆.

Proof Let
R∆ = Z[D`]`∈∆(1)

and I∆ be the ideal generated by

D`1 · · ·D`r , if span≥0(`1, . . . , `r) /∈ ∆.

Actually this is famous — the ideal I∆ is known as Stanley–Reisner ideal.
By the same line as above, we have an induced map

R∆/I∆ −→ CH•T (X(∆)).

This is surjective since

Dσ := D`1 · · ·D`r 7−→ [O`1 ] · · · [O`r ] = [Oσ]T

if σ = span≥0(`1, . . . , `r). Thus it suffices to proveR∆/I is graded free abelian
and to compute the Hilbert series of R∆/I∆. This is purely algebraic.

For any multi-index a ∈ Z∆(1)
≥0 , we denote Da =

∏
Da`
` . We denote

supp a = {` ∈ ∆(1) : a` 6= 0}
span≥0(a) = span≥0(supp a)
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It is clear that
I∆ =

⊕
span≥0(a)/∈∆

Z ·Da.

As a result,

R∆/I∆ =
⊕

span≥0(a)∈∆

Z ·Da =
⊕
σ∈∆

( ⊕
span≥0(a)=σ

Z ·Da

)
=
⊕
σ∈∆

Rσ ·Dσ, where Rσ = Z[D`]`∈σ(1).

In particular, R∆/I∆ is graded free abelian and has Hilbert series

∑
rank(R∆/I∆)k · tk =

∑
σ∈∆

(
t

1− t

)dimσ

= F∆

(
t

1− t

)
,

which coincides with Poincaré polynomial of CH•T (X(∆)). Q.E.D.

3.21. Equivariant structure Moreover, the structure morphism CH•T (pt) →
CH•T (X(∆)) sends

u 7−→
∑
〈u,v`〉D`,

for any u ∈ ZN = Ch(T ) viewed as c1(ku) ∈ CH1
T (pt).

Proof Denote
Du =

∑
〈u,v`〉D`.

We see
Γ(O(Du)) = k · x−u.

There is a subtle sign problem — the weight of x−u is −u under the right
action, thus it is of weight u under the left action. Q.E.D.

Exercises

3.22. Localization Assume σ = span(`1, . . . , `N ) ∈ ∆(N) for `i ∈ ∆(1). We
denote uσ/`i ∈ ZN with 〈

uσ/`i ,v`j
〉

= δij .
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For general ` ∈ ∆(1), show that

D`|σ =

{
uσ/`, ` ⊆ σ,
0, otherwise.

where
·|σ : CHT (X(∆)) −→ CHT (1σ).

Hint: locally O(D`) is trivial with T -weight uσ/`.

3.23. GKM picture For τ ∈ ∆(N − 1), we denote uτ the Z-generator of
τ⊥ ⊆ ZN . This vector is unique up to a sign. Assume σ1, σ2 ∈ ∆(N) with
σ1 ∩ σ2 ∈ ∆(N − 1). Show that

uτ divides D`|σ1
−D`|σ2

.

Actually, by GKM theory, the localization map

CH•T (X(∆))Q −→
⊕

σ∈∆(N)

CH•T (1σ)Q

is injective with image{
(zσ)σ :

for any σ1 ∩ σ2 ∈ ∆(N − 1)
uσ1∩σ2

| zσ1
− zσ2

}
.

3.24. Example Consider the case P1. We name two fixed point

0 = 1R≥0
, ∞ = 1R≤0

.

We see
H•T (P1) = Z[D0, D∞]

/
〈D0D∞ = 0〉 ,

with the equivariant parameter t = D0 −D∞. For f ∈ Z[D0, D∞], we have

f |0 = f(t, 0), f |∞ = f(0,−t).

It is clear that
(f |0, f |∞) = 0 ⇐⇒ f ∈ 〈D0D∞〉 .

Moreover,
t | f∞ − f |0

since f |∞ and f |0 share the same constant term.
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Next Time

We will come to the combiantoricial application of toric varieties after this talk.
In other words, everything will be more combinatorial. Next time, we will
discuss Pick theorem, which is the shadow of Riemann–Roch theorem.
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4 Riemann–Roch and Pick theorem

Riemann–Roch

4.1. Let X be a non-singular variety.

4.2. Chern classes We can define Chern classes for any vector bundles by

c(F) = 1 + c1(F) + c2(F) + · · · ∈ CH•(X)

such that

(i) for any divisor D ∈ Pic(X) (normalization)

c(O(D)) = 1 +D;

(ii) for any morphism f : X → Y (functoriality)

c(f∗F) = f∗c(F);

(iii) for any sub-bundle G ⊆ F (Whitney formula)

c(F) = c(G) · c(F/G).

Using the Whitney formula, we can define Chern classes for coherent sheaves
(using Hilbert’s syzygy theorem).

4.3. Example For a codimension one closed subvariety D ⊆ X, let us denote
OD the extension by zero out of D. We have

0 −→ O(−D) −→ O −→ OD −→ 0.

In particular, c(O) = c(OD) · c(O(−D)), or

c(OD) =
1

1−D
= 1 +D +D2 + · · · (finite).
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4.4. Example For a vector bundle F , with

c(F) = 1 + c1(F) + c2(F) + · · · ,

Then
c(F∨) = 1− c1(F) + c2(F)− · · · .

Actually, this is true for line bundles O(D), since O(D)∨ = O(−D). By
Whitney formula, this is also true for vector bundle admits a filtration of
line bundles. The general case follows from splitting principle, that roughly
speaking,

If an identity holds for all vector bundles admitting a fil-
tration of line bundles, then it is true for all vector bundles.

To be exact, for each F , we can always find f : F → X such that f∗F
admitting a filtration of line bundles, and f∗ : CH(X)→ CH(F ) is injective.

4.5. K-theory Let us denote

K(X) =
⊕

coherent F

Z · [F ]

/〈
[F ] + [H] = [G] if we have a short

exact sequence 0→ F → G → H → 0

〉
.

It is generated by fibre bundles (we assume X to be non-singular), and forms
a ring under ⊗.

4.6. Chern character We can define Chern character ch : K(X)→ CH(X)Q
such that

(i) for any divisor D ∈ Pic(X) (normalization)

ch(O(D)) = eD = 1 +D +
D2

2
+ · · · ∈ CH(X;Q);

(ii) for any morphism f : X → Y (functoriality)

ch(f∗F) = f∗ ch(F);

(iii) for any sub-bundle G ⊆ F (additive)

ch(F) = ch(G) + ch(F/G).
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Using splitting principle, we can conclude Chern character is a ring homomor-
phism. Say,

ch(F ⊗ G) = ch(F) ch(G)

for two vector bundles F and G. This follows from splitting principle:

This is true for line bundles

=⇒This is true for vector bundles admitting a filtration of lines bundles

=⇒This is true for all vector bundles.

4.7. Example Assume

c1(F) = 1 + c1(F) + c2(F) + · · ·

then

ch(F) = 1 + c1(F) +
c1(F)2 − c2(F)

4
+ · · · .

Actually, this follows from

(1 + x1) · · · (1 + xn) = 1 +
∑
i xi +

∑
i<j xixj + · · ·

ex1 + · · ·+ exn = 1 +
∑
i xi + 1

2

∑
i x

2
i + · · ·

x2
1 + · · ·+ x2

n =
(
∑
xi)

2 −
∑
i<j xixj

2
.

4.8. Example Chern character is good enough with respect to pullback. But
how about pushforward? We will only deal with the case when pushing for-
ward to a point. To be exact, when X is complete, we have the “trace map”

χ : K(X) −→ K(pt) = Z, F 7−→
∑

(−1)i

finite dimensional︷ ︸︸ ︷
dimHi(X,F) .

deg : CH(X) −→ CH(pt) = Z, [Y ] 7−→ number of points on Y︸ ︷︷ ︸
(= 0 if dim > 0)

We do not have

K(X)
χ //

ch

��
NOT

commutative

Z

CH(X;Q)
deg

// Q.
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For example, for P1, denote x the class of a point,

O(1)
_

��

� // 2 = dim Γ(O(1))− 0

==
6===

1 + x
� // 1.

4.9. Hirzebruch–Riemann–Roch theorem For this problem, there is a solu-
tion — we only need to twist Chern characters by Todd classes. The Todd
class is defined to satisfy

(i) for any divisor D ∈ Pic(X) (normalization)

Td(O(D)) =
D

1− e−D
= 1 +

D

2
+
D2

12
+ · · · ∈ CH•(X;Q).;

(ii) for any morphism f : X → Y (functoriality)

Td(f∗F) = f∗Td(F);

(iii) for any sub-bundle G ⊆ F (multiplicative)

Td(F) = Td(G) Td(F/G).

We denote Td(X) = Td(TX). Then Hirzebruch–Riemann–Roch tells
that

K(X)
χ //

Td(X)·ch(−)

��

	
Z

CH(X;Q)
deg

// Q.

4.10. Example Let still consider P1. In this case, TP1 = O(2). and thus

Td(P1) = Td(TP1) =
2x

1− e−2x
= 1 +

2x

2
= 1 + x.

As a result,

O(1)
_

��

� // 2 = dim Γ(O(1))− 0

(1 + x)(1 + x) = 1 + 2x+ 0 � // 2.
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4.11. Example Assume

c1(F) = 1 + c1(F) + c2(F) + · · ·

then

Td(F) = 1 +
c1(F)

2
+
c1(F)2 + c2(F)

12
+ · · · .

Actually, this follows from

(1 + x1) · · · (1 + xn) = 1 +
∑
i xi +

∑
i<j xixj + · · ·

x1

1− e−x1
· · · x1

1− e−x1
= 1 + 1

2

∑
i xi + 1

12

∑
i x

2
i + 1

4

∑
i<j xixj + · · ·

1
12

∑
i x

2
i + 1

4

∑
i<j xixj = 1

12

(
(
∑
xi)

2 +
∑
i<j xixj

)
.

Riemann–Roch theorem on Toric Varieties

4.12. Theorem Over toric varieties, we have a short exact sequence

0 −→ ΩX(∆) −→ OX(∆) ⊗Z ZN −→
⊕
`∈∆(1)

OO` −→ 0.

We refer Fulton’s book for a proof. Actually we have the Euler sequence

0 −→ O⊕sX(∆) −→
⊕
`∈∆(1)

O(D`) −→ TX(∆) −→ 0,

where s = |∆(1)| − N . This follows from the quotient construction of toric
variety.

4.13. Recall that for a smooth complete toric variety X(∆),

H•T (X(∆)) = R∆/I∆

H•(X(∆)) = CH(X(∆)) = R∆

/
(I∆ + J∆),

where

R∆ = Z[D`]`∈∆(1),

I∆ =
〈
D`1 · · ·D`r : span≥0(`1, . . . , `r) /∈ ∆

〉
,

J∆ =
〈∑

〈u,v`〉D` : u ∈ ZN
〉
.

For any σ ∈ ∆,
[Oσ] = D`1 · · ·D`r

if σ = span≥0(`1, . . . , `r).
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4.14. Computation of Chern classes Let us denote D` = [O`] for ` ∈ ∆(1).
Recall that we have a short exact sequence

0 −→ O(−D`) −→ OX −→ OO` −→ 0.

As a result, by Whitney property

c(OO`) =
c(OX)

c(O(−D`))
=

1

1−D`
.

Therefore,

c(ΩX) =
c(ONX )∏

1
1−D`

=
∏

`∈∆(1)

(1−D`).

As a result,

c(TX) =
∏

`∈∆(1)

(1 +D`) =
∑
σ∈∆

[Oσ].

In particular,

Td(TX) =
∏

`∈∆(1)

D`

1− e−D`
.

Now we have a couple of applications of Riemann–Roch.

4.15. Degree of Todd class Apply to trivial bundle,

OX(∆)
� //

_

��

1_

��
Td(X(∆)) // deg(Td(X))

This shows

Td(X(∆)) = 1 +
1

2

∑
`∈∆(1)

D` + · · ·+ 1 · [point] ∈ CH(X(∆;Q)).

For example,

Td(X(∆)) = 1 + [point] N = 1,

Td(X(∆)) = 1 +
1

2

∑
`

D` + [point] N = 2.
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4.16. Volume Let D be a globally generated divisor. Recall that we know

1

N !
deg(DN ) = volume(PD).

Actually, this can be seen from Riemann–Roch

O(mD)
� //

_

��

#(mPD ∩ ZN )
_

��(
1 + constant

)
·
(
mNDN

N ! + · · ·
) � // mN

N ! deg(DN ) + · · · .

Thus,
1

N !
deg(DN ) = lim

m→∞

#(mPD ∩ ZN )

mN
= volume(PD).

4.17. Lower dimensional Volume For σ ∈ ∆(N − k), we denote Pσ the face
of PD parallel to σ⊥. Actually Oσ is a toric variety of dimension k, can apply
the same trick, we will get

1

k!
deg(Dk ∩ [Oσ]) =

1

k!
degOσ

(
(D|Oσ )k

)
= volumeσ(Pσ).

Here, the volume is taken inside the space parallel to σ⊥ normalized by

volumeσ(lattice cubic) = 1.

In the degenerate case i.e. when k = 0, the volume of a single point is 1.

4.18. Example Here is an example.

1

1

2

3

2
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Here are two other examples

where each face has area 1/2.

4.19. Precise Riemann–Roch Assume

Td(X(∆)) =
∑
σ∈∆

rσ[Oσ].

Note that this expansion is not unique in general. We can now conclude

#(PD ∩ ZN ) = deg
((∑

σ∈∆ rσ[Oσ]
)(∑

k
Dk

k!

))
=
∑
σ∈∆

rσ volumeσ(Pσ)

= Vol(PD) + (middle volumes) + 1.

This is a generalization of Pick theorem.

4.20. Projective Line When N = 1, then only possibility is P1. Note that

Td(X(∆)) = 1 + [point].

Applying the formula for D = mD0 + nD∞ when m < n, we see

#
(
[m,n] ∩ Z

)
= length([m,n]) + 1.

4.21. Toric Surfaces When N = 2. We have

Td(X(∆)) = 1 +
1

2

∑
`

D` + [point].
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We have

#(PD ∩ Z2) = area(PD) +
1

2

∑
`∈∆(1)

length`(P`) + 1

= area(PD) +
1

2

∑
`∈∆(1)

(
#(P` ∩ Z2)− 1

)
+ 1

= area(PD) +
1

2
#(∂PD ∩ Z2) + 1.

We shall write

area(PD) = #
(
(PD)◦ ∩ Z2

)
+

1

2
#(∂PD ∩ Z2)− 1.

This is known as Pick theorem.

4.22. Example Here is an example of computing area by point-counting

area(PD) = 22.5
#(PD)◦ ∩ Z2) = 20
#(∂PD ∩ Z2) = 7

22.5 = 20 + 7
2 − 1

Exercise

4.23. Ehrhart Polynomials Let P be an integer polyhedron in RN . Show that

#(mP ∩ ZN )

is a polynomial in m. This polynomial is known as Ehrhart polynomial.

Hint: on the geometric side, we can find a smooth fan such that P = PD
for some globally generated divisor D.

4.24. Counterexample of higher Pick theorem For higher dimensions, there
are no uniform “Pick theorem”, i.e. different “shapes” have different version
of Pick theorem. Try to find a counterexample such that the underlying
hypergraph are the isomorphic, of the same distribution of integer points on
each face, but with different volume.
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Next Time

We will discuss some Hodge theory and apply it to Stanley’s theorem which
characterizes the restriction of numbers of faces of different dimensions needed
to build a simplicial polyhedron.
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5 Hard Lefschetz and Stanley’s Theorem

An introduction to Hard Lefchetz

5.1. Hodge decomposition Let X be a projective, nonsingular variety of
(complex) dimension n (or more general, a Kälher manifold of real dimen-
sion 2n). Hodge theory tells us that we have the decomposition

H2n(X;C) Hn,n(X)

H2n−1(X;C) Hn−1,n(X) Hn,n−1(X)

H2n−2(X;C) Hn−2,n(X) Hn−1,n−1(X) Hn,n−2(X)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

H2(X;C) H2,0(X) H1,1(X) H0,2(X)

H1(X;C) H0,1(X) H1,0(X)

H0(X;C) H0,0(X)

where Hp,q(X) is the Dolbeault cohomology

Hp,q(X) := Hq(X,ΩpX) (cohomology of coherent sheaves).

5.2. Properties Let us denote hk = dimCH
k(X;C) and hp,q = dimCH

p,q(X).
We have

Horizontal hp,q = hq,p ∀p, q
Each Row hk =

∑
p+q=k h

p,q ∀0 ≤ k ≤ 2n

Vertical hp,q = hp
′,q′ ∀p+ p′ = q + q′ = n

Each Column hp,q ≤ hp+1,q+1 ∀p+ q < n

These properties are too strong, even after being folded up

Vertical hk = h` ∀k + ` = 2n Poincaré Duality

Each Column hk ≤ hk+2 ∀k < n Hard Lefschetz

5.3. Example For example, CPn.

h0 h1 h2 h3 · · · h2n−1 h2n

1 0 1 0 · · · 0 1
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For CP 2 × CP 2.

h0 h1 h2 h3 h4 h5 h6 h7 h8

1 0 2 0 3 0 2 0 1

For CP 1 × CP 1 × CP 2.

h0 h1 h2 h3 h4 h5 h6 h7 h8

1 0 3 0 4 0 3 0 1

5.4. Lefschetz Operator The above statement is numerical. Actually, the
inequality can be realized by Lefschetz operator. Since we can embed
X ⊆ Pn, we have a natural map

H•(X;Q) −→ H•+2(X;Q)

given by cup product with the hyperplane section from Pn. Hard Lefschetz
tells us the composition

Hn−p(X;C)
L−→ · · · L−→ Hn+p(X;C)

is an isomorphism for any p. In particular, L is injective when • < n, and
surjective when • ≥ n.

5.5. Example A typical way to illustrate them is (when Hodd = 0)

• → •
• → • → • → •
• → • → • → •

• → • → • → • → • → •

Actually, this is a good exercise of linear algebra to show that we can actually
pick a set of basis as above.

5.6. More general Now, let X be complete and non-singular. For any ample
line bundle O(D), we can define

L : H•(X;Q) −→ H•+2(X;Q)

by cup product with the divisor D. Then L also holds hard Lefschetz. Actu-
ally, this follows from Serre’s Theorem that mD is very ample for m� 0.



5 Hard Lefschetz and Stanley’s Theorem 50

5.7. Remark We remark that in particular, the Betti number is unimodal

h0 ≤ h2 ≤ · · · ≥ h2n−1 ≥ h2n.

But this is not how Huh shows the Read’s conjecture.

Simplicial Polytopes

5.8. When we say a polytope, we mean a convex hull of finite many points
with interior (usually it is assumed).

5.9. Simplicial Polytopes A polytopes K ⊆ PN is called simplicial if each
face of it is a simplex.

simplex =
• •−−−•

•

• •

•

• •
•

· · ·

point segment triangle tetrahedron · · ·

5.10. Face Vector We denote

fi = #

{
i-faces on K

}
.

We call (fi) the face vector of K. We will characterize the exact conditions
for (fi) to be a face vector of some simplicial polyhedron.

5.11. Example When N = 1 (resp., N = 2), the only simplicial polyhedrons
can be a segment (resp., a triangle).

5.12. Example It is clear that we should have

f0 ≥ N + 1 ∵ K has some interior points.

Actually, any N points are in a plan of dimension N −1, so having no interior
points. We also have

fN−1 ≥ N + 1 ∵ K is bounded.

Actually, to get a bounded domain, we need at least N + 1 half space.
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5.13. Example When N = 3. Then, we see by the famous Euler formula,

f0 − f1 + f2 = 2. (R1)

Moreover, every edge is shared exactly twice by a triangle.

3f2 = 2f1. (R2)

We also need to require
f0 ≥ 4 (R3)

Actually, the mentioned three relations are also sufficient — since f1 and f2

are both determined by f0,

f1 = 3(f0 − 2), f2 = 2(f0 − 2),

and it is easy to construct a polytope with given number of vertices (say, by
attaching small tetrahedron on any face).

5.14. Constuction Now, assume we have a simplicial polyhedron K. We can
assume 0 ∈ K◦ and the vertices K are all rational (thus integer) points. We
can construct a fan

∆ =

{
span≥0(F ) : F is a face of K

}
.

Note that the face polynomial is

FK(t) := F∆(t) = 1 + f0t+ · · ·+ fN−1t
n.

It is clear that X(∆P ) is complete since

|∆P | = RN .

Moreover, X(∆P ) is projective, i.e. admits a very ample divisor. Actually, we
can pick the divisor

D =
∑

c`D`

with c`u` the vertices on P . In general, X(∆) is not smooth. But X(∆) is
rational smooth, actually it is always an orbifold, i.e. locally a quotient by
a finite group.
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5.15. Note that for projective smooth toric variety X(∆), its coomology ring
H•(X(∆);Q) is generated by degree 2 elements holding hard Lefschetz. Ac-
tually, the same is true for projective and rational smooth toric varieties. In
particular, the Poincaré polynomial

PK(t) = P∆(t) = (1− t)NFK
(

t
1−t
)
.

Assume
PK(t) =

∑
hit

i.

We usually call (hi) the h-vector of a polytope.

5.16. Example For N = 3, we have

Octahedron
vertices edges faces

6 12 8

1

1 6

1 5 12

1 4 7 8

1 3 3 1 0

Icosahedron
vertices edges faces

12 30 20

1

1 12

1 11 30

1 10 19 20

1 9 9 1 0

5.17. Example For simplex, we

(n− 1)-dimensional simplex
vertices edges · · · (n− 1)-cells(

n
1

) (
n
2

)
· · ·

(
n
n−1

)
1

1
(
n
1

)
1

(
n−1

1

) (
n
2

)
1 · · ·

(
n−1

2

)
· · ·

1 2 · · · · · ·
(
n
n−1

)
1 1 1 1 1 0
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5.18. Example Here is an example when N = 4,

from wikipedia

24-cells
vertices edges faces cells

24 96 96 24

1

1 24

1 23 96

1 22 73 96

1 21 51 23 24

1 20 30 20 1 0

5.19. Restrictions A By hard Lefschetz, we have

hi = hN−i,
i < N/2⇒ hi ≤ hi+1,
i > N/2⇒ hi ≤ hi+1.

(#HL)

For example (hi) cannot be

•
0

•
•
•
1

•
•
2

•
•
3

•
•
•
4
•
5

•
0

•
•
•
1

•
•
2

•
•
3
•
4
•
5

5.20. Restriction B Since H•(X(∆);Q) is generated by degree 2 element, so

PK(t) is the Hilbert series of a graded
algebra generated by degree 1 element.

(Mac)

For example (hi) cannot be

•
0

•
•
1

•
•
•
•
2

•
•
•
•
3

•
•
4
•
5

•
0
•
1

•
•
2

•
•
3
•
4
•
5

Actually, the condition (Mac) can be described explicitly by Macaulay using
Gröbner basis. But let us skip this since it is too technical.

https://en.wikipedia.org/wiki/24-cell
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5.21. Stanley Theorem The vector (f0, . . . , fN−1) appears as a face vector of
simplicial polyhedron if and only if the coefficients of

PK(t) = (1− t)NFK
(

t
1−t
)

satisfies (#HL) and (Mac).

Proof We have seen the necessity by Hodge theory. The sufficiency is given
by direct construction by Billera and Lee.

Exercises

5.22. Show that the face vector of a simplicial polytope satisfies

fp ≥
(
N + 1

p+ 1

)
.

Next time

Now, we finished the part from Fulton’s book. We will turn to our main
theme, the proof of Read’s conjecture. We will be of research level from the
next time — it takes more time to solve a single problem.
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6 Hodge Index and Mixed Volume

Hodge Theory

6.1. Hodge–Riemann relation Let X be a projective, non-singular variety
of dimension n. Recall that hard Lefschetz theorem implies the iterated
Lefschetz operator

Hn−p(X;Q)
Lp−→ Hn+p(X;Q)

is an isomorphism. Now, with Poincaré pairing (=intersection pairing), we
can introduce Lefschetz pairing on Hk(X;Q) by

〈α, β〉Lefschetz =
〈
α,Ln−kβ

〉
Poincaré

= deg(Ln−kαβ).

The famous Hodge–Riemann relation claims the index of this pairing. We
will use a typeical diagram to illustrate the index when Hpq(X) = 0 when
p 6= q. The index is typically

→
→ → →
→ → →

→ → → → →

positive definite

negative definite

→ Lefschetz operator

6.2. Example When X is a surface, it is known that

CH1(X)C −→ H1,1(X)

is surjective. Since the Lefschetz pairing over CH1(X;Q) is now nothing but
the intersection pairing, this gives the following Hodge index theorem on
surface.

Hodge Index Theorem Let S be a projective non-singular surface with ample
divisor H. If a divisor D with D ·H = 0, then the self-intersection D2 < 0.

(see Hartshorne for a pure algebro geometric proof)
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6.3. Example Consider a cubic surface X ⊂ P3. Its Hodge diamond look like

H4 1
H3 0 0
H2 0 7 0
H1 0 0
H0 1

It is well-known that there are exactly 27 lines overX. They can be parametrized
by root system of E6 with

〈`α, `β〉 = −〈α∨, β〉.

So they span a 6-dimensional negative definite subspace. Moreover, they are
orthogonal to the canonical divisor κ⊥X .

6.4. Lorentzian Let us call a symmetric pair Lorentzian if it has at most
one positive eigenvalue. For example, the Lefschetz pairing over H2(X;Q) is
nondegenerate Lorentzian.

6.5. A linear algebra If a symmetric matrix A = (aij) is Lorentzian with
nonnegative entries, then any principal 2-minor cannot be positive∣∣∣∣aii aij

aji ajj

∣∣∣∣ = aiiajj − a2
ij ≤ 0.

Proof Note that A−εI for small enough ε is nondegenerate Lorentzian. If any
principal minor is positive, then V = span(ei, ej) is positive-definite. Thus
V ⊕ V ⊥ cannot be Lorentzian. Then we can take limit ε → 0 to conclude.
Q.E.D.

6.6. Amplitude and Nefness We denote

k
(X) =

∑
Y effective cycle
of codimension k

R>0 · [Y ] ∈ H2k(X;R).

We define two cones in H2(X;R)

(X) =
∑

D ample

R>0 ·D ∈ H2(X;R)

(X) =
∑
D nef

R≥0 ·D ∈ H2(X;R)
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Then we have

= cls
= int

Nef cone is the closure
of ample cone. Ample
cone is the interior of
ample cone.

∩ (− ) = 0
+ (− ) = H2

For any divisor D and
ample class A, the di-
visor D +mA is ample
for m� 0.

cls
n−1

= pol

closure of effective cone
and nef cones are polar-
izations to each other

· *

Two effective classes
might intersect nega-
tively.

· ⊆

Ample class inter-
sects nonzero effective
classes positively.

+ ⊆

Sum of two ample
classes is still ample.

⊆ ∩

Ample class is nef.
Very ample class is ef-
fective.

· ⊆

Nef class intersects
effective classes non-
negatively.

+ ⊆

Sum of two nef classes
is still nef.

Note that usually people do not say a class in class group is effective. When
I say this, it means it can be represented by an effective divisor.

6.7. Logarithm concave For a series of number µ0, µ1, . . . , µk, we say it is
logarithm concave if

(i) µ0, µ1, . . . , µk ≥ 0 without internal zeros;

(ii) µ2
i ≥ µi−1µi+1 for i = 1, . . . , k − 1.

In particular, it is unimodal

µ0 ≤ µ1 ≤ · · · ≤ µr ≥ . . . ≥ µk−1 ≥ µk,

for some r.

6.8. Remark Since unimodal series has no internal zeros, and being unimodal
is closed, being logarithm concave is a closed property.
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6.9. Khovanskii–Teissier For two nef divisors α, β, and an irreducible subva-
riety Y of dimension k, then

µi = deg
(
(αn−i ^ βi) _ [Y ]

)
=

∫
Y

αiβn−i

is logarithm concave.

Proof Note that unimodality is a closed property, it suffices to show when α
and β are very ample. In this case, all µi > 0. For dimY ≥ 3 and any very
ample class α, by Bertini argument, we can always pick a smooth irreducible
subvariety Z ⊆ Y such that

α _ [Y ] = [Z].

By iterated using above argument, we can pick a smooth irreducible subvariety
Y ′ ⊆ Y such that

(αn−i−1 ^ βi−1) _ [Y ] = [Y ′].

By replacing Y by Y ′ we can assume Y to be of dimension 2, i.e. a surface.
Consider the quadratic form

p(x, y) =

∫
Y

(xα+ yβ)2 = µ0x
2 + 2µ1xy + µ2y

2.

By Hodge index theorem, p(x, y) is not (positively) definite, so that the de-
terminant ∣∣∣∣µ0 µ1

µ1 µ2

∣∣∣∣ = µ0µ2 − µ2
1 ≤ 0,

which is exactly what we want to show. Q.E.D.

Alexandrov–Fenchel inequality

6.10. Mixed volume Let K1, . . . ,Kr be compact convex sets in RN . The
function for x1, . . . , xr ≥ 0

f(x1, . . . , xr) = Vol(x1K1 + · · ·+ xrKr)

is known to be a homogeneous polynomial (known as Minkowski’s Theo-
rem). We define mixed volume

Vol(Ki1 , . . . ,Kir )
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by the coefficients in

f(x1, . . . , xr) =
∑

i1,...,ir

Vol(Ki1 , . . . ,Kir )xi1 · · ·xir

=
∑

a1+...+ar=N

Vol(K1,
a1· · ·,K1, · · · ,Kr,

ar· · ·,Kr)

(
N

a1 · · · ar

)
xa11 · · ·xarr

6.11. Example We have

Vol(K, . . . ,K) = Vol(K).

In general, one can check
Vol(Ki1 , . . . ,Kir )

only depends on Ki1 , . . . ,Kir (a prior, it depends on all all Ki’s).

6.12. Example For two convex bodies A,B in R2. We have

1

2
Vol(A,A) = Vol(A),

1

2
Vol(B,B) = Vol(B)

So

Vol(A,B) =
1

2

(
Vol(A+B)−Vol(A)−Vol(B)

)
.

6.13. Example For any convex body K ∈ RN , Steiner studied

Vol(K + λD) = W0(C) +

(
N

1

)
W1(C)λ+ · · ·+

(
N

N

)
WN (C)λN ,

where D is the unit disc of RN . Then

Wi(C) = Vol(K,
N−i· · · ,K,D, i· · ·, D)

We can read Wi(C) from the diagram

W0(C) = Vol(white triangle)
W1(C) = 1

2 Vol(three lightgray rectangles)
W2(C) = Vol(three sectors)

We have

W0(C) = Vol(C), W1(C) =
1

N
Vol(∂C), WN (C) = Vol(D).
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6.14. Symmetric and multilinear We have

Vol(. . . , A+B, . . . ) = Vol(. . . , A, . . . ) + Vol(. . . , B, . . . ).

Vol(. . . , A,B, . . .) = Vol(. . . , B,A, . . .).

6.15. Example Let us consider a smooth projective toric variety X(∆). As-
sume we have effective divisors D1, . . . , DN . We already know that〈

DN
〉

N !
= Vol(PD), PD =

{
u ∈ RN :

∀` ∈ ∆(1)
〈u,v`〉+ c` ≥ 0

}
.

Note this is also true for effective divisors with Q-coefficients by consider mD
for some m > 0, and thus is also true for effective divisors with R-coefficients.
Let us denote Pi = PDi for i = 1, . . . , N . Note that〈

(x1D + · · ·+ xNDN )N
〉

N !
= Vol(x1P1 + · · ·+ xNPN ).

We get immediately

Vol(PD1
, . . . , PDN ) =

1

N !

∫
X(∆)

D1 · · ·DN =
1

N !
deg(D1 · · ·DN ).

When D1, . . . , DN are ample, this number is positive. So when D1, . . . , DN

are effective, the number is non-negative.

6.16. Theorem The mixed volume

Vol(K1, . . . ,KN ) ≥ 0.

When K1, . . . ,KN have interior, this is positive.

Proof We can approximate every convex body by polytopes, then we can
apply above argument on toric varieties. Q.E.D.

6.17. Example Let us apply Khovanskii–Teissier theorem on toric varieties.
Assume D1, D2, . . . , DN are ample divisors. Denote Pi = PDi for 1 ≤ i ≤ N .
Then by Bertini argument, we can pick a smooth irreducible subvariety Y
such that

D3 ∩ · · · ∩DN = [Y ].
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Then by Khovanskii–Teissier theorem(∫
Y

D1D2

)2

≥
(∫

Y

D2
1

)2(∫
Y

D2
2

)2

.

That is

Vol(P1, P2, P3, · · · , PN )2 ≥ Vol(P1, P1, P3, · · · , PN ) Vol(P2, P2, P3, · · · , PN ).

This is also true when D1, . . . , DN are effective.

6.18. Alexandrov–Fenchel inequality We have

Vol(A,B, · · · )2 ≥ Vol(A,A, · · · ) Vol(B,B, · · · ).

Proof By the same reason, we can approximate convex body by polytopes.
Q.E.D.

6.19. Corollory We have

Vol(A,
k· · ·, A,B,N−k· · · , B)N ≥ Vol(A)k Vol(B)N−k

Proof If we denote

ck = Vol(A,
k· · ·, A,B,N−k· · · , B).

Then
c0, c1, . . . , cN

is logarithm concave by Alexandrov–Fenchel inequality. Equivalently,

log c0, log c1, . . . , log cN

is concanve. So

log ck ≥
k

N
log c0 +

N − k
N

log cN ,

This is desired. Q.E.D.

6.20. Brunn–Minkowski Inequality We have

Vol(A+B)1/N ≥ Vol(A)1/N + Vol(B)1/N .
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Proof We have

Vol(A+B) =

N∑
k=0

(
N

k

)
Vol(A,

k· · ·, A,B,N−k· · · , B)

≥
N∑
k=0

(
N

k

)
Vol(A)

k
N Vol(B)

N−k
N

= (Vol(A)1/n + Vol(B)1/n)n.

Q.E.D.

Newton Polytopes

6.21. General setting We want to study the number of solutions of a system
of Laurant polynomials over

(k×)N = {(x1, . . . , xN ) : xi 6= 0, 1 ≤ i ≤ N} ⊂ kN .

6.22. Example When N = 1. Assume we have an equation

anx
n + · · ·+ akx

k = 0, an 6= 0 6= ak.

Then the number of non-zero zero is n− k.

6.23. Newton polytope For a Laurant polynomial f ∈ k[x±1
1 , . . . , x±1

N ], we
define

supp(f) = {m ∈ ZN : the coefficient of xm in f is nonzero} ⊂ RN .

The Newton polytope is

Newton(f) = Conv(supp(f)).

6.24. Properties It is easy to see

Newton(fg) = Newton(f) + Newton(g)

Newton(f + g) ⊆ Newton(f) ∪Newton(g)
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6.25. Minding–Kouchnirenko–Bernstein Given integral polytopes P1, . . . , PN
in RN , consider generic Laurant polynomials f1, . . . , fN with

Newton(fi) = Pi, 1 ≤ i ≤ N.

Then the number of solutions of the equations f1 = . . . = fN = 0 is

N ! Vol(P1, . . . , PN ).

Proof We can construct a smooth proper toric variety X(∆) ⊃ (k×)N and
effective divisors D1, . . . , DN such that

Pi = PDi , 1 ≤ i ≤ N.

Since supp(fi) ⊆ PDi , we can view fi ∈ Γ(O(Di)). As fi is chosen generically,
the zero locus Z(fi) is the closure of {x ∈ (k×)N : fi(x) = 0} in X(∆) and we
have [Z(fi)] = Di. Since we choose fi’s generically, the intersection

Z(f1) ∩ · · · ∩ Z(fN )

is transversal and can be assumed to be inside any nonempty open subset,
e.g. T . This implies

#{f1 = · · · = fN = 0} = #(Z(f1) ∩ · · ·Z(fN ))

= deg([Z(f1)] ∩ · · · [Z(fN )])

= deg(D1 · · ·DN )

= N ! Vol(P1, . . . , PN ).

As desired. Q.E.D.

6.26. Example Assume f is a polynomial of degree d, then generically

Newton(f) =

{
(m1, . . . ,mN ) :

m1 ≥ 0, · · · ,mN ≥ 0,
m1 + · · ·+mN ≤ d

}
=: d N

a simplex. If each fi is generically of degree di. Then it is not hard to show

N ! Vol(d1
N , . . . , dN

N ) = d1 · · · dNN ! Vol( N ) = d1 · · · dN .

This is Bézout theorem. Actually the X(∆) in the proof can be chosen to be
PN .
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Exerices

6.27. Exercise Let us denote

A−B = {v ∈ R : v +B ⊆ A}.

Prove that for two compact convex sets A,B,

(A+B)−B = A.

In particular, Minkowski sum has cancelation for compact convex sets.

Hint Assume there is some element v /∈ A but with v +B ⊆ A+B, then by
picking a hyperplane seperating v and A, we can find a contradiction.

6.28. Exercise If K ′i ⊆ Ki, show that

Vol(K ′1, . . . ,K
′
N ) ≤ Vol(K1, . . . ,KN ).
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7 Proof of Read’s Conjecture (I)

7.1. To proof Read’s conjecture, we need

• more knowledge from Graph theory.

• combinatorial formula on permutohedral varieties.

Graph Theory Revised

7.2. Chromatic Polynomials Let G = (V,E) be a graph. Recall that the
chromatic polynomial χG is the unique polynomial such that

χG(q) = #{vertex q-colorings of G}.

To compute the coefficients, we can first color G by q colors arbitrarily. Now
that we can always merge edges such that it is a vertex q-colorings

•
•
•
•

=⇒ •
•
•
•

Let us denote g ≤ G when g is obtained by contracting edges from G. This
leads to ∑

g≤G

χg(q) = q#G.

Thus by induction, we see

χG(q) = q#G −
∑
g<G

χg(q)

is a polynomial in q. It will be more precise after introducing Möbius function.

7.3. Linear Space formulation Let G = (V,E) be a graph. We assume the

vertices set is {1, . . . ,m}. For each edge i
e
j for i < j, we define

ve = ei − ej ⊆ Rm.
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7.4. Proposition For a subset φ ⊆ E, the following two statements are equiv-
alent

(i) the set {ve}e∈φ is linearly independent;

(ii) the graph (V, φ) is a forest (i.e. not cycles).

(A good linear algebra exercise)

7.5. Lattice of flats For φ ⊆ E, we denote

F (φ) = spane∈φ(ve).

We allow F (∅) = 0. Let us denote FG = {F (φ)}φ⊆E the set of flats. Note
that FG is closed under sum, but might not closed under the usual intersection.
But there exists a unique maximal flat covered by two given flats. To be exact,
for two flats F1 and F2 of FG, it is a bounded lattice under

F1 ∨ F2 := F1 + F2, 1 = F (E),

F1 ∧ F2 :=
∑

F⊆F1∈FG
F⊆F2∈FG

F, 0 = F (∅).

Note that we defined a map

F : 2E −→ FG, φ 7−→ F (φ).

We will call φ ⊆ E a flat if it is the unique maximal element among all φ′

such that F (φ′) = F (φ). We denote ΦG ⊆ 2E the set of flags of G. Note that
F restricts to an isomorphism

ΦG
∼−→ FG.

That is, ΦG can be equipped with a structure of bounded lattice under

F (φ1 ∨ φ2) = F (φ1) ∨ F (φ2), 1 = E,
F (φ1 ∧ φ2) = F (φ1) ∧ F (φ2), 0 = ∅.

7.6. Example Consider a triangle

1•

2• •3

a b

c

{a, b, c}

{a} {b} {c}

0
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Note that for example {a, b} is not a flat, since it spans the same space as
{a, b, c}.

7.7. Proposition Denote

GG = {g ≤ G} =

{
graphs that can be obtained

by contracting edges of G

}
We have an anti-isomorphism

γ : ΦG
∼−→ GG, φ 7−→

(
the graph obtained by

contracting all edges in φ

)
.

Moreover, we have

#Vertex(γ(φ)) = #Vertex(G)− rk(φ)

where rk(φ) = dim(span(ve)e∈φ) is the number of edges of supporting forests.

7.8. Möbius inversion Over a finite paritial ordered set (P,≤), we can always
define a Möbius function µ, such that for any x, z ∈ P ,∑

y:x≤y≤z

µ(y, z) = δxz, and
∑

y:x≤y≤z

µ(x, y) = δxz.

Actually (µ(y, z))y,z∈P is the inverse matrix of (δx≤y)x,y∈P . In particular,
for two functions f and g over P , we have the following Möbius inversion
formula ∑

x:x≤y

f(x) = g(y) ⇐⇒
∑
x:x≤y

g(x)µ(x, y) = f(y).

7.9. On Graphs Now, we have∑
g≤G

χg(q) = q#G.

But Möbius inversion, we have

χG(q) =
∑
g≤G

µ(g,G) · q#g =
∑
k

( ∑
g≤G,
#g=k

µ(g,G)

)
qk.
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This computes χG(q) explicitly — the coefficients are determined by its Möbius
function. We can equivalently translate it to ΦG, say

χ̃G(q) := q#GχG(q−1) =
∑
φ∈ΦG

µ(φ)qrk(φ),

where µ(φ) = µ(0, φ).

7.10. Example Here is an example

1

1

1

1

1 −1

−1

−1

−1−1−1 2

q2 q2 q3q2q

1

1

1

1

1

1

1

1

1

1 1 1

q(q−1) q(q−1) q(q−1) q(q−1)(q−2)q

q2 q2 q3q2qq(q−1) q(q−1) q(q−1) q(q−1)(q−2)q

7.11. Recursion formula Now, we need to find some some formula of µ(φ).
Note that by definition µ(φ) is determined by the following relations

(i) µ(0) = 1;

(ii)
∑
ψ≤φ µ(ψ) = 0 for φ 6= 0.

Actually, since ΦG is a geometric lattice, we can a “shortening recrusion” form
of (ii). Here, geometric lattice is equivalent to say

If x and y covers x ∧ y, then x ∨ y covers x and y.

Actually, by tracing back to FG, we have

rk(x ∨ y) ≤ rk(x) + rk(y)− rk(x ∧ y) = rk(x) + 1,

Note that x ∨ y 6= x.
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7.12. Weisner Theorem For a bounded geometric lattice L, and any nonzero
a ≤ x 6= 0, we have ∑

y∨a=x

µ(y) = 0.

Proof This follows from direct computation∑
y∨a=x

µ(0, y) =
∑
y

µ(0, y) · δy∨a=x

=
∑
y

µ(0, y)
∑

z:y∨a≤z≤x

µ(z, x)

=
∑

z:a≤z≤x

µ(z, x)
∑
y:y≤z

µ(0, y)

=
∑

z:a≤z≤x

µ(z, x) · δ0=z = 0.

7.13. Example For example,

{a, b, c}

{a} {b}

OO

{c}

__

0

2

−1 −1 −1

1

2 + (−1) + (−1) + (−1) + 1 = 0 Using Definition
2 + (−1) + (−1) = 0 Using Weisner Theorem

7.14. Proposition For any edge e ∈ E, the number µ(φ) is determined by the
following relations

(i) µ(0) = 1;

(ii)
∑
ψ∨{e}≤φ µ(ψ) = 0 for any edge e ∈ φ.
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7.15. Alternating properties In particular,

µ(φ) = −
∑

ψ∨{e}=φ

µ(ψ)

As a result, (−1)rkφµ(φ) ≥ 0.

7.16. Computation Let us linearly order E, and fix the choice of e by assum-
ing e = min(φ). We have

|µ(φ)| =
∑

ψ∨min(φ)=φ

|µ(ψ)| =
∑

ψ∨min(φ)=φ
π∨min(ψ)=π

|µ(π)| = · · · = #Sk(φ)

where k = rk(φ) = dim span(ve : e ∈ φ) and

Sk =

{
∅ $ φ1 $ · · · $ φk−1 $ φk $ E :

∀i = 1, . . . , k
φi−1 ∨ {min(φi)} = φi

}
with Sk(φ) = {φ ∈ Sk : φk = φ}. In particular,

µk =
∑

rkφ=k

|µ(φ)| = #Sk.

Equivalently, φ ∈ Sk if and only if

(o) φ is a flag of G length k;

(i) rk(φi) = dim span(ve : e ∈ φi) = i, which is called initial;

(ii) min(φk) < min(φk−1) < · · · < min(φ1), which is called descending.

As a result,

µk = #

{
initial, descending

flags of G of length k

}
If moreover

min(E) < min(φk) < min(φk−1) < · · · < min(φ1).

we say φ is strictly descending. Denote

µ̄k = #

{
initial, strictly descending

flags of G of length k

}
.
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Then we have
µ̄k + µ̄k−1 = µk.

Since when min(E) = min(φk) for φ ∈ Sk, then φk = φk−1 ∨ {min(E)}. The
details are left to readers. Actually, when E 6= ∅, we have

(1 + q)
∑
|µ̄k|qk =

∑
|µk|qk.

It is easy to see

{µ̄k} is unimodal =⇒ {µk} is unimodal.
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8 Proof of Read’s Conjecture (II)

Permutohedral variety

8.1. A reformulation We developed the theory over ZN . Actually, it would
be useful to us a coordinate-free notation, which is benefit to our application.
We prefer a geometric notation, so we start from a torus T . We have two
lattices

ch(T ) = HomAlgGrp(T,Gm), 1PS(T ) = HomAlgGro(Gm, T ).

They are dual under the natural pairing

1PS(T )× ch(T ) −→ HomAlgGrp(Gm,Gm) ∼= Z · id .

We can recover T by
T = Spec(k[ch(T )]).

We denote
t := R⊗ 1PS(T ).

In this case, we should take the following convention of coordinate-free de-
scription of toric variety

a cone σ ∈ ∆ lies in t,
a monoid Qσ lies in Ch(T ).

8.2. Projective torus We will mainly use the maximal torus of projective
lineear group. To be exact,

T = Gnm/∆Gm =
{(z1, . . . , zn) : zi ∈ Gm}
{(z, . . . , z) : z ∈ Gm}

.

Then

1PS(T ) = Ze1 ⊕ · · · ⊕ Zen
/
Z(e1 + · · ·+ en)

ch(T ) =
{
λ1x1 + · · ·+ λnxn : λ1 + · · ·+ λn = 0

}
= Z(x1 − x2)⊕ Z(x2 − x3)⊕ · · ·Z(xn−1 − xn).

As a result,
K (T ) = k( z1z2 , . . .

zn−1

zn
) ⊆ k(z1, . . . , zn).
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8.3. Projective Space We define a complete fan ∆◦ over t with rays

R≥0e1, . . . ,R≥0en.

We know X(∆◦) = Pn−1.

8.4. Example When n = 3, we see

8.5. Permutahedron Varieties Let us simply denote [n] = {1, . . . , n}. For
any S ⊆ [n], we denote

eS =
∑
i∈S

ei.

Note that
e[n] = 0, eS = −e[n]\S .

We define a complete fan ∆ of t with rays spanned by eS for all ∅ $ S $ [n].
For a flag of subset

φ : ∅ $ φ1 $ · · · $ φk $ [n]

if we denote
σφ = span≥0(eφ1 , . . . , eφk),

then
∆ = {σφ}φ is a flag of subset.

We define permutahedron variety to be toric variety X(∆).

8.6. Remark Note that we have a bijection

Sn
∼−→ ∆(N − 1)

by sending w to the flag with φi = {w(1), . . . , w(i)}. That’s the reason it is
called permutahedron variety.
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8.7. Example Here are two examples

123132

e1

e2e3

e2 + e3

e1 + e3 e1 + e2

213

231321

312

e1

e2

e3

e1 + e2

e1 + e2 + e3

8.8. Cohomology We can compute the cohomology of permutahedron easily

H•(X(∆),Q) =
Q[xS ]∅$S$[n]〈

xS1
xS2

= 0 if S1 * S2 and S2 * S1,∑
S3i xS =

∑
S3j xS ∀i, j ∈ [n].

〉
Actually, the first condition is enough to generate I∆, since

a family of subsets does not forming a flag if and only
if there are two of them not comparable (or incident)

and the second condition generates J∆, since∑
S3i

xS −
∑
S3j

xS = div
zi
zj

and ch(T ) = spanZ(xi − xj)ni,j=1.

8.9. Two nef classes Define

α =
∑
S3i

xS ∈ H2(X(∆)) β =
∑
S3/ i

xS ∈ H2(X(∆))

for any i ∈ [n]. They are not dependent on the choice of i. One can check
they are both nef.

8.10. Remark Actually, α is the pullback of hyperplane section under the
following induced morphism

π◦ : X(∆) −→ X(∆◦) = Pn−1.
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To be exact, the inclusion gives a morphism induces ∆→ ∆◦. Similarly, β is
the pullback of hyperplane section under the following induced morphism

π◦ : X(∆) −→ X(∆•) = Pn−1,

where ∆• = −∆◦. These can be seen from the fact that H is the zero of
xi ∈ Γ(O(H)) whose pull back on X(∆) has zero

∑
S3i xS .

8.11. Chevalley formula Note that

∆(k) =

{
φ : ∅ $ φ1 $ · · · $ φk $ [n]

}
.

In particular, ∆(n− 1) is the set of full flags. Let us denote

Dφ = Dσφ = xφ1
· · ·xφk ∈ CHk(X(∆)).

We will study the Chevalley formula for α and β respectively. To be exact,
we will expand cap/cup products

α _(homology classes), β ^(cohomology classes).

Due to its analogue in Schubuert calculus, we call such rules Chevalley for-
mulas. The following cohomology Chevalley formula is obvious.

8.12. Chevalley formula in cohomology For any i ∈ ψ1, we have

β ^ Dψ =
∑
φ

Dφ

with the sum over

φ : ∅ $ S $ ψ1 $ · · · $ ψk−1 $ [n] and i /∈ S.

8.13. Generating flags We apply Chevallay formula by choosing i to be
minimal at each step, we obtain

βk = βk−1
∑
φk3/ 1

Dφk = βk−2
∑

1/∈φk$[n]

min(φk)/∈φk−1$φk

DφkDφk−1
= · · · =

∑
φ

Dφ
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where the sum over all flag of subsets φ

∅ $ φ1 $ · · · $ φk−1 $ φk $ [n]

with
1 < min(φk) < min(φk−1) < · · · < min(φ1).

That is, it is a flag by a strictly descending flag of subsets of length k.

8.14. Homology The homology

H•(X(∆),Q) = H•(X(∆),Q)∗.

Since
H2k(X(∆),Q) =

∑
σ∈∆(k)

Q · [Dσ],

We can think

Hk(X(∆),Q) =

{
∆(k)

f→ Q :
some

conditions

}
The conditions can be explicitly described, and the functions satisfying the
condition is called a Minkowski weight.

8.15. Chevalley formula in homology Let

ψ : ∅ $ ψ1 $ · · · $ ψk−1 $ [n]

be an element in ∆(k − 1). For any i /∈ ψk−1, we have

(α _ f)(ψ) =
∑
φ f(φ)

with
φ : ∅ $ ψ1 $ · · · $ ψk−1 $ S $ [n], and i ∈ S.

Say,

α _ − =
by extending the flag by a bigger subset
containing a fixed element out of the flat.

Proof By direct computation

(α _ f)(ψ) = (α _ f)(Dψ) = f(Dψα) =
∑
S3i

f(DψxS)
(∗)
=
∑
φ

f(φ)

where (∗) is true since S 6= φi for all i, and when {S}∪ψ forms a flag, S must
be the biggest one. Q.E.D.
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8.16. Truncation Denote δk : ∆(k)→ Q by

δk(φ) =

{
1, φ is an initial flag,

0, otherwise.

Here φ is an initial flag means |φi| = i for 1 ≤ i ≤ k.

For example,

• when k = n − 1, we have δn−1(φ) = 1 for any full flags φ ∈ ∆(n − 1).
So it is the fundamental class

δn−1 = [X(∆)] ∈ H2(n−1)(X(∆),Q).

• When k = 1, we have δ(S) = 1 for any 1-subset S ∈ ∆(1).

We have
α _ δk = δk−1.

Actually, the only S allowed in the Chevalley formula is ψk−1 ∪ {i}. In par-
ticular,

αn−1−k _ [X(∆)] = δk.

So

deg(αn−1−k · βk) = #

{
initial, strictly descending

flags of G of length k

}
By Khovanskii–Teissier, this sequence is logarithm concave. We will generalize
this to any graph.

8.17. Bergman Fans Now let us work with grpah G = (V,E). We assume
E = [n]. Denote δkG : ∆(k)→ Q by

δkG(φ) =

{
1, φ is an initial flag of G,

0, otherwise.

Recall φ is an initial flag of G means rk(φi) = i for 1 ≤ i ≤ k. Assume we
know

δtopG = δrG ∈ H2r(X(∆),Q), r = rk(G).

Then we can easily check that

α _ δk = δk−1.

Actually, the only S allowed in the Chevalley formula is ψk−1 ∨ {i}.
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8.18. Conclusion Now, we can conclude

(βk ^ αr−k) _ δtopG = δkG(βk) = |µ̄k|.

Recall that

|µ̄k| = #

{
initial, strictly descending

flags of G of length k

}
.

By Khovanskii–Teissier, this sequence is logarithm concave, once we show

δtopG ∈ H2r(X(∆);Q)

is represented by some irreducible subvariety,

Blow-up

8.19. Blow-up Let X be a variety, and Y a subvariety. We have blowup

π : BlY X −→ X.

We can understand π by understanding its fibre when X and Y are both
non-singular,

fibre at x ∈ X =

{
a singular point, x /∈ Y,
PNY/X(x), x ∈ Y.

For any closed Z ⊆ X, we call the monoidal transformation

Z̃ = π−1(Z \ Y )
when Z ∩ Y

is non-singular
=================== BlY ∩Z Y.

We remark that at the cohomology level,

CH(X) 3 [Z]
π∗

7−→// [Z̃] ∈ CH(BlY X).

8.20. Example Here is an example to analyse
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8.21. Blowups for Toric Varieties Blowup of toric varieties X(∆) along any
Oσ for σ ∈ ∆ is also a toric variety X(∆′). To be exact, ∆′ is obtained by
refining σ by the ray

R≥0(u`1 + · · ·+ u`k),

if σ = span≥0(`1, . . . , `k) ∈ ∆(k). This can be checked locally, we refer Ful-
ton’s book for the proof.

8.22. Permutahedron variety as an Iterative Blow-up We have

X(∆) = Xn−2 → · · · → X1 → X0 = Pn−1,

where Xi = X(∆i) with ∆i the fan obtained by adding rays

R≥0eS , #S = n− i

to ∆i−1. More exactly, Xi → Xi−1 is the blowup along the proper transforms
of

P(C[n]\S) = {xi = 0}i∈S , #S = n− i,

i.e. the space defined by coordinate of S. So

X1 = blowup of X0 along n points

X2 = blowup of X1 along

(
n

2

)
lines

· · · = · · ·

8.23. Example Here we illustrate the permutahedron variety of dimension 2.

1

2 3

1

2 3

12 13

23

Note that each line is a divisor.
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8.24. Example Here we illustrate the permutahedron variety of dimension 3.

2

3

2
212 23

31

13

1 3 1
123 123

Note that each face is a divisor.

8.25. Representability Let G = (V,E) with E = [n]. Recall that we define
for each e ∈ E, a vector ve ∈ R#V such that for any φ ⊆ E,

rk(φ) = dim span(ve : e ∈ E).

It can be formally written as

π : Cn −→ C#V , ee 7−→ ve.

Let K = kerπ⊥ = {(xe)e∈E : xe = 0}. Then

rk(φ) = dimCφ/(Cφ ∩ kerπ), Cφ = coordinate plane of φ

= dim(Cφ + kerπ)/ kerπ

= dimK − dim(K ∩ CE\φ).

We will focus on P(K) ⊆ Pn−1. We will call

P(K) ∩ P(CE\φ) = P(K ∩ CE\φ) ⊆ P(K)

the flat over K. It is clear that they are in bijection to flats of G.

8.26. Realization If we restrict to P(K), we have

P̃(K) = Pn−2

��

// Pn−1

��

// · · · // P1

��

// P0 = P(K)

��
X(∆) = Xn−2

// Xn−1
// · · · // X1

// X0 = Pn−1.
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More exactly, Pi → Pi−1 is the blowup along the proper transforms of

P(K ∩ CE\φ), #φ = n− i.

The typical picture looks like

1

2
3

4

14

24
34

123
1 2

3

4
14

24 34

123
1 2

3

123

4

14
24

34

For example, we do not need to blow up the flat for {1, 2} after blowing up
the flag for {1, 2, 3}.

By construction,

H2(X(∆);Q) 3 Dφ
res7−→

{
DK
φ , φ is a flat of G

0, otherwise
∈ H2(P̃(K);Q).

We see, flags of K is just (reversed) flags of G, and

〈
P̃(K), Dφ

〉
=

∫
P̃(K)

Dφ =

{
1, φ is a (complete) flag of G

0, otherwise.

In other words,

[P̃(K)] = δtopG .

This finishes the proof of Read’s conjecture.

8.27. Huh Read’s conjecture is true.

8.28. Remark Our proof is mainly modified from due to Huh and Katz. Ac-
tually, our proof works for representable matroids.
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