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0 Introduction

0.1. Quotation Spectral sequence is the thing which really controls
when we guess something should be controlled by one.

0.2. Introduction Spectral sequence is a powerful tool widely used in
different branches of modern mathematics. It proves its power especially in
homological algebra, algebraic topology, algebraic geometry, etc. It
is gradually supposed to be mastered by any master students in the relative
areas. This lecture note is devoted to present its foundation and applications.

Of course, the choice of topics are highly effected by the author’s per-
sonal favor. To achieve the best balance, the author tries to achieve as much
breadth as he can. In fact, the readers (especially undergraduate students)
are recommended to regard this note as an advertisement of different topics
rather than just spectral sequences. For example, for a reading seminar tak-
ing over a semeter, roughly half of time should be utilized to introduce the
background. I believe students of different background would find their own
interests.

Generally speaking, only basic homological algebra is assumed. Though
we would not give a full proof to some of theorems which is too deep not to
figure out a sketch.

Before introducing the four parts individually, the author would like to
explain the title — spectral sequences left the author an impression that it
chops cohomology groups up as a saw so that it is my homological saw.

0.3. Construction In this part, the construction of spectral sequences will be
discussed, including filtered complexes 1.8, double complexes 2.2, and
exact couples 3.5. Correct and self-contained proofs will be presented.

First examples are given after the construction, including simplicial co-
homology of a CW complex 1.12; the Mayer–Vietoris spectral sequence
of topological spaces 2.11; how spectral sequences imply diagram chasing
propositions 2.7.

0.4. Topology In this part, the Leray–Serre spectral sequences 4.6 are
discussed in detail, with classic applications Gysin sequences 4.10, Thom
isomorphisms 4.16.

Next, more contruction of spectral sequences are reviewed, Eilenberg–
Moore spectral sequences 5.3, Cartan–Leray spectral sequences 5.6,
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Atiyah–Hirzebruch spectral sequences 5.8, and Adams spectral se-
quences 5.17.

0.5. Algebra In this part, we will discuss the Künneth spectral sequences
6.9 which is a corollary of its generalization 6.6. The tool is the hyper-
resolution 6.2. We can get Auslander–Reiten theory in transpose 6.12
and stable hom 6.14 using spectral sequence. We also establish the Bernner–
Butler theorem 6.21 in theory of tilting modules as an application of spectral
sequences.

Next, we will discuss the Grothendieck spectral sequences 7.2 which
are very important. we will discuss group (co)homology, and the Hochschild
spectral sequence 7.16. We will also define Hochschild (co)homology
7.23.

0.6. Geometry In this part, we will compute the cohomology of projective
spaces 8.7, Grassmannians and flag varieties 8.8. Taking advantage of
the computation, we will give an introduction to Chern classes 8.15.

Lastly, we will review more geometry, including sheaf cohomology, and
Hodge theory. We will meet Leray spectral sequence 9.6 again, Čech
cohomology 9.9, spectral sequences for staratification 9.20, and see
Frölicher spectral sequence 9.25 and Deligne degeneration theorem
9.27.

Xiong Rui
Email: XiongRui_Math@126.com

Blog: www.cnblogs.com/XiongRuiMath
Comments and criticisms are welcome!

XiongRui_Math@126.com
www.cnblogs.com/XiongRuiMath
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1 Construction (I)

Quick Definition
1.1. Given a complex (C, d), we define its cohomology H(C) = ker d/ im d.
It looks like

· · ·
d //

i−1

C
d

im d //// //

cok d
��?

??
? ??�����

??���
ker d

??������?
??

??

��?
??55

i

C
d

im d //// //

cok d
��?

??
? ??�����

??���
ker d

??������?
??

??

��?
??55

i+1

C
d// · · ·

H(C) H(C) H(C)

where the notation takes the usual cochain complex convention.

We have C = (Ci)i∈Z, with di : Ci → Ci+1, and Hi(C) is a
subquotient of Ci, i.e. ker di/ im di+1.

Note that there is no natural map between H(C) and C or among H(C).

1.2. A spectral sequence is a series of complexes E = (Er)
∞
r=r0 withH(E∗) =

E∗+1. Note that the differential of Er is “given”, rather than induced. Usu-
ally, a spectral sequence is double graded in the following convention.

We have Er = (
⊕

n=p+q E
pq
r )n∈Z with d : Er → Er of double

degree (r,−r + 1).

E03
1

//E13
1

//E23
1

//E33
1

E02
1

//E12
1

//E22
1

//E32
1

E01
1

//E11
1

//E21
1

//E31
1

E00
1

//E10
1

//E20
1

//E30
1

E03
2

''OO
OOO

OOO
E13

2

''OO
OOO

OOO
E23

2 E33
2

E02
2

''OO
OOO

OOO
E12

2

''OO
OOO

OOO
E22

2 E32
2

E01
2

''OO
OOO

OOO
E11

2

''OO
OOO

OOO
E21

2 E31
2

E00
2 E10

2 E20
2 E30

2

E03
3

$$J
JJ

JJ
JJ

JJ
JJ

JJ
J E

13
3 E23

3 E33
3

E02
3

$$J
JJ

JJ
JJ

JJ
JJ

JJ
J E

12
3 E22

3 E32
3

E01
3 E11

3 E21
3 E31

3

E00
3 E10

3 E20
3 E30

3

1.3. For a spectral sequence E = (Er)
∞
r=r0 , we say Er has an algebraic limit,

if for r � 0, the differential of Er is zero. In this case, we write its limit by
E∞. Note that Er is a subquotient of Er0 so

E∞ =

⋂
Zr⋃
Br

, with 0 ⊆ Br ⊆ Zr ⊆ Er0

Er+1 = Zr/Br.



1 Construction (I) 6

if the limit exists.
For a spectral sequence (Er), and an object H, if there is a bounded

filtration over H such that the associated graded object grH = E∞. Then we
say Er converges to H. It is usually denoted by Er ⇒ H.

Usually the filtration is decreasing if our convention is cohomological.

The H = (Hn) is filtered by F pHn which is smaller when p is
bigger. The grpHn = F pHn/F p+1Hn. If Er ⇒ H, it means
Epq

∞ = grpHp+q. As a result, the leftmost is a quotient, the right-
most is a subobject. We write

Epq
r =⇒ Hp+q.

1.4. In practice, there would be more different sense of limit and convergence,
see 1.20.

Filtered Complex
1.5. Modular property For three sub-objects A,B,C of some big object in an
abelian category. If B ⊆ A, then B + (C ∩A) = (B + C) ∩A. Thus it makes
sense to write B + C ∩A.

1.6. For two bounded filtrations F1 and F2 on C, we can refine F1 by F2 by
adding {F p+1

1 + F •
2 ∩ F

p
1 } between F p+1

1 ⊆ F p
1 . We can also refine F2 by F1

by adding {F q+1
2 + F •

1 ∩ F
q
2 } between F q+1

2 ⊆ F q
2 . They have the isomorphic

associated graded objects by the following Zassenhaus’ lemma.

1.7. Zassenhaus’ lemma If B ⊆ A and D ⊆ C of some big object in an
abelian category, then the following maps are all isomorphisms,

A ∩ C
(A ∩D) + (B ∩ C)
wwoooo ''OO

OO

B + C ∩A
B +D ∩A

''OO
OO

D +A ∩ C
D +B ∩ C

wwooo
o

(A+D) ∩ (B + C)

B +D
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1.8. Spectral Sequences for Filtered Complexes Assume we have a bounded
filtration F of complex on a complex (C, d), namely each F ∗ = F ∗C is a
complex. Then there is a spectral sequence E with E0 = grC with induced
differential,

E1 = H(grC) =⇒ H(C),

with the filtration on H(C) given by the image of {im d+F ∗∩ker d} in H(C).

If C = (Ci, d), with filtration F pCi. Then Epq
1 = Hp+q(F pC•/F p+1C•).

Proof Note that what we really want is the middle suquotient of

0 ⊆ im d ⊆ ker d ⊆ C.

The first step 0 ⊆ im d can be refined by {d(F ∗)}, and it is clear that
{d−1(F ∗)} sits between ker d ⊆ C. The techenique is to refine F with the
{d(F ∗)} ∪ {d−1(F ∗)}. Define{

Zp
r−1 = F p+1 + d−1(F p+r) ∩ F p ⊇ F p+1 + ker d ∩ F p

Bp
r−1 = F p+1 + d(F p+1−r) ∩ F p ⊆ F p+1 + im d ∩ F p

Then we have

Zp
r−1

Zp
r

=
F p+1 + d−1(F p+r) ∩ F p

F p+1 + d−1(F p+r+1) ∩ F p

(∗)
=

d(F p+1) + F p+r ∩ d(F p)

d(F p+1) + F p+r+1 ∩ d(F p)
=

F p+r + d(F p) ∩ F p+r+1

F p+r + d(F p+1) ∩ F p+r+1
=
Bp+r

r

Bp+r
r−1

The (∗)
= follows from the lemma 1.9 below. Define

Ep
r =

Zp
r−1

Bp
r−1

=
F p+1 + d−1(F p+r) ∩ F p

F p+1 + d(F p+1−r) ∩ F p

with differential

d =

[
Ep

r =
Zp
r−1

Bp
r−1

↠
Zp
r−1

Zp
r

∼=
Bp+r

r

Bp+r
r−1

↪→
Zp+r
r−1

Bp+r
r−1

= Ep+r
r

]
.

Then it is clear that ker
[
Ep

r
d→ · · ·

]
=

Zp
r

Bp
r−1

, and im
[
· · · d→ Ep

r

]
=

Bp
r

Bp
r−1

. So

the cohomology is Zp
r

Bp
r
= Ep

r+1. Thus the above construction gives a spectral
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sequence. Now

Ep
∞ =

⋂
Zp
r⋃

Bp
r
=

⋂
F p+1 + d−1(F p+r) ∩ F p⋃
F p+1 + d(F p−r−1) ∩ F p

(∗)
=

F p+1 +
⋂
d−1(F p+r) ∩ F p

F p+1 +
⋃
d(F p−r−1) ∩ F p

=
F p+1 + ker d ∩ F p

F p+1 + im d ∩ F p

=
im d+ F p ∩ ker d

im d+ F p+1 ∩ ker d
.

The equality (∗)
= uses the assumption of being a bounded filtration. To com-

plete the proof, we need to compute the case r = 1,

Ep
1 =

Zp
0

Bp
0

=
F p+1 + d−1(F p+1) ∩ F p

F p+1 + d(F p) ∩ F p
= H(F p/F p+1).

This is what asserted in the theorem. Q.E.D.

1.9. Lemma Let B ⊆ A ⊆ X, and D ⊆ C ⊆ Y with a morphism X → Y ,
then the natural map

B + f−1(C) ∩A
B + f−1(D) ∩A

−→ f(B) + C ∩ f(A)
f(B) +D ∩ f(A)

is an isomorphism. See also 1.16.

1.10. Actually, the differential on E1 is given by

Hp+q(F pC•/F p+1C•)
δ−→ Hp+q+1(F p+1C•) −→ Hp+q+1(F p+1C•/F p+2C•).

This follows from the diagram chasing — the map is induced by d.

Examples
1.11. Long exact sequence Consider a short exact sequence of complex

0 −→ D −→ C −→ Q −→ 0.
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Consider the filtration on C by C ⊇ D ⊇ 0. Then the spectral sequence looks
like

Qi+1 Di+2

Qi

OO

Di+1

OO

Qi−1

OO

Di

OO

H
i+

1 (Q
) //

H
i+

2 (D
)

H
i (Q

) //
H
i+

1 (D
)

H
i−

1 (Q
) //

H
i (D

)

keri+1 coki+2

keri

''OO
OOO

OOO
OOO

OOO
OO

coki+1

keri−1 coki

Thus E2 = E∞. We have an exact sequence

0 −→ keri −→ Hi(Q) −→ Hi+1(D) −→ coki+1 −→ 0

The convergence gives a short exact sequence

0 −→ coki −→ Hi(C) −→ keri −→ 0.

Thus we can connect them to get the classic long exact sequence

· · · −→ Hi(D) −→ Hi(C) −→ Hi(Q) −→ Hi+1(D) −→ · · · .

Actually, the differential of E1 coincides with the connecting morphism δ in
the long exact sequence. This can be remembered by the following diagram

H
i+

1 (Q
) //

H
i+

2 (D
)

H
i (Q

) //
H
i+

1 (D
)

Hi+1(C)??

__??

H
i−

1 (Q
) //

H
i (D

)

Hi(C)??

__??
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1.12. Simplicial Cohomology Denote Sing•(−) the complex computing singu-
lar cohomology. We have a surjective map Sing(X)→ Sing(U) for any U ⊆ X
by restriction. Denote the kernel to be Sing(X,U). Note that it computes
relative cohomology H(X,U).

Let X be a CW complex. We firstly assume X of finite dimension. Denote
Xk the union of cells of dimension ≤ k and X−1 = ∅. Then Sing(X,X∗)
forms a filtration on Sing(X), with the associated graded complex to be
Sing(X∗, X∗+1). It is known that

Hp+q(Xp, Xp−1) =

{
Zfp , q = 0,

0, otherwise,
fp = #{p-cells}.

So the spectral sequences looks like

0 0 0 0

Zf0 //Zf1 //Zf2 //Zf3

It turns out, it coincides with the simplicial complex. This inspires the Leray–
Serre spectral sequence 4.6.

1.13. Remark Remind the following piece of homological algebra,

For any complex morphism B → C, we
can factor through C ′, with C ′ → C a
homotopy-equivalence, and B → C ′ is
injective.

C ′

o
��

B
f

//
. �

>>}}}}}}}}
C

Actually, C ′ is the mapping cylinder, and the resulting quotient is the mapping
cone, see 1.21.

For any complex morphism B
f→ C, we

can find a complex D, with morphism
C

g→ D and D
h→ B[1], such that the

induced map in cohomology is a long
exact sequence

H(B)
f // H(C)

H(D)

h

\\888888 g����
��
��

Actually, D is exactly the mapping cone, see 1.22. Actually, such H(D) is
uniquely determined by 5-lemma.
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From this point of view, the assumption to be filtered complex is techenique,
we can even deal with a series of morphisms of complexes · · · → F 2 → F 1 →
C. Or, a series of triangles (triple of morphisms inducing long exact sequence
as above). This can be generalized to exact couples 3.5.

Exercises
1.14. Prove 1.5, 1.7, 1.9.

1.15. Generalized Modular Property Show the projective formula for abelian
sub-objects

f(f−1(A′) ∩ C) = A′ ∩ f(C) f−1(B′ + f(D)) = f−1(B′) +D.

1.16. Functorial Zassenhaus’ Lemma Assume we have two sets (A,B,C,D)
and (A′, B′, C ′, D′) in Zassenhaus’ Lemma 1.7. If there is a morphism f
between the big objects with f(A) ⊆ A′, etc. Then we have

B + C ∩A
B + C ∩A

−→ B′ + C ′ ∩A′

B′ +D′ ∩A′

Show that when f(A ∩ C) = A′ ∩ C ′, then this map is surjective; when
B +D = f−1(B′ +D′), this map is injective.

1.17. Boundedness We say a filtraion F of a module C is exhaustive if⋃
F = C; is bounded below if Ci = 0 for some i. Note that this does NOT

make sense in arbitrary abstract abelian category.

1.18. Exchange of Limit For two submodules B ⊆ A of some big object, and
a filtraion C•, prove that⋃

(B + C• ∩A) = B +
⋃
C• ∩A.

If C• is bounded below, show that⋂
(B + C• ∩A) = B +

⋂
C• ∩A.
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1.19. Classic Limit For a spectral sequence (Er)
∞
r=r0 of modules, Er is a

subquotient of Er0 , writing Er = Zr−1/Br−1, we define the classic limit
E∞ =

⋂
Zr/

⋃
Br.

For a spectral sequence (Er), and an object H. If there is an exhaustive
and bounded below filtration over H such that the associated graded object
grH = E∞. Then we say Er converges to H (in the classic sense).

Note that these do NOT make sense in arbitrary abstract abelian category.

1.20. Classic Convergence Check that 1.8 still holds in the classic sense for
modules for exhaustive and bounded below filtered complex.

1.21. Mapping Cylinder Let f : B → C be a morphism of complexes. Define
the mapping cylinder

cyl(f) :

· · · //

i−1

Bi−1

⊕

d //

i

Bi

⊕

d //

i+1

Bi+1

⊕

// · · ·

· · · //

;;xxxxxxxxx

##F
FF

FF
FF

F Bi

⊕

−d //

id

::uuuuuuuuu

−f $$I
II

II
II

II
Bi+1

⊕

−d //

id

::uuuuuuuu

−f $$I
II

II
II

I Bi+2

⊕

//

;;xxxxxxxx

##F
FF

FF
FF

FF
· · ·

· · · // Ci−1

d
// Ci

d
// Ci+1 // · · ·

Show that the map

C
x 7→(0,0,x) // cyl(f)

(b,∗,x) 7→f(b)+x
oo

gives the homotopoy equivalence. Actually, (b, b′, x) 7→ (0, b, 0) gives the ho-
motopy for cyl(f)→ cyl(f).

Now B → C factors through cyl(f) by b 7→ (b, 0, 0), and it is obviously an
injective.

1.22. Mapping Cone The resulting quotient is the mapping cone

cone(f) :
· · · //

##F
FF

FF
FF

F

i−1

Bi

⊕

−d //

−f $$I
II

II
II

II

i

Bi+1

⊕

−d //

−f $$I
II

II
II

I

i+1

Bi+2

⊕

//

##F
FF

FF
FF

FF
· · ·

· · · // Ci−1

d
// Ci

d
// Ci+1 // · · ·



1 Construction (I) 13

Then, we have
B

f−→ C
x 7→(0,x)−→ cone(f)

(b,x) 7→−b−→ B[1].

Show that it induces a long exact sequence

· · · // H(B)
f //

o
��

H(cyl f)

o
��

// H(cone f)

o
��

δ // H(B)

o
��

// · · ·

· · · // H(B)
f

// H(C) // H(cone f) // H(B) // · · ·

To do this, we need to remind how δ is given in long exact sequence.
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2 Construction (II)

Double Complexes
2.1. Consider a double complex C = (Cpq)pq. We define its total (under the
Koszul convention, see 2.12)

TotC :

p+q−1

Cp−1,q

⊕

p+q

⊕

Cpq

(−1)pdffffff

33fffff

d
XXXXX

XXX

++XXXX
XXX

d
XXXXX

XX

++XXXX
XXXX

(−1)pdfffff

33ffffff

p+q+1

Cp,q+1

⊕

Cp,q−1

⊕

⊕

Cp+1,q−1
(−1)p+1deee

22eeee

d
YYYYYY

,,YYYYYY

d
YYYYYY

Y
,,YYYYYY

(−1)p+1deee
22eee

Cp+1,q

⊕

Cp+1,q−2 ⊕ Cp+2,q−1

Formally, the differential restricted on the Cpq summand is

d = d(1,0) + (−1)pd(0,1).

The purpose of next theorem is to analyse the cohomology of TotC using
spectral sequences.

2.2. Spectral Sequences for Double Complexes For a double complex C, if
Cpq = 0 for |p| � 0, then there is a spectral sequence E with E0 = (C, d(0,1)),
and the differential of E1 induced by ±d(1,0) (under the Koszul convention),

E2 = H(H(C, d(0,1)), d(1,0)) =⇒ H(TotC).

Note that we do not assert any information about the differential of E2.

Under the cohomological convention, Epq
2 = Hp(Hq(C, d(0,1)), d(1,0))⇒

Hp+q(TotC).

Proof We have the “column filtration” Tot(Cpq)p≥∗ for TotC. The associated
graded complex (for each ∗) is exactly (Cpq, d(0,1))p=∗. This is E0. By the
proof of 1.8, a little diagram chasing, the map of E1 is given by ±d(1,0). We
see that any sign exchanging is harmless. This is the proof. Q.E.D.
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2.3. For a double complex, E2 is obtained by computing the cohomology of
d(0,1), and then computing the cohomology of d(1,0)

C // C // C

C

OO

// C

OO

// C

OO

C

OO

// C

OO

// C

OO

C C C

C

OO

C

OO

C

OO

C

OO

C

OO

C

OO

H // H // H

H // H // H

H // H // H

E

''OO
OOO

OOO
E E

E

''OO
OOO

OOO
E E

E E E

2.4. For a double complex C, if Cpq = 0 for |q| � 0, then there is another
spectral sequence E′ with E0 = (C, d(1,0)), and the differential of E1 induced
by d(0,1),

E′
2 = H(H(C, d(1,0)), d(0,1)) =⇒ H(TotC).

But in this case, the convention will be modified

C // C // C

C

OO

// C

OO

// C

OO

C

OO

// C

OO

// C

OO

C // C // C

C // C // C

C // C // C

H H H

H

OO

H

OO

H

OO

H

OO

H

OO

H

OO

E E E

E E E

E E

WW////////

E

WW////////

To avoid this, formally we take the transposition firstly.

Under the cohomological convention, Eqp
2 = Hq(Hp(C, d(1,0)), d(0,1))⇒

Hp+q(C). Note that q is the first entry.

But in practice, we will not restrict ourselves to this convention.

Examples
2.5. Snake Lemma Assume we have a commutative diagram

A
f //

s

��

B
g //

t

��

C //

r

��

0

0 // X
k // Y

h // Z
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with each row exact. We can think it as a double complex. Then the spectral
sequence of it gives

A // B // C

X // Y // Z

ker
f

��

0

��

0

��
0 0

cok
h

from which we know the cohomlogy of total is

ker f, 0, 0, cokh.

On the other hand, the spectral sequence for the other direction gives

A

��

B

��

C

��
X Y Z

ker
s //

ker
t //

ker
r

cok
s //

cok
t //

cok
r

K1 M L1

K2

77oooooooo
N L2

Since we have computed the total, we know K1 = ker f , L2 = cokh, M = 0,
N = 0, and K2 → L1 is an isomorphism. This gives the long exact sequence

0 // ker f // ker s //

��

ker t //

��

ker r

��

ED
BCGF

@A
//

0 // ker f // A //

��

B //

��

C

��

// 0

0 // X

��

// Y

��

// Z

��

// cokh // 0

cok s // cok t // cok r // cokh // 0

2.6. We can view a commutative square as a double complex

A
f //

g

��

B

h
��

C
k

// D
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We denote the cohomology of its total by H−1, H0 and H1

0 −→
−1

A
f+g−→

0

B ⊕ C h−k−→
1

D−→ 0.

The spectral sequence looks like

A

��

B

��
C D

ker
g //

ker
h

cok
g //

cok
h

K M1

M2 C

So we obtain an exact sequence
0→ H−1 → ker g → kerh→ H0 → cok g → cokh→ H1 → 0.

Actually each braid of the following diagram is exact

0
,,

��?
??

??
ker f

++

��?
??

??
ker k

B ,,

��?
??

??
cok g

,,

��?
??

??
cokh **

��?
??

??
0

H−1

??����

��?
??

??
ker d

??�����

��?
??

??
H0

??����

��?
??

??
cok d

??�����

��?
??

??
H1

??�����

��?
??

??
?

0 33

??������
ker g 33

??�����
kerh

C
22

??�����
cok f 22

??�����
cok k 44

??�����
0

See 2.13 for the exactness of the rest two braids.

2.7. Transgression Let f : C → D be a morphism of two exact complexes.
Then ker f and cok f are both complexes. There is a natural isomorphism

Hi−1(cok f) −→ Hi+1(ker f).

On one hand,

· · · // C // C // C // · · ·

· · · // D // D // D // · · ·

· · · 0

��

0

��

0

��

· · ·

· · · 0 0 0 · · ·

So the total is zero. On the other hand,

· · · C

��

C

��

C

��

· · ·

· · · D D D · · ·

· · · //
ker

f //
ker

f //
ker

f // · · ·

· · · //
cok

f //
cok

f //
cok

f // · · ·

· · ·
H(ke

r f
)

H(ke
r f

)

H(ke
r f

) · · ·

· · ·

77oooooooo

H(co
k f

)

77oooooooo

H(co
k f

)

77oooooooo

H(co
k f

)
· · ·

By our computation of total, all maps H(cok f) → H(ker f) is an isomor-
phism. This recovers above two examples.
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2.8. Balanced Tor and Ext Let A,B be two (right and left) modules (for
simplicity). We can pick projective resolutions P → A and Q → B. Then
P ⊗Q is a double complex. Then

Hn(Tot(P ⊗Q)) = Torn(A,B).

Actually,

P0
⊗Q2

��
P1

⊗Q2

��
P2

⊗Q2

��

P0
⊗Q1

��
P1

⊗Q1

��
P2

⊗Q1

��

P0
⊗Q0

P1
⊗Q0

P2
⊗Q0

0 // 0 // 0

0 // 0 // 0

P0
⊗B //

P1
⊗B //

P2
⊗B

0 0 0

0 0 0

To
r0(

A,
B)

77oooooooooo

To
r1(

A,
B)

To
r2(

A,
B)

Similarly, we have the similar result for Ext. Pick an injective resolution
B → I. Then

Hn(Tot(Hom(P, I))) = Extn(A,B).

2.9. Derived Functor, Acyclic Object For a left exact functor F . Recall the
definition of the derived functor RiF .

For any object A, picking an injective resolution, A→ I, we define
the derived functor by setting RiF = Hi(F (I)). We say an
object A is F -acyclic if RiF (A) = 0 for i ≥ 1.

It is standard homological algebra to check it does not depend on the choice
of resolutions up to isomorphisms, and literally gives a functor.

Up to taking the opposite category, Ext, Tor are examples of it. Note that
for an injective object I, it is always F -acyclic by definition. In the case of
Tor, flat object is Tor-acyclic (in the opposite category).

2.10. Acyclicity Enough If A→ I is a resolution with each Ii being F -acyclic,
thenRiF (A) = Hi(F (I)). That is, to computeRiF , it suffices to use F -acyclic
resolution.

We can resolve each Ii by an injective resolution Ii → J i such that J forms
a bicomplex. Actually, to do this, we can resolve ker d and im d of I•, and
apply horseshoe lemma to produce a bicomplex J (see 6.2 for the general case
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with details). Note that TotJ is an injective resolution for A by the following
spectral sequence argument

J02 J12 J22

J01

OO

J11

OO

J21

OO

J00

OO

J10

OO

J20

OO

0 // 0 // 0

0 // 0 // 0

I0 // I1 // I2

0 0 0

0 0 0

A

77oooooooo
0 0

Then RiF (A) = Hi(TotF (J)) by definition. Now apply F , and use the
spectral sequence argument,

F (J02)F (J12)F (J22)

F (J01)

OO

F (J11)

OO

F (J21)

O O

F (J00)

OO

F (J10)

OO

F (J20)

O O

R
2 F (

I
0 ) //
R
2 F (

I
1 ) //
R
2 F (

I
2 )

R
1 F (

I
0 ) //
R
1 F (

I
1 ) //
R
1 F (

I
2 )

F (I0) //F (I1) //F (I2)

=

0 0 0

0 0 0

F (I0) //F (I1) //F (I2)

This inspires the Grothendieck spectral sequence 7.2.

2.11. Čech Cohomology Let X be a topological space with a finite open
covering U . We use Sing•(−) to stand the complex computing singular coho-
mology. Denote for p ≥ 0

Ui0,...,ip = Ui0 ∩ · · · ∩ Uip , Up =
⊔

i0<...<ip

Ui0,...,ip .

Here the disjoint union is formal. We denote the restriction

resiℓ : Sing(Ui0,...,îℓ,...,ip
) −→ Sing(Ui0,...,ip).

Consider the double complex Č with

Čpq = Singq(Up) =
∏

i0<...<ip

Singq(Ui0,...,ip), d(1,0) =
∏

i0<...<ip

p∑
ℓ=0

(−1)ℓ resiℓ .
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For example, for three open sets A,B,C

0 1 2

Sing(A) //

))

Sing(A ∩B)

**UUUU
UUUU

U

Sing(X)

66mmmmmmm

((QQQ
QQQQ

// Sing(B)

55kkkkkkk

))

Sing(A ∩ C) // Sing(A ∩B ∩ C)

Sing(C) //

55kkkkkkk
Sing(B ∩ C)

44iiiiiiiii

where // is positive, and // is negative.
On one hand, from algebraic topology, the p-th cohomology of (Č, d(1,0))

is homotopy (as a complex induced by d(0,1)) to zero for p > 0, and to Sing•

for p = 0. Thus the total complex computes singular cohomology H•(X).
On the other hand,

Č
p−

1,q
+1

Č
p,
q+

1

Č
p+

1,q
+1

Č
p−

1,q

OO

Č
pq

OO

Č
p+

1,q

OO

Č
p−

1,q
−1

OO

Č
p,
q−

1

OO

Č
p+

1,q
−1

OO

H
q+

1 (U
p−

1 )
//

H
q+

1 (U
p )

//

H
q+

1 (U
p+

1 )

H
q (U

p−
1 )

//
H
q (U

p ) //
H
q (U

p+
1 )

H
q−

1 (U
p−

1 )
//

H
q−

1 (U
p )

//
H
q−

1 (U
p )

We get a spectral sequence

Epq
1 = Hq(Up) =⇒ Hp+q(X).

For the case all Up are acyclic, E1 only rests H0(Up) = Zfp where fp is the
number of connected components of Up. This is known as Čech cohomology.
Actually, the sheaf version is more common to see. After more efforts, the
simplicial cohomology 1.12 can be included by this.

If there are only two open subsets A and B. Then

Hq(U0) = Hq(A)⊕Hq(B), Hq(U1) = Hq(A ∩B).
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This recovers the Mayer–Vietoris sequence.

H
q (A

)⊕
H
q (B

)

//

H
q (A

∩B)

H
q−

1 (A
)⊕

H
q−

1 (B
)

//

H
q−

1 (A
∩B)

Hq(X)??

__???

So this spectral sequence is also known as Mayer–Vietoris spectral se-
quence.

Exercises
2.12. The Koszul Convention Consider the transposition Ct of a double com-
plex C. Then there is an isomorphism of complex

TotC −→ TotCt

given by (−1)pq id over Cpq.

Cpq
(−1)p 11bbbbbbbbbbbbbb

--\\\\\\\\\\
\\\\

(−1)pq

��

Cp,q+1

⊕
Cp+1,q

(−1)p(q+1)

⊕
(−1)(p+1)q ��

Cpq
11bbbbbbbbbbbbbb

(−1)q
--\\\\\\\\\\

\\\\
Cp,q+1

⊕
Cp+1,q

The degree shifting is also important, we see

Tot(C[0, 1])
id−→ (TotC)[1] Tot(C[1, 0])

(−1)q id−→ (TotC)[1]

We can remember this convention by the following diagrams

p
>>

>

��>
>>

q

��
�

����
�
pq

q p

p

��

q

��

+1

����
��
��

p q + 1

p

��

q

��

+1

��
�

����
�
q

p+ 1 q
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No matter how our convention is taken, we always have the following diagram

Tot(C[1, 1]) //

��
anti

commutative

Tot(C[1, 0])[1]

��
Tot(C[0, 1])[1] // Tot(C[0, 0])[1]

2.13. For a morphism A
f−→ B

g−→ C, prove that there is a long exact
sequence

0→ ker f → ker gf → ker g
(∗)→ cok f → cok gf → cok g → 0.

The (∗)→ is the map through B.

B

ker f cok g0 0

ker g

��7
77

77
7

,,
cok f

��8
88

88
88

88
88

88
88

��6
66

66
6

CC������

ker gf //

CC��������������
A //

DD������
C //

��7
77

77
77

cok gf

{{

TT CC�������
oo oo

2.14. 5-Lemma Prove 5-lemma using spectral sequence. Assume we have the
following commutative diagram with each row exact

C

f

��

// C

g

��

// C

h
��

// C

k
��

// C

ℓ
��

D // D // D // D // D

Then when ` is mono, and g, k are epi, then h is epi; when f is epi, and g, k
are mono, then h is mono.

2.15. 4-lemma If we have the following diagram with rows exact
0 // A //

α

��

B //

β

��

C //

γ

��

D //

δ
��

0

0 // A′ // B′ // C ′ // D′ // 0
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Prove that
β is injective⇒ α is injective

β is surjective
γ is injective

}
⇒

{
α is surjective
δ is injective

γ is surjective⇒ δ is surjective

Remark This is used to prove Zeeman’s comparison theorem.
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3 Construction (III)

Exact Couples
3.1. Exact Couple An exact couple (D,E, i, j, k) is a long exact sequence

D
i // D

E

k

XX111111 j
��



We take the following degree convertion

We have D =
⊕
Dpq and E =

⊕
Epq with deg i = (−1, 1), deg j =

(0, 0), and deg k = (1, 0).

Another illustration is the following

...

��

...

��

...

��
· · · // D //

��

E / / D //

��

E // D //

��

· · ·

· · · // D //

��

E / / D //

��

E // D //

��

· · ·

· · · // D //

��

E / / D //

��

E // D //

��

· · ·

...
...

...

3.2. Derived Couple We define its derived couple to be

D′ = im i, E′ = H(E, j ◦ k),
and i′ induced by i, j′ induced
by j ◦ i−1, and k′ induced by k.

D′ i′ // D′

E′

k′

YY333333 j′����
��
��

One can check that (D′, E′, i′, j′, k′) is still an exact couple.
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3.3. We denote (D(n), E(n), i(n), j(n), k(n)) the n-th iterated derived couple.
One can check that D(n) = im in, and i(n) induced by i, j(n) induced by ji−n,
and k(n) induced by k.

Under the degree convention, deg i = (−1, 1), deg j = (n,−n),
deg k = (1, 0) for n-th iterated derived couple.

3.4. Cohomology Define the cohomology of an exact couple to be

H = lim−→

[
· · · → D

i→ D → · · ·
]
.

There is a filtration over H is given by the im
[
D −→ H

]
.

Under the degree convention, H = (Hn) is filtered by F pHn =
im

[
Dpq −→ Hp+q

]
. Moreover, we say an exact couple is bounded

below if for fixed n, Dp,n−p = 0 for p � 0. As a result, the
filtration is exhaustive and bounded below.

3.5. Spectral Sequences for Exact Couples For a bounded below exact couple
(D,E), there is a spectral sequence Er = E(r−1) with differential j(r−1) ◦
k(r−1), converges to H in the classic sense 1.20.

Remark In the proof, we use the explicit description of the limit, this does
not hold in general abstract abelian category.

3.6. Filtered Complex Let C be a filtered complex of modules. Consider the
short exact sequence

0 −→ F p+1C −→ F pC −→ F pC/F p+1C −→ 0

which gives rise to

· · · −→ Hn(F p+1C) −→ Hn(F pC) −→ Hn(F pC/F p+1C) −→ Hn+1(F p+1C) −→ · · ·

Denote {
D =

⊕
Dpq Dpq = Hp+q(F pC)

E =
⊕
Epq Epq = Hp+q(F pC/F p+1C)
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Hp+q(F p+1C)

···

Hp+q−1(F pC/F p+1C)

Hp+q(F pC/F p+1C)

// Hp+q(F pC)

����
��
��
��
��
��
��
��
��
��

Hp+q+1(F p+1C)

\\8888888888888

Hp+q+1(F pC/F p+1C)

// Hp+q+1(F pC)

����
��
��
��
��
��
��
��
��
�

Hp+q+2(F p+1C)

\\999999999999
// Hp+q+2(F pC)

· · ·

]];;;;;;;;;;;;
· · ·

· · · · · ·
It forms an exact couple. Actually, the spectral sequence coincides with what
we get in 1.8 for r ≥ 1 by tough diagram chasing. From the remarks below,
we see it also recovers the classic convergence 1.20.

3.7. In the case of modules, we may use the fact that

lim−→ : C{0→1→2→··· } −→ C
(
M0

ρ0→M1
ρ1→ · · ·

)
7−→ lim−→

i

Mi

is exact. But in the case of modules, its dual

lim←− : C{···→2→1→0} −→ C
(
· · · ρ2→M1

ρ1→M0

)
7−→ lim←−

i

Mi

is not exact (but left exact).
As a result, lim−→ commutes with homology groups of complex. In particular,

if C is some filtered complex,

lim−→
p

Hn(F pC) = Hn
( ⋃

F pC
)
.

3.8. Simplicial Cohomology Let X be a CW complex. Denote Xk the union
of cells of dimension ≤ k, and X−1 = ∅. We have an long exact sequence

· · · −→ Hn(X,Xp) −→ Hn(X,Xp−1) −→ Hn(Xp, Xp−1) −→ · · ·

Then {
D =

⊕
Dpq, Dpq = Hp+q(X,Xp),

E =
⊕
Epq, Epq = Hp+q(Xp, Xp−1).
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forms an exact couple. The cohomology

Hn = lim−→
p

Hn(X,Xp) = Hn(X).

This exact couple is bounded below since for p ≥ n, Hn(X,Xp) = 0. This
recovers 1.12.

3.9. K-theory Analogy The exact couple helps to understand “cohomology
theory” not computed by a complex, for example K-theory. The topological
K-theory has the same exact sequence for CW complex as above example,

· · · −→ Kn(X,Xp) −→ Kn(X,Xp−1) −→ Kn(Xp, Xp−1) −→ · · ·

When X is finite (i.e. built by finite cells),

Epq
1 = Kp+q(Xp, Xp−1) =⇒ Kp+q(X).

We can prove

Kp+q(Xp, Xp−1) = Kq(pt)⊕fp fp = #{k-cells}

As a result, Kp+•(Xp, Xp−1) = Hp+•(Xp, Xp−1)⊗K•(pt). By direct compu-
tation, it coincides with the simplicial cohomology, so

Epq
2 = Hp(X,Kq(pt)) =⇒ Kp+q(X).

This is a special case of Atiyah–Hirzebruch spectral sequences 5.8.

The proof
Proof of 3.5 We can compute (under the notation in 1.19)

Bpq
r = im d(r−1) = j(r−1)(im k(r−1)))

= j(i−(r−1)(ker i(r−1))) = j(i−r(0)),
Zpq
r = ker d(r−1) = (k(r−1))−1(ker j(r−1))

= (k(r−1))−1(im i(r−1)) = k−1(ir(D)) ∩ Zpq
r−1

= k−1(ir(D)) ∩ k−1(ir−1(D)) ∩ Zpq
r−2 = k−1(ir(D)) ∩ Zpq

r−2

= · · · = k−1(ir(D)).

Thus
Bpq

∞ =
⋃

r B
pq
r =

⋃
r j(i

−r(0)) = j
(⋃

r i
−r(0)

)
,

Zpq
∞ =

⋂
r Z

pq
r =

⋂
r k

−1(ir(D)) = k−1
(⋂

r i
r(D)

)
.
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Denote the image of Dpq in the Hp+q by D̃pq. Now we assume the exact
couple is bounded below, then⋂

r

ir(D) = 0,
⋃
r

i−r(0) = ker[D → D̃].

Thus Zpq
∞ = k−1(0) = ker k = im j. Now, consider the diagram

0

��

ED
BCGF

@A
//

0 // kerπp−1,q+1

��

// Dp−1,q+1 π //

��

D̃p−1,q+1 //

��

0

0 // kerπpq

j

��

// Dpq π //

j

��

D̃pq //

��

0

Bpq
∞

// Zpq
∞

// factors //// 0

The exactness of leftmost row. If x ∈ kerπpq, with j(x) = 0, then x = i(y)
for some y ∈ Dp−1,q+1. But x ∈ kerπpq =

⋃
r i

−r(0), so x ∈
⋃

r i
−r(0) =

kerπp−1,q+1. The rest exactness is clear. Q.E.D.

Proof of the claim in 3.6 Consider

Epq
r+1 =

Zpq
r

Bpq
r

=
k−1(ir(D))

j(i−r(0))

Pick x mod (· · · ) ∈ Epq
1 = Hp+q(F pC/F p+1C), where x ∈ F pC with dx ∈

F p+1C,

x mod (· · · ) ∈ k−1(ir(D))⇐⇒ dx ∈ im ir + im[F p+1C
d→ F p+1C] (∗)

⇐⇒ dx ∈ F p+r+1C + im[F p+1C
d→ F p+1C]

⇐⇒ x ∈ d−1(F p+r+1C) + F p+1C.
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where (∗) follows from the definition of connected morphism that k(x mod
(· · · )) = dx ∈ H(F p+1C).

x mod (· · · ) ∈ j(i−r(0))⇐⇒ ∃y


y ∈ ker[F pC

d→ F pC],

ir(y) ∈ im[F p−rC
d→ F p−rC],

x ≡ y mod F p+1C.

⇐⇒ ∃y

{
ir(y) ∈ im[F p−rC

d→ F p−rC],

x ≡ y mod F p+1C.

⇐⇒ ∃y

{
y ∈ d(F p−rC),

x ≡ y mod F p+1C.

⇐⇒ x ∈ d(F p−rC) + F p+1C.

So 
Zpq
r =

F p+1C + d−1(F p+r+1C) ∩ F pC

d−1(F p+1C)

Bpq
r =

F p+1C + d(F p−rC) ∩ F pC

d(F p+1C)

coincides what we defined for filtered complex (where it starts from 0-th page).
The differntial is induced by d, thus the same.

Computations
3.10. If for each n, there is only one Epq

r 6= 0 with p+q = n, and the differential
is zero, then the nonzero term is Hn.

?
?

?
?

?
?

?
?

?
?

?
?

?

?
?

?
?

?
?

?
?

?
?

?
?

?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?

?
?

?
?

?
?

?
?

?
? E

?
?

?
?

?
?

? E E E

E E

3.11. If for each n, there is only two Epq
r 6= 0 with p + q = n, then usually

we can get a long exact sequence involing Hn. The direction goes as follows
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(under cohomological convention)

E

##G
GG

GG
GG

GG
GG

GG
GG

GG
GG

GG
E

E

$$J
JJ

JJ
JJ

JJ
JJ

JJ
J

E

$$J
JJ

JJ
JJ

JJ
JJ

JJ
J

E

H?
?
?
?

__?
?
?
?

E

H?
?
?
?

__?
?
?
?

E

H?
?

__?
?

E

H?
?
?
?

__?
?
?
?

To be exact, it happens when there is no differentials between upper nonzero
terms.

3.12. In general, we only know a four term exact sequence just before achieving
the limit

E

$$J
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
J

H

__???
· · · E E

... . . . ...
...

E · · · E E

H__???

3.13. First Five Terms If the spectral sequence lies in a corner, then we can
have the first five term exact sequence

0

''OO
OOO

OOO
OOO 0

''OO
OOO

OOO
OOO E

''OO
OOO

OOO
OO E E

E

H

__??

E

H
__

E

H__
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Exercises
3.14. Write the long exact sequence for the spectral sequence whose E2 page
looks like

...

E03

E02

E01

E00 E10 E20 E30 · · ·

Answer 0→ E10 → H1 → H01 → E20 → H2 → E02 → · · · .

3.15. Prove 3.2.

3.16. Rees system Historically, the following commutative diagram

◀ ▶

▼

▲

D
i //

β

~~~~
~~
~~
~~

D

j~~~~
~~
~~
~~ β

  @
@@

@@
@@

@

F

γ
��?

??
??

??
? E

k

``@@@@@@@@

k

����
��
��
��

F

γ
����
��
��
��

BC@A
=

OO

D
ı

//

α

OO

D

ȷ

__????????

α

O O
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where ▲’s all long exact sequences, is called a Rees system. It is easy to see
j ◦ k =  ◦ k̄. Show that the following diagram is also a Rees system

▼

▲

D′ i′ //

β′

~~}}
}}
}}
}}

D′

j′~~||
||
||
|| β′

  A
AA

AA
AA

A

F

γ′ ��@
@@

@@
@@

@ E′
k′

``BBBBBBBB

k
′

~~}}
}}
}}
}}

F

γ′��~~
~~
~~
~~

BC@A
=

OO

D
′

ı′
//

α′

OO

D
′

ȷ′
``AAAAAAAA

α′

OO

with the two ▲’s the derived couples, and α′ induced by α, β′ by βi−1, γ′ by
γ.

3.17. Given the commutative diagram with each row exact, prove the exact-
ness of the sequence.

D

h

  @
@@

@@
@@

@

g

��
A

f
//

??~~~~~~~~
B

†
// C

0→ im f → im g
†→ imh→ 0.

D
†

  @
@@

@@
@@

@

A //

f
??~~~~~~~~

??~~~~~~~~
B

g

OO

h
// C

0→ im f → im g
†→ imh→ 0.

Remark These two short exact sequences are used in some literature to con-
struct spectral sequences from exact couples.
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4 Topology (I)

4.1. In this section, the coefficients of cohomology groups can be any com-
mutative ring, even we sometimes write Z. In this section, we assume all the
spaces appearing are paracompact (every open cover has a locally finite open
refinement) which admits partitions of unity. For example, manifolds, CW
complexes, algebraic varieties under complex topology.

Fibre Bundles
4.2. Fibre Bundle Let X and F be two topological spaces, consider E =

X × F . Denote the projection π =

[
E

↓
X

]
. Note that at each point x ∈ X, the

fibre π−1(x) is a copy of F . We say
[

E

↓
X

]
is a trivial fibre bundle with fibre

F . In general, a map ξ =

[
E

↓
X

]
is said to be a fibre bundle with fibre F if

For each point x ∈ X, there
exists an open neighborhood
U , such that the restriction

ξ|ξ−1(U) =

[
ξ−1(U)

↓
U

]
is a triv-

ial fibre bundle with fibre F .

U × F

��

∼ //

proj

��

ξ−1(U)
⊆ //

ξ|ξ−1(U)

��

E

ξ

��
U U

⊆
// X

We will say X is the base space, E is the total space, F is the fibre, and
denote Ex = ξ−1(x) for x ∈ X the fibre at x. The isomorphism U × F →
ξ−1(U) is called a local trialization.

The computation of cohomology of fibre bundles is very important to un-
derstand fibre bundles. Leray–Serre spectral sequence gives a tool to analyse
it. Before the statement, we firstly see two theorems on cohomology of fibre
bundles.

4.3. Künneth theorem For trivial bundle E = X×F , two natural projections
π1, π2 induce a ring homomorphism

H∗(X)⊗H∗(F ) −→ H∗(E), α⊗ β 7−→ π∗
1α ^ π∗

2β.

When H∗(F ) is a free module (with respect to the coefficient), then this map
is an isomorphism.



4 Topology (I) 34

4.4. Leray–Hirsch theorem For a fibre bundle
[

E

↓
X

]
with fibre F with H∗(F )

a free module (with respect to the coefficient), assume that

there is a linear lifting
H∗(F ) → H∗(E), such that
for any x ∈ X, the restriction
of it gives an isomorphism to
H∗(F ).

H∗(F )

��

∼

yyttt
tt
tt
tt

H∗(Ex) H∗(E)oo

Denote β̃ ∈ H∗(E) the lifting of β ∈ H∗(F ). Then the H•(X)-module homo-
morphism

H•(X)⊗H•(F ) −→ H•(E), α⊗ β 7−→ ξ∗α ^ β̃

is an isomorphism.
Actually, it suffices to check the asserted property for an x from each

path-connected component of X.

4.5. Hopf Fibration Recall that the complex projective line CP 1 = C ∪ {∞}
is the one-point compactification of C ∼= R2, thus CP 1 = S2 the Riemann
sphere. On the other hand, the natural map

S3 ⊆ R4 \ 0 ∼= C2 \ 0 −→ CP 1 ∼= S2

gives a fibre bundle with fibre S1. This fibre bundle is called the Hopf fibra-
tion. This is an example Leray–Hirsch theorem cannot analyse.

4.6. Leray–Serre Spectral Sequences Assume we have a fibre bundle
[

E

↓
X

]
with fibre F . Then there exists a spectral sequence

Epq
2 = Hp(X;Hq(F )) =⇒ Hp+q(E)
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where Hq(F ) is the local system of cohomology of fibres (4.7). In particular,
when X is simply-connected, Hq(F ) = Hq(F ) is the constant coefficient.

H
0 (X

;H
3 (F

))

''OO
OOO

OOO
OOO

OOO
H
1 (X

;H
3 (F

))

''OO
OOO

OOO
OOO

OOO
H
2 (X

;H
3 (F

))

''OO
OOO

OOO
OOO

OOO
O
H
3 (X

;H
3 (F

))

''OO
OOO

OOO
OOO

OOO
O · · · · · ·

H
0 (X

;H
2 (F

))

''OO
OOO

OOO
OOO

OOO
H
1 (X

;H
2 (F

))

''OO
OOO

OOO
OOO

OOO
H
2 (X

;H
2 (F

))

''OO
OOO

OOO
OOO

OOO
O
H
3 (X

;H
2 (F

))

''OO
OOO

OOO
OOO

OOO
O · · · · · ·

H
0 (X

;H
1 (F

))

''OO
OOO

OOO
OOO

OOO
H
1 (X

;H
1 (F

))

''OO
OOO

OOO
OOO

OOO
H
2 (X

;H
1 (F

))

''OO
OOO

OOO
OOO

OOO
O
H
3 (X

;H
1 (F

))

''OO
OOO

OOO
OOO

OOO
O · · · · · ·

H
0 (X

;H
0 (F

))

H
1 (X

;H
0 (F

))

H
2 (X

;H
0 (F

))

H
3 (X

;H
0 (F

))

· · · · · ·

Proof We can assume X is a CW complex by approximation. We can also
assume over each cell, the fibre bundle is trivial. Denote Xp the union of
all cells of dimension ≤ p. Denote Ep the preimage of Xp. Now, we have a
filtraion on Sing•(E) by Sing•(E,Ep). We can compute the associative graded
complex

grSing•(E) = Sing•(Ep, Ep−1).

As a result, the spectral sequence

Epq
1 = Hp+q

(
Sing•(Ep, Ep−1)

)
= Hp(Xp, Xp−1)⊗Hq(F ),

by relative Künneth theorem. We can check that the following diagram com-
mutes

Hp+q(Ep, Ep−1) //

��

Hp+q(Ep)
δ // Hp+q+1(Ep+1, Ep)

��
Hp(Xp, Xp−1)⊗Hq(F ) // Hp+1(Xp+1, Xp)⊗Hq(F )

The up map is the differential for E1 (since it is induced by d), and the below
map is the differential of the complex computing the simplicial cohomology of
local coefficient, see 4.7). Thus,

Epq
2 = Hp(X;Hq(F )) =⇒ Hp+q(X).
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The proof is complete. Q.E.D.

4.7. Local system Denote Map(∆p, X) the set of all continuous maps from
the p-simplex ∆p to X. Recall

Singp(X) = Z ·Map(∆p, X), Singp(X) = Map
(
Map(∆p, X),Z

)
,

the space of formal combinations of nf with n ∈ Z and f ∈ Map(∆p, X) and
the space of assigning an nf ∈ Z for each f ∈ Map(∆p, X).

A local system L is a functor Π1(X) −→ Ab from fundamental groupoid
to the category of abelian groups. We can twist Singp(X) by L

Singp(X;L) := L ·Map(∆p, X), Singp(X;L) := Map
(
Map(∆p, X),L

)
.

the space of formal combinations of nf with n ∈ Lx and f ∈ Map(∆p, X) and
the space of assigning an nf ∈ Lx for each f ∈ Map(∆p, X), where x ∈ X
corresponds to the centre of ∆p. We can define differential, by the straight line
joint the centre of each face to the centre of ∆p. This defines the cohomology
group of local coefficient Hp(X;L).

We can also define simplicial cohomology group of local coefficient.
By the spectral sequence argument as in 1.12, it coincides with the singular
(above) one.

4.8. Let us analyse the Hopf fibration where

Epq
2 = Hp(S2)⊗Hq(S1)

=

{
Z (p, q) ∈ {0, 2} × {0, 1}
0 otherwise

.

Z

''OO
OOO

OOO
Z

Z Z

Since E = S3, we know the map is an isomorphism. Actually, the map

E01
2 = H1(F ) −→ H2(X) = E20

2

can be described, see 4.17.

4.9. Acyclic Cases We call a space X is acyclic if Hi(X) = 0 for i ≥ 1. For
example, a contractible space is acyclic. When the fibre F is acyclic, then the
spectral sequence has only one row. Thus Hn(E) = Hn(X). When the base
space X is acyclic, then the spectral sequence has only one column. Thus
Hn(E) = Hn(F ).
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4.10. Gysin Sequences A fibre bundle with fibre F = Sr is called a sphere
bundle. For a sphere bundle

[
E

↓
X

]
, we have Gysin sequence

· · · −→ Hn−1(X) −→ Hn+r(X) −→ Hn+r(E) −→ Hn(X) −→ · · ·

H
n−

1 (X
)

· · ·

__??????

$$J
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
J H

n (X
)

$$J
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
J · · ·

H
n+

r (X
)

H
n+

r+
1 (X

)

H
n (X

)

H
n+

1 (X
)
· · ·

H
n+

r (X
)

Hn+r(E)?????

__?????

H
n+

r+
1 (X

)

· · ·__??????

More on Leray–Serre Spectral Sequences
4.11. Homological Version We also have homological version.

E2
pq = Hp(X;Hq(F )) =⇒ Hp+q(E)

where Hq(F ) is the local system of homology of fibres.

H0(
X;H3(

F )
)

gg

OOO
OOO

OOO
OOO

OO
H1(

X;H3(
F )

)

gg

OOO
OOO

OOO
OOO

OO
H2(

X;H3(
F )

)

gg

OOO
OOO

OOO
OOO

OOO
H3(

X;H3(
F )

)

gg

OOO
OOO

OOO
OOO

OOO
· · · · · ·

H0(
X;H2(

F )
)

gg

OOO
OOO

OOO
OOO

OO
H1(

X;H2(
F )

)

gg

OOO
OOO

OOO
OOO

OO
H2(

X;H2(
F )

)

gg

OOO
OOO

OOO
OOO

OOO
H3(

X;H2(
F )

)

gg

OOO
OOO

OOO
OOO

OOO
· · · · · ·

H0(
X;H1(

F )
)

gg

OOO
OOO

OOO
OOO

OO
H1(

X;H1(
F )

)

gg

OOO
OOO

OOO
OOO

OO
H2(

X;H1(
F )

)

gg

OOO
OOO

OOO
OOO

OOO
H3(

X;H1(
F )

)

gg

OOO
OOO

OOO
OOO

OOO
· · · · · ·

H0(
X;H0(

F )
)

H1(
X;H0(

F )
)

H2(
X;H0(

F )
)

H3(
X;H0(

F )
)

· · · · · ·

4.12. Functoriality We define the morphism between spectral sequences in
the obvious way, i.e. a morphism from (Er) to (E′

r) is a complex morphism
Er → E′

r for each r, such that Er+1 → Er+1 is induced by this morphism.
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Then for a morphism of fibre bundles
[

E′

↓
X′

]
→

[
E

↓
X

]
, namely commutative

diagram, it induces a morphism of corresponding spectral sequences. This
follows from the approximation by cellular maps. On E2, it is given by the
obvious one. Similar property holds for homology.

4.13. Multiplicative Structure A multiplicative structure over a spectral se-
quence (Er) is a complex morphism Tot(Er ⊗Er)→ Er for each r, such that
Tor(Er+1⊗Er+1)→ Er+1 is induced by this morphism. By the functoriality,
Serre–Leray spectral sequencee has a multiplicative structure (induced by the
diagonal map). On E2, it is given by the obvious map

Hp(X;Hq(F ))⊗Hp′
(X;Hq′(F )) −→ Hp+p′

(X;Hq+q′(F )).

by (α ⊗ φ)⊗ (β ⊗ ψ) 7→ (−1)p′q(α ^ β)⊗ (φ ^ ψ) under Koszul convention
2.12.

Similar property holds for homology, and cap product (after defining monoidal
structure for spectral sequences).

4.14. Gysin Sequence revised Recall the Gysin sequence 4.10.

• The map Hn−1(X)→ Hn+r(X) is given by cup product by an element
in Hr+1(X), called the Euler class. This follows from the existence of
multiplicative structure.

• The map Hn+r(X)→ Hn+r(X) is given by the natural pull back.

• When X is compact and smooth, then Hn+r(E)→ Hn(X) is given by

Hn+r(E) //

Poincaré
duality

��

Hn(X)

Poincaré
duality

��
HdimE−n−r(E)

push forward
// HdimX−n(X)

Since the Poincaré duality is given by a cap product.

4.15. Relative Version We also have relative version with respect to base
space

Epq
2 = Hp(X,X0;Hq(F )) =⇒ Hp+q(E;E0)
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with E0 the preimage of X0; as well as to fibre

Epq
2 = Hp(X;Hq(F ;F0)) =⇒ Hp+q(E;E0)

if E0 ⊆ E cuts each fibre by F0 ⊆ F (an F0-distribution).

4.16. Thom Isomorphisms Consider the case
[

E

↓
X

]
with fibre F ∼= Rr. Af-

ter one-point compactification at each fibre, we get an sphere bundle
[

Ê

↓
X

]
.

Denote ∞ the union of infinity points at each fibre. Since

Hn(Rr ∪ {∞},∞) =

{
Z, n = r,

0, otherwise.

Then Hn(X) = Hn+r(Ê,∞) where ∞ = {∞}×X is the infinity section, the
union of all infinity points.

4.17. Transgression We can describe E0,r−1
r → Er0

r , the so-called transgres-
sion. We have the following commutative diagram with three long rows exact

· · · Hr−1(X)

66mmmm
//

Hr−1(∗) // Hr(X, ∗)

����
Hr(X)
((RRR

R

vvvvllll
ll

· · ·//

· · · Hr−1(E)

66mmmm

((QQQ
//

��
E0,r−1

r
� _

��

transgression // Er0
r
� _

��
Hr(E)
((RRR

RRR

66llll

��
· · ·//

Hr−1(F )
δ

// Hr(E,F )

The middle square commutes by our construction. The rest part commutes

by the functoriality of
[
F

↓
∗

]
→

[
E

↓
X

]
, and

[
X

↓
X

]
→

[
E

↓
X

]
. The first row and the

last row is the long exact sequence for the couple (E,F ) and (B, ∗). Actually,
the map E0,r−1

r → Er0
r is also induced by the transgression between exact

complexes (the first and the last) introduced in 2.7 (since it is induced by d).
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Exercises

4.18. Wang Sequences Let
[

E

↓
Sn

]
be bundle over sphere with n 6= 0, 1. Show

that there is the following Wang sequence

· · · → Hn(E)→ Hn(F )→ Hn+r(F )→ Hn+1(E)→ · · ·

H
n+

1 (F
)

$$J
JJ

JJ
JJ

JJ
JJ

JJ
J

H
n (F

)

$$J
JJ

JJ
JJ

JJ
JJ

JJ
J

Hn(E)

__????

H
n+

r+
1 (F

)

Hn+2(E)__????

H
n+

r (F
)

Hn+1(E)???????

__???????

4.19. Recall the construction of Hopf fibration 4.5 If we exchange C by quater-
nion H, we will get

S7 ⊆ R8 \ 0 ∼= H2 \ 0 −→ HP 1 ∼= S4

whose fibre is S3. If we exchange by octonion O, we will get

S15 ⊆ R16 \ 0 ∼= O2 \ 0 −→ OP 1 ∼= S8

whose fibre is S7. Draw the spectral sequence for them.
Answer:

Z

##G
GG

GG
GG

GG
GG

GG
GG

GG
GG

GG
Z

Z Z

4.20. For a fibre bundle
[

E

↓
X

]
whose fibre F and bases space X both have

finite betti numbers, show that χ(E) = χ(X)χ(F ) where χ(−) is the Euler
characteristic.
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5 Topology (II)

5.1. In this section, we take the same convention as the last section.

Eilenberg–Moore Spectral Sequences

5.2. Pull Back For a continuous map f : X → Y and a fibre bundle ξ =
[

E

↓
Y

]
,

the pull back f∗ξ =
[
Ef

↓
X

]
with Ef = {(x, v) ∈ X × E : f(x) = ξ(v)} forms a

fibre bundle over X. Intuitively, the fibre of f∗ξ at x is a copy of the fibre of
ξ at f(x).

We hope to say something on cohomology of Ef . For example, when ξ
satisfies the condition of Leray–Hirsch 4.4, then so is f∗ξ. In this case, it is
easy to show that H•(Ef ) = H•(E)⊗H•(Y ) H

•(X) by the natural maps.

5.3. Eilenberg–Moore Spectral Sequences Consider the pull back of fibre
bundle

Ef

f∗ξ

��

// E

ξ

��
X

f
// Y

when X and Y are both simply connected, then there is a spectral sequence

Epq
2 = deg q part of Tor

H•(Y )
−p (H•(E),H•(X)) =⇒ Hp+q(Ef ).

Sketch of the proof We can assume X → Y is cellular map between CW
complexes. Let Yk (resp. Xk) be the union of cells of Y (resp. X) of dimension
≤ k. We define Ek (resp. (Ef )k) to be the preimage of Yk (resp. Xk). There
is a natural map

Sing•(X) ⊗
Sing•(Y )

Sing•(E)
×−→ Sing•(Ef )

by taking product of pull backs.
Assume firstly that Sing•(X) is a projective Sing•(Y )-module, then in par-

ticular H(X) is a projective H(Y )-module. Applying the proof of Leray–Serre
spectral sequence 4.6, we get a morphism of spectral sequence, and at the E2-
level, it is given by

H(X)⊗H(Y ) H(Y ;H(F )) −→ H(X;H(F )),
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which is an isomorphism. By comparison lemma 5.4 below, the complex
Sing•(X) ⊗

Sing•(Y )
Sing•(E) computes H•(Ef ). Then by a general fact of graded

differential algebra,

H•(X)⊗H•(Y ) H
•(E) −→ H•(Ef )

is an isomorphism.
But in general, Sing•(X) is not a projective Sing•(Y )-module, we cannot

freely exchange H•(−) and tensor. Thus we need to take a projective resolu-
tion and finally use the spectral sequences for double complexes at the end.
To complete the proof, one needs to be careful about the indices. Q.E.D.

5.4. Comparison Lemma For a morphism of complex between two bounded
filtered complexes C → D compatible with filtration, if the induced map
Er → Er is isomorphic for r � 0, then C are quasi-isomorphic to D, (i.e. the
induced map H(C)→ H(D) is an isomorphism).

5.5. For an differential algebra (C, d), and two differential C-algebras D,E,
if D is projective over C, then

H(D ⊗C E) = H(D)⊗H(C) H(E).

Cartan–Leray Spectral Sequences

5.6. Cartan–Leray Spectral Sequences Let π =

[
E

↓
X

]
be a normal (Galois)

covering, that is, the discrete group G = AutX(π) acts freely on E, and
X = E/G. There is a spectral sequence

Epq
2 = Hp(G;Hq(E)) =⇒ Hp+q(X).

Here Hp(G;−) is the group cohomology.

Proof Let us assume X is a CW complex with each cells locally trivial. This
equips E a CW complex structure. If we denote C•

− the complex computing
simplicial cohomology, we have

(
C•

E

)G
= C•

X . Since the action is free, so each
C•

E is a co-induced Z[G]-module (7.12). Pick a Z[G]-resolution of P → Z.
Then use the double complexes HomG(P•, C

•
E). On one hand



5 Topology (II) 43

Ho
mG

(P0,
C
2
E
)
//

Ho
mG

(P1,
C
2
E
)
//

Ho
mG

(P2,
C
2
E
)

Ho
mG

(P0,
C
1
E
)
//

Ho
mG

(P1,
C
1
E
)
//

Ho
mG

(P2,
C
1
E
)

Ho
mG

(P0,
C
0
E
)
//

Ho
mG

(P1,
C
0
E
)
//

Ho
mG

(P2,
C
0
E
)

(C2
E)

G

(C1
E)

G

OO

(C0
E)

G

OO

H2(X)

H1(X)

H0(X)

Note that H0(G;X) = XG, and when X is a free Z[G]-module, Hi(G;K) = 0
for i ≥ 0. On the other hand,

Ho
mG

(P0,
C
2
E
)

Ho
mG

(P1,
C
2
E
)

Ho
mG

(P2,
C
2
E
)

Ho
mG

(P0,
C
1
E
)

OO

Ho
mG

(P1,
C
1
E
)

OO

Ho
mG

(P2,
C
1
E
)

OO

Ho
mG

(P0,
C
0
E
)

OO

Ho
mG

(P1,
C
0
E
)

OO

Ho
mG

(P2,
C
0
E
)

OO

Ho
mG

(P0,
H
2 (E

))

//

Ho
mG

(P1,
H
2 (E

))

//

Ho
mG

(P2,
H
2 (E

))

Ho
mG

(P0,
H
1 (E

)

//

Ho
mG

(P1,
H
1 (E

))

//

Ho
mG

(P2,
H
1 (E

))

Ho
mG

(P0,
H
0 (E

)

//

Ho
mG

(P1,
H
0 (E

))

//

Ho
mG

(P2,
H
0 (E

))

H
0 (G

;H
2 (E

))

''OO
OOO

OOO
OOO

O
H
1 (G

;H
2 (E

))

H
2 (G

;H
2 (E

))

H
0 (G

;H
1 (E

)

''OO
OOO

OOO
OOO

O
H
1 (G

;H
1 (E

))

H
2 (G

;H
1 (E

))

H
0 (G

;H
0 (E

)

H
1 (G

;H
0 (E

))

H
2 (G

;H
0 (E

))

which is exactly the spectral sequence asserted. Q.E.D.

Atiyah–Hirzebruch Spectral Sequences
5.7. We denote the topological K-theory by Kq(−). Note that q can be neg-
ative.

5.8. Atiyah–Hirzebruch Spectral Sequence Assume we have a fibre bundle[
E

↓
X

]
with fibre F . When X is finite (i.e. built by finite cells), there exists a

spectral sequence

Epq
2 = Hp(X;Kq(F )) =⇒ Kp+q(E)

where Kq(F ) is the local system of K-theory of fibres (4.7).
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Proof We have

· · · −→ Kn(E,Ep) −→ Kn(E,Ep−1) −→ Kn(Ep, Ep−1) −→ · · ·

Then
Epq

1 = Kp+q(Ep, Ep−1) =⇒ Kp+q(X).

We can prove

Kp+q(Ep, Ep−1) = Hp(Xp, Xp−1)⊗Kq(F ).

Actually, this follows from the fact that (Xp, Xp−1) is the suspension of dis-
crete points. By direct computation as in the proof 4.6, it coincides with the
simplicial cohomology, so

Epq
2 = Hp(X,Kq(F )) =⇒ Kp+q(X).

Finally, we need X to be finite to ensure the convergence. Q.E.D.

5.9. In particular, as we see before,

Hp(X;Kq(pt)) =⇒ Kp+q(X).

Let us take K to be the complex K-theory which is periodic Kq = Kq+2 by
Bott periodicity theorem. Note that

Keven(pt) = Z, Kodd(pt) = 0

So the nontrivial spectral sequence starts from E3, and looks like

$$J
JJ

JJ
JJ

$$J
JJ

JJ
JJ

$$J
JJ

JJ
JJ

$$J
JJ

JJ
JJ

$$J
JJ

JJ
JJ

J

H
0 (X

)

H
1 (X

)

H
2 (X

)

H
3 (X

)

H
4 (X

)

H
5 (X

)

H
6 (X

)

JJ
JJ

JJ
J

JJ
JJ

JJ
J

JJ
JJ

JJ
J

JJ
JJ

JJ
J

JJ
JJ

JJ
J

Postnikov Tower

5.10. Long Exact Sequence for Homotopy Groups For a fibre bundle
[

E

↓
B

]
with fibre F , we have a long exact sequence for homotopy group

· · · −→ πk(F ) −→ πk(E) −→ πk(B) −→ πk−1(F ) −→ · · · .
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5.11. Eilenberg–MacLane Spaces Recall the Eilenberg–MacLane space
K(G,n) for abelian group G and n ≥ 0 is defined to be the only space with
the property

πp(K(G,n)) =

{
G n = p

0 otherwise

• Firstly

ΩK(G,n) =

{
K(G,n− 1) n > 0

pt n = 0
,

where Ω is the pointed loop space.

• Thus we can consider the fibre bundle
[
EK(G,n+1)

↓
K(G,n+1)

]
whose fibre is ΩK(G,n+

1) = K(G,n), where E the space of pointed path space which is always
contractible.

• Secondly, by Hurewicz theorem,

i 0 1 · · · n− 1 n n+ 1 n+ 2

Hi(K(G,n)) Z 0 0 G ? · · ·

By the universal coefficient theorem 6.11, Hn(K(G,n);G) = G · idG.

• Actually, K(G,n) presents the functorHn(−, G), i.e. we have a bijection

π(X,K(G,n)) = Hn(X;G),

natural in X, where π(−,−) = Map(−,−)
/

Homotopy is the homotopy
classes of maps. To be precise,

For any α ∈ Hn(X;G), it is pull back of idG by some map
X → K(G,n).

5.12. Postnikov Approximation There is a standard trick of “dévissage”. We
can construct the Postnikov approximation

· · · // X2
// X1

// X0

X

OOaaCCCCCCCC

hhQQQQQQQQQQQQQQQ
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such that

For any k, πi(Xk) = 0 for i >
k and πi(X) → πi(Xk) is an
isomorphism for i ≤ k; each
Xk → Xk−1 is a fibration with
fibre K(πk(X), k).

π0 π1 π2 · · ·

X0 π0(X) 0 0 · · ·

X1 π0(X) π1(X) 0 · · ·

X2 π0(X) π1(X) π2(X) · · ·
...

...
...

... . . .

Fibration (map satisfying homotopy lifting property) is the topological gen-
eralization of fibre bundle where we also have Leray–Serre spectral sequence
and long exact sequence of homotopy groups.

5.13. Here lists some examples of Eilenberg–MacLane Spaces

• For any group, K(G, 0) = G with discrete topology.

• By direct computation, S1 = K(Z, 1).

• Note that (C∞) \ 0 ' S∞ is a contractible CW complex, then using the

long exact sequence of fibre
[

S∞

↓
CP∞

]
, we see CP∞ = K(Z, 2).

• Similarly, the infinite lens space S∞/
Cm is K(Z/m, 1), where Cm =

{z ∈ C : zm = 1} ⊆ S1 ⊆ C×.

5.14. Consider the case X = S3, then X0 = X1 = X2 is just a point, Consider

the fibration
[
X4

↓
X3

]
with fibre K(π4(S

3), 4).

Note that X3 = K(Z, 3).
By the construction of X4, it is

obtained by attaching cells of dimen-
sion ≥ 6 over X = S3 (to clean up
homotopy group π≥5). Thus we have
H4(X4) = H5(X4) = 0. Note that
X3 = K(Z, 3), thus

π4(S
3) = H5(X3) = H5(K(Z, 3)).

π4(
S
3 ) 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Z 0 0 Z
H4(

X3)

H5(
X3)

bbEEEEEEEEEEEEEEEEEEEEEEEEEEEE



5 Topology (II) 47

Consider the fibre bundle
[
EK(Z,3)
↓

K(Z,3)

]
whose fibre is K(Z, 2) = CP∞ (the com-

putation of its cohomology, see 8.7). Note that E∞ = 0 except E00
∞ = Z since

EK(Z, 3) is contractible.

By contractiblity of EK(Z, 3),
we can conclude the exactness
of most positions marked in the
diagram.

Assume the image of H is
S under the below d. Then
by the multiplicative structure,
the upper d is given by H2 7→
d(H2) = 2HS. Thus the up d
is injective.

Z

d

H2

2HS$$J
JJ

JJ
JJ

JJ
JJ

JJ
J 0 0

0 0 0 0 0 0 0

Z

d

H

S$$J
JJ

JJ
JJ

JJ
JJ

JJ
J 0 0 Z

$$J
JJ

JJ
JJ

JJ
JJ

JJ
J

0 0 0 0 0 0 0

Z 0 0 Z
H
4 (K

(Z,
3))

H
5 (K

(Z,
3))

H
6 (K

(Z,
3))

Furthermore,

H4(K(Z, 3)) = H5(K(Z, 3)) = 0 H6(K(Z, 3)) = Z/2.

Finally, by universal coefficient theorem 6.11, H5(K(Z), 3) = Z/2. Thus we
can conclude that π4(S3) = Z/2.

Adams Spectral Sequences
5.15. Steenrod Algebra The Steenrod Algebra

A•
G = lim←−

n

[
· · · Ω←− π(K(G,n),K(G,n+•)) Ω←− · · ·

]
= lim←−

n

Hn+•(K(G,n);G).

It acts on H∗(−, G) = π(−,K(G, ∗)), and commutes with the connection
homomorphism δ in any long exact sequence. We denote Ap the Steenrod
Algebra for Z/p. Actually, it is generated by known cohomology operations,
say Steenrod squares and Bockstein homomorphism (not necessary if
p = 2).

5.16. Stable Homotopy Group For a space X, define the stable homotopy
group

πs
p(X) = lim−→

n

[
· · · Σ−→ πp+n(Σ

nX)
Σ−→ · · ·

]
,

where Σ is the pointed suspension.
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5.17. Adams Spectral Sequences For a connected CW-complex X of finite
type (finite cells for each dimension), there is a spectral sequence

Eρq
2 = degree q part of ExtρA•

p
(H̃•(X),Z/p) =⇒ πs

ρ+q(X)⊗ Z(p),

where Z(p) is the ring of p-adic integers, and H̃•(X) = H•(X, pt) the reduced
cohomology group.

Remarks Before sketching the proof, I would like to give two remarks.

• We know cohomology groups commutes with suspension, and homotopy
groups commutes with looping, i.e. for pointed space X,

H̃•+N (ΣNX;Fp) = H̃•(X;Fp), π•(Ω
NX) = π•+N (X).

• Adams spectral sequence is to relation cohomology and homotopy group,
so at least we need to find some space we know both cohomology and ho-
motopy groups well (at least at the stable level). Our choice isK(Z/p, n),
since we know

limH•(K(Z/p, ∗)) = Ap, π•(K(Z/p, ∗)) = δ∗=•Z/p.

Sketch of the proof Let us forget about the grading to see the main idea.
From the isomorphism

H̃•(X;Z/p) = π(X,K(Z/p, •)).

we can construct the pull back X(1) from the diagram

X(1) //

��

∏
iEK(Z/p, ?)

��
X // ∏

iK(Z/p, ?)

fibre =
∏
i

K(Z/p, ?− 1).
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If we replace X by ΣNX for sufficiently large N , the spectral sequence of[
X(1)

↓
X

]
looks like

· · ·

!!D
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
0 · · · 0 0

· · ·

""D
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
D 0 · · · 0 0

· · ·

""E
EE

EE
EE

EE
EE

EE
EE

EE
EE

EE
EE

EE
EE

E 0 · · · 0 0

0 0 · · · 0 0 0 0 0 0

...
... . . . ...

...
...

...
...

...

0 0 · · · 0 0 0 0 0 0

Z 0 · · · 0 0

The arrows not touching the northeast block are all surjective (not obviously,
this is due to functorialty of Leray–Serre spectral sequences and our construc-
tioin). If we can “take N →∞”, we will get

0←− H̃(X)←− lim
N→∞

⊕
H̃(K(Z/p))←− H̃(X(1))←− 0.

The middle term is a free Ap-module P . We also have long exact sequence of
homotopy groups

· · · −→ π(X(1)) −→
⊕

π(K(Z/p)) −→ π(X) −→ · · ·

The middle term of homotopy sequence is exactly HomAp(P,Z/p). Continuing
this process, we will get a tower

· · · −→ X(2) −→ X(1) −→ X(0) = X.

Each X(i)→ X(i−1) gives a cohomology sequence and a homotopy sequence.
This corresponds to a free Ap-resolution P → H̃(X). Then use the exact
couple 3.5, we get

Eρq
1 = degree q part of HomA•

p

(
P •
ρ ,Z/p

)
.

Note that the differential is exactly induced by P . So
Eρq

2 = degree q part of ExtρA•
p
(H̃•(X),Z/p).

To ensure the convergence, we need to tensor with Z(p). Q.E.D.
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Exercises
5.18. Prove the comparison lemma 5.4.

5.19. Deduct from the Hopf fibration 4.5 that πk(S2) = πk(S
2) for k ≥ 3.

π1 π2 π3 π4 · · ·

S1 Z 0 0 0 · · ·

S2 Z Z Z/2 · · ·

S3 Z Z/2 · · ·

S4 Z · · ·

Actually, by Freudenthal suspension theorem, πn+1(S
n) = Z/2 for n ≥ 3.
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6 Algebra (I)

Hypercohomology
6.1. A complex C is said to be split if it is isomorphic to a direct sum of two
kinds of complexes

· · · −→ 0 −→ C −→ 0 −→ · · · · · · −→ 0 −→ C
id−→ C −→ 0 −→ · · ·

Note that in this case

C ∼=



C/ ker d

H(C)
⊕

⊕

∼ // · · ·

C/ ker d

H(C)
⊕

⊕

∼ // im d

C/ ker d
∼ //

H(C)
⊕

⊕

im d

· · · ∼
// im d


6.2. Hyper-resolution Let C be a complex, we can find a double complex I
and a morphism C → I where C is viewed as a double complex C supported
in (0, ∗) such that for any p, the complex (Ip•, d(0,1)) is split, and itself, as well
as H∗, ker, cok, im form injective resolutions of the counterparts of C, say, for
any q,

Cq −→ I•q

Hq(C, d) −→ Hq(I, d(0,1))

ker[Cq d−→ Cq+1] −→ ker[I•q
d(0,1)−→ I•,q+1]

cok[Cq d−→ Cq+1] −→ cok[I•,q
d(0,1)−→ I•,q+1]

im[Cq d−→ Cq+1] −→ im[I•,q
d(0,1)−→ I•,q+1]

are all injective resolutions

We call such double complex a hyper-resolution.

Proof The existence more of less follows from definition of cohomology 1.1.
Firstly, find an injective resolution for H(C) and im d; then we can get a
resolution for ker d by horseshoe lemma on 0 → im d → ker d → H(C) → 0;
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then we can get a resolution for C by horseshoe lemma again on 0→ ker d→
C → im d → 0. Lastly, it is easy to check that the condition on cok follows
automatically. Q.E.D.

···
· · · · · · · · ·

Ci+2

OO

**VVVV
I0,i+2

OO

// I1,i+2

OO

// I2,i+2

OO

// · · ·
Ci+1

OO

**UUU
U

I0,i+1

OO

// I1,i+1

OO

// I2,i+1

OO

// · · ·
Ci

OO

**UUU
UUU

I0i

OO

// I1i

OO

// I2i

OO

// · · ·
Ci−1

OO

**UUU
U

I0,i−1

OO

// I1,i−1

OO

// I2,i−1

OO

// · · ·
Ci−2

OO

**UUU
U

I0,i−2

OO

// I1,i−1

OO

// I2,i−2

OO

// · · ·
···

OO

· · ·

OO

· · ·

OO

· · ·

OO

Künneth Spectral Sequences
6.3. For a hyper-resolution C → I, the induced map C → Tot I is a quasi-
isomorphism (i.e. inducing isomorphism on cohomology). This facts follows
from a common usage of spectral sequence, which is left as an exercise.

6.4. Hyper-derived Functors For a left exact functor F . We define the hyper-
derived functor RiF on lower bounded complexe C (i.e. Cp = 0 for p� 0)
as follows. We can find a quasi-isomorphism C → I with each Ii injective
(the existence is established above). We define

RiF (C) = Hi(F (I)).

Note that different choice of I does not affect RiF (C).
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6.5. For the readers who are familiar with the derived category D(−), this
diagram probably helps

A ⊆−→

RiF︷ ︸︸ ︷
D(A) RF−→ D(B) Hi(−)−→ B︸ ︷︷ ︸

=RiF

6.6. Künneth Spectral Sequences For a left exact functor F , and C a lower
bounded complex, there is a spectral sequence

Epq
2 = RpF (Hq(C)) =⇒ Rp+qF (C).

Proof Let us pick a hyper-resolution C → I. Then the cohomology TotF (I)
is by definition Rp+qF (C).

F (
I
0,q

+1 )

F (
I
1,q

+1 )

F (
I
2,q

+1 )

F (
I
0q )

OO

F (
I
1q )

OO

F (
I
2q )

OO

F (
I
0,q

−1 )
OO

F (
I
1,q

−1 )
OO

F (
I
2,q

−1 )
OO

F (
H
0,q

+1 )
//

F (
H
1,q

+1 )
//

F (
H
2,q

+1 )

F (
H
0q ) //

F (
H
1q ) //

F (
H
2q )

F (
H
0,q

−1 )
//

F (
I
H
,q−

1 )
//

F (
H
2,q

−1 )

F (
H
q+

1 (C
))

''OO
OOO

OOO
OO

R
1 F (

H
q+

1 (C
))

R
2 F (

H
q+

1 (C
))

F (
H
q (C

))

''OO
OOO

OOO
OO

R
1 F (

H
q (C

))

R
2 F (

H
q (C

))

F (
H
q+

1 (C
))

R
1 F (

H
q−

1 (C
))

R
2 F (

H
q−

1 (C
))

where H = H(I, d(1,0)). The computation holds since the complex splits.
Note that

RqA = Hq(C) −→ Hq(I) = H•q

is assumed to be an injective resolution. Q.E.D.

6.7. Another direction in 6.6 Under the setting of 6.6, another direction gives
spectral sequence

Epq
2 = Hp(RqFC•, d) =⇒ Rp+qF (C).

F (
I
2,p

−1 )

F (
I
2p )

F (
I
2,p

+1 )

F (
I
1,p

−1 )
OO

F (
I
1p )

OO

F (
I
1,p

+1 )
OO

F (
I
0,p

−1 )
OO

F (
I
0p )

OO

F (
I
0,p

+1 )
OO

R
2 FC

p−
1

//
R
2 F (

C
p )//

R
2 F (

C
p+

1 )

R
1 FC

p−
1

//
R
1 F (

C
p )//

R
1 F (

C
p+

1 )

F (
C
p−

1 )//
F (

C
p ) //
F (

C
p+

1 )

In particular, when each Ci is F -acyclic, Hi(F (C)) = RiF (C), a complex
version of 2.10.
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6.8. More general, there would be some functor sending complex to complex
(for example, Tot(−⊗C•)), there is also a spectral sequence to control them
under some condition, see for example 6.25.

6.9. Classic Künneth Spectral Sequences Let C• a bounded complex with
each Ci flat. There exists a spectral sequence

Epq
2 = Tor−p(H

q(C•),M) =⇒ Hp+q(C• ⊗M).

Let C• a bounded complex with each Ci projective. There exists a spectral
sequence

Epq
2 = Extp(H−q(C•),M) =⇒ H−p−q(Hom(C•,M)).

6.10. Universal Coefficient Theorem Assume that in C•, each C and im d
are both flat (respectively, projective). The short exact sequence

0 −→ ker d −→ C −→ im d −→ 0

shows that ker d is also flat (respectively, projective). The short exact sequence

0 −→ im d −→ ker d −→ H(C) −→ 0

shows that Tori(H(C),−) = 0 for i ≥ 2. Thus we get a short exact sequence

0 −→ Hq(C)⊗M −→ Hq(C ⊗M) −→ Tor(Hq+1(C),M) −→ 0.

0 −→ Ext(Hq+1(C),M)⊗M −→ Hq(Hom(C,M)) −→ Hom(Hq(C),M) −→ 0.

To
r1(

H
q+

1 (C
),M

)

H
q+

1 (C
)⊗

M

To
r1(

H
q (C

),M
)

H
q (C

)⊗
M

Hq(C• ⊗M)??

__??? Ho
m(

H
q (C

),M
)

Ex
t
1 (H

q (C
),M

)

Ho
m(

H
q+

1 (C
),M

)

Ex
t
1 (H

q+
1 (C

),M
)

Hq(Hom(C,M))??

__???

Assume that in C•, each C and im d are both projective. Then ker d is a
direct summand of C, thus ker d ⊗M is a direct summand of C ⊗M , from
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the diagram

0

��
· · · // im d⊗M // ker d⊗M //

��

H(C)⊗M //

��

0

0 // im(d⊗ idM ) // ker(d⊗ idM ) // H(C ⊗M) // 0

the middle map splits, and thus the last map. Similarly, the sequence for Ext
splits.

6.11. Universal Coefficient Theorem This gives the universal coefficient
theorem in topology

0 −→ Hq(X;Z)⊗R −→ Hq(X;R) −→ Tor(Hq+1(X;Z), R) −→ 0.

0 −→ Hq(X;Z)⊗R −→ Hq(X;R) −→ Tor(Hq−1(X;Z), R) −→ 0.

0 −→ Ext(Hq−1(X;Z),M) −→ Hq(X;M) −→ Hom(Hq(X;Z),M) −→ 0.

0 −→ Ext(Hq+1(X;Z),M) −→ Hq(X;M) −→ Hom(Hq(X;Z),M) −→ 0.

Auslander–Reiten Theory
6.12. Transpose For a finitely presented left module M over some ring R.
Define the right module by M∗ = HomR(M,R). Pick a projective resolution

P1 → P0 →M → 0

Define the transpose TrM by the right module satisfying the exact sequence

0→M∗ → P ∗
0 → P ∗

1 → TrM → 0.

6.13. Theorem Let N be a right R-module. We have a four-term exact se-
quence

0→ Ext1Rop(TrM,N)→ N⊗RM → HomRop(M∗, N)→ Ext2Rop(TrM,N)→ 0

In particular, M is reflexible i.e. M ∼= (M∗)∗ by the natural map if and only
ExtiRop(TrM,Rop) = 0 for i = 1, 2.
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Proof Apply HomRop(−, N) to the two-term exact sequence P ∗
0 → P ∗

1 , then
by 6.6, the following spectral sequence converges to the cohomology of

HomRop(P ∗
1 , N)︸ ︷︷ ︸

∼=N⊗RP1

−→ HomRop(P ∗
0 , N)︸ ︷︷ ︸

∼=N⊗RP0

i.e. HomRop(TrM,N) and N ⊗R M .

0
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OOO
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OOO
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OOO
OOO

O
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2
R
op
(M
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)

''OO
OOO

OOO
OOO
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OOO

O
Ex
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R
op
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∗ , N
)

''OO
OOO

OOO
OOO

OOO
OOO

OOO
O

Ex
t
4
R
op
(M

∗ , N
)

Ho
mR

op
(T
rM

,N
)

HomRop (TrM,N)???

__??????

Ex
t
1
R
op
(T
rM

,N
)

N⊗RM???

__????

Ex
t
2
R
op
(T
rM

,N
)

0???

__????

Ex
t
3
R
op
(T
rM

,N
)

0???

__????

Ex
t
4
R
op
(T
rM

,N
)

0???

__????

This reads the computation in the theorem. Q.E.D.

6.14. Stable Hom For two left modules M,N of some ring R. We define the
stable Hom

HomR(M,N) =
HomR(M,N)

{M → P → N : for some projective P}

6.15. Theorem Let N be a right R-module. Then

HomR(M,N) = TorR1 (TrM,N)

Proof Applying −⊗N , we see homology of

P ∗
0 ⊗R N︸ ︷︷ ︸

∼=HomR(P0,N)

−→ P ∗
1 ⊗R N︸ ︷︷ ︸

∼=HomR(P1,N)

is Ext1(M,N) and TrM ⊗N .

0

TrM⊗N
??

??

��?
?
M

∗ ⊗N

HomR(M,N)

???

��?
?
To

r1(
M

∗ , N
)

0
??

?

��?
?
To

r2(
M

∗ , N
)

0
??

?

��?
?
To

r3(
M

∗ , N
)

0
??

?

��?
?
To

r4(
M

∗ , N
)

0
??

?

��?
??

??

Tr
M

⊗N

To
r1(

Tr
M
,N

)

ggOOOOOOOOOOOOOOO

To
r2(

Tr
M
,N

)

ggOOOOOOOOOOOOOO

To
r3(

Tr
M
,N

)

ggOOOOOOOOOOOOOO

To
r4(

Tr
M
,N

)

ggOOOOOOOOOOOOOO

ggOOOOOOOOOOOOOOOO
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Note that for any surjective P ↠ N ,

HomR(M,N) = cok
[
HomR(M,P )→ HomR(M,N)

]
.

This factors through the surjection Hom(M,P ) = M∗ ⊗ P → M∗ ⊗ N .
Q.E.D.

6.16. Actually, we get a four-term exact sequence

0→ TorR2 (TrM,N)→M∗ ⊗N → HomR(M,N)→ TorR1 (TrM,N)→ 0.

6.17. Further more, if R and M,N are all finite-dimensional over a field k,
then we can define a functor

D = Homk(−,k) : R-mod −→ mod-R

where mod stands the finite-dimensional module. Note that

DHomR(M,N) = DN ⊗M, D(M∗ ⊗N) = HomRop(M∗, DN).

This sets a duality between two four-term exact sequences, thus we have

HomR(M,N) = DExt1Rop(TrM,DN) = DExt1R(N,DTrM).

This is known as Auslander–Reiten formula. The functor DTr is called
Auslander–Reiten translation. It can be understood as a generalized Serre
functor. We can similarly define Hom by factoring all morphisms through
injective modules. We have the dual version of Auslander–Reiten formula,

DHomR(M,N) = Ext1R(TrDN,M).

Tilting Modules
6.18. Tilting Modules Let T be a module over an Noetherian R-module. We
say T is a tilting module if

• Exti(T,−) = 0 for all i ≥ 2.

• Ext1(T, T ) = 0, and the tiled algebra S = EndR(T )
op is Noetherian.

• We have a short exact sequence

0 −→ R −→ T1 −→ T2 −→ 0

where T1, T2 ∈ addT , the sets of direct summannds of T⊕n for some n.
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Now we have a pair of adjoint funtors

R-Mod
HomR(T,−) // S-Mod

T⊗S−
oo

6.19.R-module Side We have

• For any T0 ∈ addT , HomR(T, T0) ∈ addS, i.e. finitely generated pro-
jective S-modules. Moreover,

T ⊗S HomR(T, T0) = T0, Ext≥1
R (T, T0) = T0.

• For any finitely generated R-module M , we can find an addT -complex
Q such that HomR(T,Q) computes ExtiR(T,M). Moreover,

Ext≥2
R (T,M) = 0.

Proof For any finitely generated R-module M , we can exchange free R-
resolution into addT -resolution as follows

· · · −2 −1 0 1

Q :

· · ·
⊕

//

''OO
OOO

O T
⊕n(3)
2

⊕

//

''

T
⊕n(2)
2

⊕

// T⊕n(1)
2

· · · // T⊕n(3)
1

//

77ooooo
T

⊕n(2)
1

//

77

T
⊕n(1)
1

77ooooo

P : · · · // R⊕n(3)

OO

// R⊕n(2)

OO

// R⊕n(1)

OO

��
M.

To be exact,

• the map T
⊕n(i)
1 → T

⊕n(i)
2 is the surjective map with kernel Rn(i);

• the map T
⊕n(i)
1 → T

⊕n(i−1)
1 is given by lifting R⊕n(i) → R⊕n(i−1). We

can do so since Ext1(T
⊕n(i)
2 , T

⊕n(i−1)
1 ) = 0;
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• the map T
⊕n(i)
2 → T

⊕n(i−1)
2 is the induced one;

• the map T
⊕n(i+1)
2 → T

⊕n(i−1)
1 is induced by T

⊕n(i+1)
1 → T

⊕n(i)
1 →

T
⊕n(i−1)
1 .

Finally, add a minus on all the maps from T
⊕n(odd)
2 → T⊕even

1 and T⊕n(even)
1 →

T⊕odd
2 . It is clear that P → Q is injective. Its cokernel is

· · · −2 −1 0 1

Q/P :

· · ·
⊕

//

''OO
OOO

O T
⊕n(3)
2

⊕

//

''

T
⊕n(2)
2

⊕

// T⊕n(1)
2

· · · // T⊕n(3)
2

//

ooooo
ooooo
T

⊕n(2)
2

//

ooo
ooo
T

⊕n(1)
2

ooooo
ooooo

which is trivially exact. Thus we get Q ← P → M , they are both quasi-
isomorphic. We know that elements in addT is HomR(T,−)-acyclic, thus

Hi(HomR(T,Q)) = Ri Hom(T, P ) = ExtiR(T,M).

Thus Q is the desired addT complex. Q.E.D.

6.20.S-module Side We have

• For any P ∈ addS, i.e. finitely generated projective S-modules. T ⊗S

P ∈ addT , Moreover,

HomR(T, T ⊗S P ) = P, TorS≥1(T, P ) = 0.

• For any finitely generated S-module N , we can find a addS-complex
P such that T ⊗S P computes TorSi (T,N) (say, projective resolution).
Moreover,

TorS≥2(T,N) = 0.

Proof Apply HomR(−, T ) on the short exact sequence, we know

0 −→ HomR(T2, T ) −→ HomR(T1, T ) −→ T −→ 0.

This shows that the right S-module T is finitely generated of projective di-
mension ≤ 1. Q.E.D.
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6.21. Brenner–Butler Theorem We have (in the category of finitely generated
modules)

T (T ) := ker[Ext1R(T,−)] = im[T ⊗S −)],
F(T ) := ker[HomR(T,−)] = im[TorS(T,−)],
X (T ) := ker[T ⊗S −] = im[Ext1R(T,−)],
Y(T ) := ker[TorS(T,−)] = im[HomR(T,−)].

We have the following equivalence of categories

Y(T )
T⊗S−

−−−−−−−→←−−−−−−−
HomR(T,−)

T (T ), X (T )
TorS(T,−)
−−−−−−−→←−−−−−−−
Ext1R(T,−)

F(T )

For each finitely generated R-module M , there is a unique, functorial short
exact sequence

0 −→ t(M) −→M −→ f(M) −→ 0

with t(M) ∈ T (T ) and f(M) ∈ F(T ). For each finitely generated S-module
N , there is a unique, functorial short exact sequence

0 −→ x(N) −→ N −→ y(N) −→ 0

with x(M) ∈ X (T ) and y(M) ∈ Y(T ).

Proof For an R-module M , take Q the addT -complex with HomR(T,Q)
computing ExtiR(T,M). We can apply the Künneth spectral sequence 6.9 on
Hom(T,Q) and functor T ⊗S −. Then its spectral sequence

0

''OO
OOO

OOO
OOO

OOO
OOO

OOO

To
rS(

T,
Ex

t
1
R
(T
,M

))

''OO
OOO

OOO
OOO

OOO
OOO

OOO

T ⊗S
Ex

t
1
R
(T
,M

))

0

OOOOOOOOO

OOOOOOOOO
0

OOO
OOO

OOO

OOO
OOO

OOO

To
rS(

T,
Ho

mR
(T
,M

))

T ⊗S
Ho

mR
(T
,M

))
M???

__????

0

In fact, T ⊗S HomR(T,Q) = Q whose cohomology is exactly M centered in
the degree 0. In this special case, the spectral sequence converges, since only
above four terms survive.

0 −→ T ⊗S HomR(T,M) −→M −→ Tor1S(T,Ext
1
R(T,M)) −→ 0.



6 Algebra (I) 61

and
Tor1S(T,HomR(T,M)) = 0 = T ⊗S Ext1R(T,M).

Similarly,

0

''OO
OOO

OOO
OOO

OOO
OOO

OOO

Ho
mR

(T
, T

⊗S
N)

''OO
OOO

OOO
OOO

OOO
OOO

OOO
Ex

tR
(T
, T

⊗S
N)

0

OOOOOOOOO

OOOOOOOOO
0

OOO
OOO

OOO

OOO
OOO

OOO

Ho
m
1
R
(T
,T
orS

(T
,N

))

Ex
t
1
R
(T
,T
orS

(T
,N

))
N???

__????

0

We get short exact sequence

0 −→ Ext1R(T,Tor
S
1 (T,M)) −→ N −→ HomR(T, T ⊗S N)) −→ 0.

and
ExtR(T, T ⊗S N) = 0 = Hom1

R(T,TorS(T,N)).

The rest statements can be derived from the above functorial short exact
sequence and vanishing condition. Q.E.D.

Exercises
6.22. Prove 6.3.

6.23. Prove that for hyper-resolution C → I, the induced map C → Tot I is
a quasi-isomorphism as claimed in 6.3.

6.24. Prove the classic Künneth spectral sequences 6.9 by picking a resolution
for M .

Hint Pick a resolution P →M . Then C ⊗ P forms a double complex,

C
q+

1 ⊗ P2//
C
q+

1 ⊗ P1//
C
q+

1 ⊗ P0

C
q ⊗ P2 //

C
q ⊗ P1 //

C
q ⊗ P0

C
q−

1 ⊗ P2//
C
q−

1 ⊗ P1//
C
q−

1 ⊗ P0

C
q+

1 ⊗M

C
q ⊗M

OO

C
q−

1 ⊗M

OO

H
q+

1 (C
⊗M

)

H
q (C

⊗M
)

H
q−

1 (C
⊗M

)
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Here we use the fact that Ci are all flat. On the other hand,

C
q+

1 ⊗ P2

C
q+

1 ⊗ P1

C
q+

1 ⊗ P0

C
q ⊗ P2

OO

C
q ⊗ P1

OO

C
q ⊗ P0

OO

C
q−

1 ⊗ P2

OO

C
q−

1 ⊗ P1

OO

C
q−

1 ⊗ P0

OO

H
q+

1 (C
)⊗

P2

//

H
q+

1 (C
)⊗

P1

//

H
q+

1 (C
)⊗

P0

H
q (C

)⊗
P2
//

H
q (C

)⊗
P1
//

H
q (C

)⊗
P0

H
q−

1 (C
)⊗

P2

//

H
q−

1 (C
)⊗

P1

//

H
q−

1 (C
)⊗

P0

To
r2(

H
q+

1 (C
),M

)

''OO
OOO

OOO
OOO

O

To
r1(

H
q+

1 (C
),M

)

H
q+

1 (C
)⊗

M

To
r2(

H
q (C

),M
)

''OO
OOO

OOO
OOO

O

To
r1(

H
q (C

),M
)

H
q (C

)⊗
M

To
r2(

H
q−

1 (C
),M

)

To
r1(

H
q−

1 (C
),M

)

H
q−

1 (C
)⊗

M

6.25. Künneth Spectral Sequences Let C• a bounded complex with each Ci

flat. Prove that there exists a spectral sequence

Epq
2 =

⊕
s+t=q

Tor−p(H
s(C),Ht(M)) =⇒ Hp+q(Tor(C ⊗M)).

Hint We can find a (projective) hyper-resolution P → M . Then let us com-
pute

TotK, K•
p = TotC• ⊗ P •

p

We can compute that

⊕
s+

t=
q+

1

C
s ⊗ P

t
1

//⊕
s+

t=
q+

1

C
s ⊗ P

t
0

⊕
s+

t=
q

C
s ⊗ P

t
1
//⊕

s+
t=

q

C
s ⊗ P

t
0

⊕
s+

t=
q+

1

C
s ⊗M

t

⊕
s+

t=
q

C
s ⊗M

t

OO
H
q+

1 (T
ot(

C
⊗M

))

H
q (T

ot(
C
⊗M

)

⊕
s+

t=
q+

1

C
s ⊗ P

t
1

⊕
s+

t=
q+

1

C
s ⊗ P

t
0

⊕
s+

t=
q

C
s ⊗ P

t
1

OO

⊕
s+

t=
q

C
s ⊗ P

t
0

OO ⊕
s+

t=
q+

1

H
s (C

)⊗
H
t
1

//⊕
s+

t=
q+

1

H
s (C

)⊗
H
t
0

⊕
s+

t=
q

H
s (C

)⊗
H
t
1

//⊕
s+

t=
q

H
s (C

)⊗
H
t
0

⊕
s+

t=
q+

1

To
r
( H

s (C
), H

t (M
)
)

''OO
OOO

OOO
OOO

OOO
OO⊕

s+
t=

q+
1

H
s (C

)⊗
H
t (M

)

⊕
s+

t=
q

To
r
( H

s (C
), H

t (M
)
)

⊕
s+

t=
q

H
s (C

)⊗
H
t (M

)

6.26. Let T be a tilting module. Show that T (T ) = GenT the category of
modules which can be written as a quotient of T⊕n.
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7 Algebra (II)

Grothendieck Spectral Sequences
7.1. Let A, B and C be three categories with enough injectives. Consider two
left exact functors F and G

A G◦F //

F ��@
@@

@@
@@

@ C

B
G

??��������

Assume for any injective object
I in A, F (I) is G-acyclic, that
is RiG(FI) = 0 for i ≥ 1.

(∗)

In terms of derived category, RG ◦RF = R(G ◦ F ).

Tip Assume a class of objects J ⊆ A is both G ◦ F -acyclic and F -acyclic,
such that for any A ∈ A there is an injection A → J for J ∈ J . Then any
injective objective is a direct summand of J for some J ∈ J . Thus it suffices
to check the conditioin for I in J .

7.2. Grothendieck Spectral Sequences Under the assumption of (∗), for any
A ∈ A, we have a spectral sequence

Epq
2 = RpG(RqF (A)) =⇒ (Rp+q(G ◦ F ))(A).

Proof Pick an injective resolution A → I, and apply the Künneth spectral
sequence 6.6 to F (I). But to prove them directly is not hard. Find a hyper-
resolution for F (I) → J . Let us compute the cohomology of the double
complex G(J).

G(
J
02 ) //

G(
J
12 ) //

G(
J
22 )

G(
J
01 ) //

G(
J
11 ) //

G(
J
21 )

G(
J
00 ) //

G(
J
10 ) //

G(
J
20 )

G(
F (

I
2 ))

G(
F (

I
1 ))

OO

G(
F (

I
0 ))

OO
(R

2 (G
◦ F

))(
A)

(R
1 (G

◦ F
))(

A)

(R
0 (G

◦ F
))(

A)
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Here we use the assumption that F (Iq) are all G-acyclic. One the other hand,

G(
J
02 )

G(
J
12 )

G(
J
22 )

G(
J
01 )

OO

G(
J
11 )

OO

G(
J
21 )

OO

G(
J
00 )

OO

G(
J
10 )

OO

G(
J
20 )

OO

G(
H
02 ) //

G(
H
12 ) //

G(
H
22 )

G(
H
01 ) //

G(
H
11 ) //

G(
H
21 )

G(
H
00 ) //

G(
H
10 ) //

G(
H
20 )

G(
R
2 F (

A)
)

''OO
OOO

OOO
OO

R
1 G(

R
2 F (

A)
)

R
2 G(

R
2 F (

A)
)

G(
R
1 F (

A)
)

''OO
OOO

OOO
OO

R
1 G(

R
1 F (

A)
)

R
2 G(

R
1 F (

A)
)

G(
F (

A)
)

R
1 G(

F (
A)

)

R
2 G(

F (
A)

)

where H = H(J, d(1,0)), this computation follows from the fact Jp• splits.
Note that

RqA = Hq(F (I)) −→ Hq(J) = H•q

is assumed to be an injective resolution. Q.E.D.

7.3. First Five Terms As suggested 3.13, we have the first five terms

0

''OO
OOO

OOO
OOO

OOO
OOO

OOO 0

''OO
OOO

OOO
OOO

OOO
OOO

OOO
G(

R
1 F (

A)
)

''OO
OOO

OOO
OOO

OOO
OOO

O

G(
F (

A)
)

G(F (A))??

__?????

R
1 G(

F (
A)

)

(R1(G◦F )(A))???

__????

R
2 G(

F (
A)

)

R2(G◦F )(A))__???

7.4. Actually, from the proof of the Grothendieck spectral sequences, we have
a spectral sequence

Epq
2 = RpG(RqF (C)) =⇒ Hp+q(RG ◦RF (C))

for a lower bounded complex C. Here RF is the derived functor over derived
category. The conditions in (∗) are just to ensure Hp+q(RG ◦ RG(A)) =
Rp+q(G ◦ F )(A).
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7.5. Change of Ring Let A φ→ B be a ring homomorphism. Let M be an A
module, N be a B module (left or right indicated by notations).

A-Mod
−⊗AN //

−⊗AB   B
BB

BB
BB

B Ab

Bop-Mod

−⊗BN

AA�������
E2

pq = TorBp (Tor
A
q (M,B), N) =⇒ TorAp+q(M,N)

A-Mod
N⊗A− //

B⊗A− ��>
>>

>>
>>

Ab

B-Mod

N⊗B−

CC������
E2

pq = TorBp (N,Tor
A
q (B,M)) =⇒ TorAp+q(N,M)

A-Mod
HomA(−,N)//

B⊗A− ��>
>>

>>
>>

Abop

B-Mod

HomB(−,N)

AA�������
Epq

2 = ExtpB(Tor
A
−q(B,M), N) =⇒ TorA−p−q(N,M)

A-Mod
HomA(N,−) //

HomA(B,−) ��>
>>

>>
>>

Ab

B-Mod

HomB(N,−)

CC������
Epq

2 = ExtpB(N,Ext
q
A(B,M)) =⇒ Ext∗A(N,M)

7.6. Local Hom Recall the local Hom HomX(F ,G) for two sheaves F , G over
X. We can define Ext i(F ,G) as derived functor of the second variable G. Then
we have sepctral sequence

Epq
2 = Hp(X, Extq(F ,G)) =⇒ Extp+q(F ,G).

A similar result holds for coherent sheaves over scheme X.
This comes from the Grothendieck spectral sequence on Γ(X,HomX(F ,−)) =

HomX(F ,−). By definition, HomX(F , •) is flabby if • is.

7.7. Tilting modules From the point view of derived category, titling module
sets an equivalence of derived category, when the projective dimension of R is
finite, we have

D(R-Mod)
RHomR(T,−) // D(S-Mod)

T⊗L
S−

oo
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Then we can apply Grothendieck spectral sequence on

D(R-Mod)

RHomR(T,−) ��?
??

??
?

id // D(R-Mod)

D(S-Mod)
T⊗L

S−

??������

D(S-Mod)
id //

T⊗L
S− ��?

??
??

?
D(S-Mod)

D(R-Mod)
RHomR(T,−)

??������

We will immediately get the spectral sequences in the proof of 6.21.

Group Cohomology
7.8. Group cohomology Let G be a disrecte group, and M a Z[G]-module,
we define

MG = HomG(Z,M) = {m ∈ G : ∀g∈G, gm = m},
MG = Z⊗G M =M

/
(gm−m : g ∈ G).

where Z = Ztri with trivial G-action. We call their derived functors by group
(co)homology

Hn(G;M) = ExtnG(Z;M), Hn(G;M) = TorGn (Z;M).

7.9. Group cohomology enough For two G modules M,N , Hom(M,N) is
also a G-module by (gf)(m) = gf(g−1m); M ⊗ N is also a G-module by
g(m⊗ n) = gm⊗ gn. So

HomG(M,N) = Hom(M,N)G, M ⊗G N = (M ⊗N)G.

More general,

ExtnG(M,N) = Hn(G; Hom(M,N)), TorGn (M,N) = Hn(G;M ⊗N).

7.10. When M is free Z[G]-module, then

Hom(M,N) ∼= Hom(M,Ntri), M ⊗N ∼=M ⊗Ntri

where Ntri is the abelian group N but with trivial G-action. Note that this
does not mean Hn(G;N) = Hn(G;Ntri), since above isomorphism is not
natural in M .
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7.11. Shapiro Lemma Let H be a subgroup of a discrete group G and M a
Z[H]-module. Then

Hn(G;M⇑GH) = Hn(H;M), Hn(G;M↑GH) = Hn(H;M),

where
M⇑GH := HomH(Z[G],M), M↑GH := Z[G]⊗H M.

Proof Let P• → Z be a Z[G]-projective resolution. Then it is also an Z[H]-
projective resolution. Then

Hn(G;M⇑GH) = Hn(HomG(P•,HomH(Z[G],M)))
= Hn(HomH(P•,M)) = Hn(H;M).

Hn(G;M↑GH) = Hn(P• ⊗G Z[G]⊗H M))
= Hn(P• ⊗H M) = Hn(H;M).

Actually, this can also be seen from the fact both sides are derived functor of

HomG(Z,−⇑GH) = HomG(Z,HomH(Z[G],−)) = HomH(Z,−)
Z⊗G −↑GH = Z⊗G Z[G]⊗H − = Z⊗H −

We need to use the fact ⇑GH and ↑GH are exact. Q.E.D.

7.12. (Co)induced G-module In particular, when H is the trivial subgroup.
Then the coinduced and induced G-modules

M⇑G := HomZ(Z[G],M), M↑G := Z[G]⊗Z M,

are G-(co)cyclic. That is, for n ≥ 1

Hn(G;M⇑G) = 0, Hn(G;M↑G) = 0.

7.13. For a Z[G]-projective resolution P• → Z.

• For a subgroup H, P• → Z is also a Z[H]-projective resolution.

• For a normal subgroup N , (P•)N → Z is a Z[G/N ]-projective resolution.

7.14. Restriction For a subgroup H ⊆ G, we can define (co)restriction

Hn(G;M)
res−→ Hn(H;M), Hn(H;M)

cores−→ Hn(G;M).

It is induced by
MG ↪→MH , MH ↠MG.
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7.15. Inflation For a normal subgroup N ⊆ G, we can define (co)inflation

Hn(G/N ;MN )
inf−→ Hn(G;M), Hn(G;M)

coinf−→ Hn(G/N ;MN ).

It is induced by

(MN )G/N =MG, MG = (MN )G/N .

7.16. Hochschild Spectral Sequences Let G be a discrete group, and N be
a normal subgroup. For any G-module M , there a spectral sequence

Epq
2 = Hp(G/N ;Hq(N ;M)) =⇒ Hp+q(G;M).

E2
pq = Hp(G/N ;Hq(N ;M)) =⇒ Hp+q(G;M).

Proof Note that

G-Mod

(−)N &&MM
MMM

MMM
MMM

(−)G // Ab

G/N -Mod
(−)G/N

::ttttttttt

Firstly, the derived functor of (−)N coincides with H(N ;−) (this is not triv-
ial), since a projective Z[G]-module is also a projective Z[N ]-module, thus the
computation of cohomology is the same.

Secondly, we see that any G-module M admits an injective G-map to
coinduced module M → HomZ(Z[G],M), and coinduced G-modules are also
coinduced N -modules. Thus coinduced module is enough to compute the
Hi(G;−) and Hi(N ;−). Now

HomZ(Z[G],M)N = HomN

(
Z,HomZ(Z[G],M)

)
= HomZ(Z[G]⊗N Z,M) = HomZ(Z[G/N ],M)

is also coinduced. Thus we can apply the Grothendieck spectral sequence 7.2.
For homology, we can argue similarly, for any G-module M , we have a

surjective G-map Z[G]⊗ZM →M . The details are left to readers. Q.E.D.
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7.17. First Five Terms In particular, we have the first five term sequence 3.13

0 // H1(G/N ;MN )
inf // H1(G;M)

res // H1(N ;M)G/N EDBCGF d@A
// H2(G/N ;MN )

inf // H2(G;M) // ??

?? // H2(G;M)
coinf// H2(G/N ;MN ) EDBCGF d@A

// H1(N ;M)G/N
cores // H1(G;M)

coinf// H1(G/N ;MN ) // 0

0

''OO
OOO

OOO
OOO

OOO
OOO

OOO 0

''OO
OOO

OOO
OOO

OOO
OOO

OOO

H
1 (N

;M
)
G/N

''OO
OOO

OOO
OOO

OOO
OOO

O

MG

MG???

__?????

H
1 (G

/N
;M

N )

H1(G;M)??

__???

H
2 (G

/N
;M

N )

H2(G;M)__??

0 gg

OOO
OOO

OOO
OOO

OOO
OOO

OO 0 gg

OOO
OOO

OOO
OOO

OOO
OOO

OO

H1(
N ;M

)G/N

gg

OOO
OOO

OOO
OOO

OOO
OOO

MG

��
MG???

?????

H1(
G/

N ;M
N
)

��
H1(G;M)??

???

H2(
G/

N ;M
N
)

H2(G;M)
��

??

7.18. Equivariant Cohomology Geometrically,

Hn(G;Z) = Hn(K(G, 1)), Hn(G;Z) = Hn(K(G, 1)).

Slightly generally, for a G-module M , it induced a local system M over
K(G, 1), actually, Hn(G;M) = Hn(K(G, 1);M).
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In general, for continuous group G, we should replace K(G, 1) by the
classifying space BG = EG/G constructed by Milnor. For any G-space X,
and an equivariant sheaf F over X, it induces a sheaf FG over the Borel
construction EG×G X. We define equivariant cohomology

H•
G(X;F) = H•(EG×G X;FG).

By 9.6 there is a spectral sequence

Epq
2 = Hp(BG;Hq(X;F)) =⇒ Hp+q

G (X;F).

Note that the group cohomology is the case when G is discrete and X is a
point.

7.19. Bar resolution For any G-module M , there is a standard free resolution
P• → N where Pn =

(
Z[G]⊗n ⊗N

)
↑G with differentials given by

Pn −→ Pn−1 g0(g1| · · · |gn|x) 7−→
g0g1(g2| · · · |gn|x)

+
∑n−1

i=i (−1)i(· · · |gigi+1| · · · |x)
+(−1)n(· · · |gnx)

Here we use | rather than ⊗ to save places, the reason it is called the bar
resolution of M . It is exact since it admits a Z-homotopy g0(g1| · · · |gn|m) 7→
(g0|g1| · · · |gn|m).

7.20. In terms of Cycles We will use the case of M = Z. The first several
terms are

··· 3 2 1 0

· · · −→ Z[G]⊗ Z[G]⊗3 −→Z[G]⊗ Z[G]⊗2−→Z[G]⊗ Z[G]−→Z[G]−→Z
g 7−→ 1

g0 ⊗ g1 −→ g0g1 − g0
g0 ⊗ g1 ⊗ g2 7−→ g0g1 ⊗ g2 − g0 ⊗ g1g2 + g0 ⊗ g1

g0 ⊗ g1 ⊗ g2 ⊗ g3 7−→ g0g1 ⊗ g2 ⊗ g3 − g0 ⊗ g1g2 ⊗ g3 + g0 ⊗ g1 ⊗ g2g3 − g0 ⊗ g1 ⊗ g2

We see that

H1(G;M) =

{
G

f→M : f(g1g2) = g1f(g2) + f(g1)
}{

G
f→M : ∃x ∈M,f(g1) = g1x− x

} :=
Der(G,M)

DerInn(G,M)
.

H2(G;M) =

{
G×G f→M : g1f(g2, g3) + f(g1, g2g3) = f(g1g2, g3) + f(g1, g2)

}{
G×G f→M : ∃G h→M,f(g1, g2) = g1h(g2)− h(g1g2) + h(g1)

} .
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Actually, the five terms sequences 7.17 above can be proved directly by dia-
gram chasing using above presentation.

7.21. In particular, under the condition of 7.16, when M is a G/N -module,
the sequence can be modified to be

0→ Der(G/N,M)→ Der(G,M)→ HomG/N (Nab,M)→ H2(G/N ;M)→ H2(G;M),

where the G/N -module action on the Nab = N/[N,N ] is induced from the
conjugation action of G.

7.22.H2-term Actually, from this sequence, we can get the famous fact that
H2(G;M) parametrizes the set of short exact sequences of groups

0 −→M −→ E −→ G −→ 1

with M an abelian normal subgroup, and the conjugation action of G on M
is the given one. Here is the sketch

• Take a free presentation of G

1 −→ K −→ F −→ G −→ 1.

It is known that H2(F ;−) = 0 for free group F .

• We have a bijection
F

��?
??

??

��
0 // M // E // G // 1

/ ∼= = HomG(Kab,M).

The converse is given by the construction of semi-fibre product.

• We need to erase the difference of different lifting F → E, i.e. differing
by a derivative F →M should be viewed equally, that is{
0→M → E → G→ 1

}/ ∼= = cok

[
Der(F,M)→ HomG(Kab,M)

]
.

By the five term sequence above, it is H2(G;M).

Of course, this fact can also be derived in terms of cycles from reduced bar
resolution.
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Hochschild Cohomology
7.23. Hochschild Cohomology Let k be a field for simplicity. Let R be an
k-algebra. Denote Ae = R ⊗k R

op the enveloping algebra. Let M be a
Ae-module. We define

MR = HomRe(R,M) = {m ∈M : ∀r∈R, rm = mr}
MR = R⊗Re M =M/(rm−mr : r ∈ R)

We define the Hochschild (co)homology by its derived functor

HHn(R;M) = ExtnRe(R,M), HHn(R;M) = TorR
e

n (R,M).

7.24. For two R-modules M,N , Hom(M,N) is an Re-module by (rfs)(m) =
rf(sm). For right R-module M and left R-module N , M ⊗k N is also a
Re-module by r(m⊗ n)s = ms⊗ rg. So

HomR(M,N) = Hom(M,N)R, M ⊗R N = (M ⊗N)R.

More general,
ExtnR(M,N) = HHn(R; Hom(M,N)), TorRn (M,N) = HHn(R;M ⊗N).

7.25. Bar Resolutions We have a bar resolution B• → R by Bn = R ⊗k
R⊗n ⊗k R, with

d(x0 | · · · | xn+1) =

n∑
i=0

(−1)ix0 | · · · | xixi+1 | · · ·xn+1.

Here | the “bar” is a abbreviation of ⊗. Actually, S(x0 | · · · | xn) 7−→ 1 | x0 |
· · · | xn provides a homotopy. Diagrammatically,

∑
(−1)i

[ R · · · R R · · · R

R · · · R · · · R

]
In particular,

HH1(R;M) =

{
R

linear f−→ M : f(x1x2) = x1f(x2) + f(x1)x2
}{

R
linear f−→ M : ∃x ∈M,f(x1) = x1x− xx1

} :=
Der(R,M)

DerInn(R,M)
.

HH2(R;M) =

{
R⊗R linear f−→ M :

x1f(x2, x3) + f(x1, x2x3)
= f(x1x2, x3) + f(x1, x2)x3

}
{
R×R linear f−→ M : ∃R

linear h−→ M f(x1, x2)
= x1h(x2)− h(x1x2) + h(x1)x2

} .
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7.26. Similar to group cohomology 7.21, we also have

0→ Der(R/I,M)→ Der(R,M)→ HomR/I(Iab,M)→ HH2(R/I;M)→ HH2(R;M),

where the R/I-module action on the Iab = I/[I, I] is induced from the multi-
plication action of R. But the author does not know to how to prove it using
a spectral sequence argument.

7.27. We have the similar result that HH2(R;M) parametrizes short exact
sequence of rings

0 −→M −→ S −→ R −→ 0

with M an square-free ideal (say, M2 = 0), and the induced R-bimodule
action on M is the given one. Of course, this fact can also be derived in terms
of cycles from reduced bar resolution.

Exercises
7.28. Grothendieck Spectral Sequences Prove that we have complex version
of Grothendieck spectral sequence for lower bounded complex C under the
condition of 7.2

Epq
2 = RpG(RqF (C)) =⇒ (Rp+q(G ◦ F ))(C).

For readers familiar with derived category, try to show 7.4.

7.29. Prove 7.13.

7.30. Prove Cartan–Leray spectral sequence 5.6 by Künneth spectral sequence
6.6.

7.31. Algebra Structure There is a natural algebra structure over H•(G;Z) =
Ext•G(Z,Z) or HH•(R;R) = Ext•Re(R,R) by Yoneda pairing. Show that
they are graded-commutative

xy = (−1)deg x deg yyx

by a generalized Eckmann–Hilton argument.
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Hint For a resolution P• → Z, the product P• ⊗G P• is also a projective
resolution of Z. Assume x = [f ] and y = [g] with deg x = m and deg y = n.
Then

P•

f

��
P•[m]

g

��
P•[m+ n]

→

P• ⊗ P•

id

��
f

��
P• ⊗ P•[m]

id

��
g

��
P• ⊗ P•[m+ n]

→

P• ⊗ P•

id

��
f

��
P• ⊗ P•[m]

g

��
id

��
P•[n]⊗ P•[m]

→

P• ⊗ P•

g

��
id

��
P•[n]⊗ P•

id

��
f

��
P•[n]⊗ P•[m]

→

P•

g

��
P•[m]

f

��
P•[m+ n]

The above → are all homotopy up to sign. Then by Kozsul convention 2.12,
the sign is just reflected by the graded commutativity.
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8 Geometry (I)

8.1. In this section, we assume every space to be paracompact (every open
cover has a locally finite open refinement) which admits partitions of unity.
For example, manifolds, CW complexes, algebraic varieties under complex
topology.

Degeneration
8.2. Degeneration We say a spectral sequence degenerates at the r-th stage
if Er = E∞, i.e. there is no nonzero differential ≥ r.

8.3. Relation to Leray–Hirsch theorem Assume the fibre bundle satisfies the
condition of Leray–Hirsch theorem 4.4. Then the spectral sequence degen-
erates at E2, i.e. E2 = E∞. Since the cohomology cannot be “less than”
E2.

Conversely, for path-connected B, if the spectral sequence degenerates at
E2, and H•(F ) is a free module, then we can lift a set of generators to H•(X)
(since E0r

∞ = E0r
2 = Hr(F ) is a quotient of Hr(X)), then it satisfies the

condition of Leray–Hirsch theorem.

8.4. For a fibre bundle ξ =

[
E

↓
X

]
with fibre F , if Hodd(F ) = Hodd(X) = 0,

then the spectral sequence for ξ degenerates.

''OO
OOO

OOO
O

''OO
OOO

OOO
O

''OO
OOO

OOO
O

''OO
OOO

OOO
O

$$J
JJ

JJ
JJ

JJ
JJ

JJ
JJ

$$J
JJ

JJ
JJ

JJ
JJ

JJ
JJ

$$J
JJ

JJ
JJ

JJ
JJ

JJ
JJ

$$J
JJ

JJ
JJ

JJ
JJ

JJ
JJ

8.5. Degeneration Theorem If the Leray–Serre spectral sequence for ξ de-
generates at E2, then so is its pull back.
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Proof Firstly, the differential of E2 for f∗ξ are all zero. Due to the mul-
tiplicative structure, it suffices to show the differential from E0n

2 . By the
functoriality, it is zero

E0n

∼

zztt
tt
tt
tt
tt
tt
tt 0

''OO
OOO

OOO

Er,n−r+1

zztt
tt
tt
tt
tt
tt
tt

E0n

''OO
OOO

OOO

Er,n−r+1

Then the differential of E3 for f∗ξ are all zero. Due to the multiplicative
structure (the same structure as E2 since the differentials of E2 are zero), it
still suffices to show the differential from E0n

3 . So the general case has no
difference and can proved by induction. Q.E.D.

Flags, Grassmannians, etc.
8.6. Denote C∞ =

⊕∞
i=1 Cei, under the inductive topology (topology for in-

ductive limit).

8.7. Projective Spaces For any complex vector space V (not necessarily finite
dimensional), we define the projective space

PV = {linear subspace ` ⊆ V : dim ` = 1}.

For V = CN+1 (resp. C∞), it is usually denoted by CPN (resp. CP∞). Then

H•(P(V )) =

{
Z[H]

/
(HdimV+1) dimV <∞

Z[H] dimV =∞
degH = 2.

The generator H = HV ∈ H2(P(V )) is universal in the following sense, for any
linear subspace W ⊆ V , the natural map H2(P(V ))→ H2(P(W )) induced by
PW ⊆ PV sending HV to HW .

Proof For any choice of V ∼= CN+1, it defines a stratification (cellular) struc-
ture

PV = pt tC t C2 t · · · t CN
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Thus,
i 0 1 2 3 4 · · · 2N

Hi(PV ) Z Z Z · · · Z

Hi(PV ) Z Z Z · · · Z

In homology,
H2i(PV ) = Z · [Li],

where Li is the closure of Ci in the stratification, an i-plane. Actually, this can
be any i-plane since GLN+1(C) is connected and acts on i-planes transitively.
Then by Poincaré duality, when dimV <∞,

H2i(PV ) = Z · [Hi],

where Hi is any (n−i)-plane. In particular [H] ∈ H2(P(V )) is the hyperplane,
and [Hi] = [H]i by linear algebra. Thus

H•(P(V )) = Z[H]
/
(HdimV+1).

For the infinite case, note that PV ⊆ PC∞ induces algebra homormohphism
H•(PC∞)→ H•(PV ) which is isomorphic for • < 2 dimV . Thus

H•(P(V )) = Z[H].

From the construction, we see the choice of H is universal. Q.E.D.

8.8. Partial Flag Varieties Let d = (d1, . . . , dn) ∈ Nn
0 with |d| := d1 + · · · +

dn = d. Denote

F`(d, V ) =

{
0 = V0 ⊆ V1 ⊆ · · · ⊆ Vn ⊆ V : dimV∗/V∗−1 = d∗

}
.

It suffices to consider two cases, dimV =∞, and dimV = d since in the finite
dimensional case we can add dimV − dn if necessary. Then

H•(F`(d, V )) =


Z[x1, . . . , xd]Sd〈

Z[x1, . . . , xd]Sd

deg≥1

〉 dimV = d

Z[x1, . . . , xd]Sd dimV =∞

where deg xi = 2, and Sd = Sd1
× · · · ×Sdn

⊆ Sd.
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8.9. Here is some other notations for F`(d, V )

• When V = C∞, we will just write F`(d,∞).

• When V = Cd, we will just write F`(d).

• For d = (1, . . . , 1) we will simply denote F`(d,∞) by F`(d,∞), the
infinite flag variety. By above theorem, its cohomology is Z[x1, . . . , xd]
the algebra of polynomials of d variables.

• We also denote when dimV = d, F`(d, V ) = F`(V ) and F`(d) by
F`(d), called the flag varieties.

• For d = (d), we will denote F`(d,∞) by Gr(d,∞), the infinite Grass-
mannian. By above theorem, its cohomology is Z[x1, . . . , xn]Sd the
algebra of symmetric polynomialn of d variables.

• For d = (k, d − k), we will denote F`(d) by Gr(k, d), the Grassman-
nian.

Sketch of the Proof of 8.8 We pick a unitary product on V . Then by picking
unitary basis, we see

F`(d, V ) =

{
(`1, . . . , `n) :

∀i, dim `i = di,
∀i 6=j , `i ⊥ `j

}
.

Thus we have

//F`(d1)
×...×

F`(dn)

F`(d)

��

// F`(d)

��
// F`(d,∞) //

wwooo
ooo

ooo
o

��

F`(d,∞)

��
CP∞ Gr(d,∞)

CP∞���
��
��
��
��
��
��

CP∞

�
��
��
��
��

hh
Sn action

66T _ j

mm

##

[ T
L

We can define xi ∈ H•(F`(d,∞)) the pull back of hyperplane section through
the i-th projection F`(d,∞)→ CP∞.
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• By inductively using Leray–Hirsch theorem 4.4, we can prove that F`(d,∞)
satisfies the theorem. Note that the fibre of each projection is F`(d −
1, `⊥i )

∼= F`(d− 1,∞), and one should use the universality of H in 8.7.

• By induction on d, We can prove the vanishinig of odd cohomology
and the Poincaré polynomials for F`(d,∞), F`(d). Thus we can do so
for Gr(d,∞), F`(d,∞) and F`(d) since the degeneration of spectral
sequence can be implied by Leray–Hirsch theorem.

• Note that Sd acts on n-projections, and the cohomology of F`(d,∞) is
exactly the Sd-invariant part. The inclusion follows directly, and the
equality follows from the computation of Poincaré polynomials.

• Finally, by spectral sequence

H•(F`(d)) = Z ⊗
H•(Gr(n,∞))

H•(F`(d,∞)).

This gives the description in the theorem. Q.E.D.

8.10. Remark We know BGLr = Gr(r,∞). Acually, the computation in the
proof can be generalized to the computation of H•(BG;Q) for a lie group
G. But a nice description for coefficient Z cannot be generalized. On the
other hand, F`(d, V ) has a cellular structure of only even cells, thus no odd
cohomology. It is the topic of classic Schubert calculus.

Vector Bundles
8.11. Vector Bundles We can rewrite the definition of fibre bundle in terms
of coordinate.

A map ξ =

[
E

↓
X

]
is said to be a fibre bundle if there exists an open

covering U , and coordinates
{
(U,ϕU ) :

U ∈ U ,
ξ−1(U)

φU−→
∼
U × F

}
with

ϕV ◦ ϕ−1
U : (U ∩ V )× F → (U ∩ V )× F

induced by a continuous map (U∩V )→ Aut(F ) = {self-homoemorphism of F}.
A vector bundle is the case F is an r-dimensional vector space, and

Aut(F ) replaced by GLr. We call r the rank of the vector bundle. When the
rank is 1, it is usually referred as a line bundle.
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We will mainly focus on C-vector spaces. A morphism between vector
bundles is locally linear, i.e. given by a continuous map U ∩V → Hom(F1, F2)
locally.

8.12. Tangent Bundles For a manifold M , denote the tangent bundle TM =⋃
x∈M TxM . By the theory of manifold, it is a manifold of dimension 2 dimM .

The projection
[
TM

↓
M

]
is a vector bundle, called the tangent bundle.

8.13. Tautological Bundle Recall that the the projective space CPN is the
space of all lines in CN+1. We define P = {(`, x) ∈ CPN × CN+1 : x ∈ `}.

Then
[

P

↓
CPN

]
is a rank 1 vector bundle. This is known as tautological bundle,

since the fibre at ` is ` itself. The same construction can be done for F`(d, V )
(but with n many).

8.14. Classifying Theorem We have a bijection

VecrC(X) −→ π(X,Gr(r,∞))

where π(−,−) = Map(−,−)
/

Homotopy is the homotopy classes of maps.
Moreover, this bijection is natural in X. To be exact,

any rank r vector bundle over X is isomorphic to the pull back of
the tautological bundle over Gr(r,∞) for some mapX → Gr(r,∞).

We say ξ is classified by this map.

Sketch of the Proof By an argument of partition of unity, we can embed

any vector bundle ξ into the trivial vector bundle of infinite rank
[
X×C∞

↓
X

]
.

Then we define the classifying map X → Gr(r,∞) by sending x ∈ X to its
fibre in C∞. It is clear that the pull back of tautological bundle of Gr(r,∞)
gives back the vector bundle. Lastly, using the vector bundle over X × I, we
prove the bijection. Q.E.D.

8.15. Chern Classes Recall that

H•(Gr(r,∞)) = Z[x1, . . . , xn]Sn = Z[e1, . . . , en]
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with ei ∈ H•(Gr(r,∞)) is the i-th elementary polynomial in x1, . . . , xr. For
a vector bundle ξ over X, assume it is classified by f : X → Gr(r,∞), we
define the Chern classes ci(ξ) ∈ H2i(X) to be the pull back of (−1)iei ∈
H2i(Gr(r,∞)). In particular, ci(τ) = (−1)iei for tautological bundle τ over
Gr(r,∞). We define the total Chern class

c(ξ) = 1 + c1(ξ) + · · ·+ cr(ξ).

Then by definition, Chern Class commutes with pull back, that is, c(f∗ξ) =
f∗c(ξ) for vector bundle ξ and continuous map f .

8.16. Example Consider the tautological bundle Vi of F`(d, V ), i.e. at each
(0 = V0 ⊆ V1 ⊆ · · ·Vd ⊆ V ), the fibre is Vi. For the case F`(d,∞),
c(Vi/Vi−1) = 1− xi. Actually, Vi = `i ⊕ · · · ⊕ `1, where `i is the pull back of
tautological bundle over CP∞ through the i-th projection in the proof of 8.8.

8.17. Theorem For a vector bundle ξ and a sub-vector bundle η, we have
c(ξ) = c(ξ/η)c(η).

Proof Assume rank ξ = r, and rank η = s ≤ r. Actually the pair (η ⊆ ξ) is
classified by two-step Grassmannian (just as the proof of 8.14)

X −→ Gr(s, r − s,∞) = F`(d,∞), d = (s, r − s).

So it suffices to deal with the universal case — two tautological bundles η ⊆ ξ
over Gr(s, r − s,∞). Now the following maps

Gr(s, r − s,∞)

wwooo
ooo

ooo
oo

((QQ
QQQ

QQQ
QQQ

Q

��

Gr(s,∞) Gr(r − s,∞)

Gr(r,∞)

classify η, ξ and ξ/η respectively. The cohomology maps are all injective, and
by the proof of 8.8,

c(η) = 1− e1(x1, . . . , xs) + · · · = (1− x1) · · · (1− xs).
c(ξ/η) = 1− e1(xs+1, . . . , xr) + · · · = (1− xs+1) · · · (1− xr).
c(ξ) = 1− e1(x1, . . . , xr) = (1− x1) · · · (1− xr)

This proves the theorem. Q.E.D.
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8.18. Associated Flag Bundle For a vector bundle ξ =
[

E

↓
X

]
, the associative

projective bundle F`(ξ) =
[Fℓ(E)

↓
X

]
is obtained by exchanging each fibre Ex

by the corresponding flag variety F`(Ex) of it.

8.19. Splitting Principle The spectral sequence for the associated projective

bundle
[Fℓ(E)

↓
X

]
of a vector bundle degenerates, i.e. E2 = E∞. In particular,

H•(X)→ H•(F`(X)) is injective.
Note that, the pull back of ξ on F`(ξ) has a filtration of line bundles,

say, each point of F`(ξ) is a splitting of its fibre. This is known as splitting
principle.

Proof It suffices to deal with the universal case that the vector bundle is the
tautological bundle T over Gr(r,∞). By definition,

F`(T ) = F`(r,∞).

Then
[ Fℓ(T )

↓
Gr(r,∞)

]
degenerates by our computation. Q.E.D.

8.20. The theory of Chern classes can be reformulated in differential geometry
and algebraic geometry where spaces of infinite dimensional such as Gr(r,∞)
no longer exist. But we can try to prove the properties asserted as above.

8.21. Let V be a complex vector space. Let τ be the tautological bundle over
PV . Note that any nonzero f ∈ V ∗ defines a nonzero section of τ∗. Say,
at ` ∈ PV , it takes value f |ℓ ∈ `∗. Then its zero locus is P(ker f) ⊆ PV a
hyperplane. As a result, c1(τ∗) is the Poincaré dual to the class of the zero
locus of a general section. That is the reason why in algebraic geometry we
write τ∗ = O(1).

Since P(V ) is nearly universal for line bundles for dimV � 0, the above
intuition is also true for line bundles over general manifolds. To be exact, the
Chern class is the Poincaré dual to the class of the zero locus of a general
section (counting with orientation).

For general vector bundle, the corresponding class (the class Poincaré dual
to the zero locus of a general section) is called the Euler class. By splitting
principle, it is exactly the top Chern class of the vector bundle. This is one
motivation of defining Chern classes.
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Exercises
8.22. Definition (Associated Projective Bundle) For a vector bundle ξ =[

E

↓
X

]
, the associative projective bundle P(ξ) =

[ P(E)

↓
X

]
is obtained by ex-

changing each fibre Ex by the corresponding projective space PEx of it. We
can define the tautological bundle over P(E) whose fibre at ` ⊆ Ex is ` itself.

8.23. Degeneration Theorem The spectral sequence for the associated pro-

jective bundle
[ P(E)

↓
X

]
of a vector bundle degenerates, i.e. E2 = E∞.

Furthermore, as an algebra,

H•(P(E)) = H•(X) [H]

/(
Hr + c1(ξ)H

r−1 + · · ·+ cr(ξ)
)
,

where H = −c1(τ) ∈ H2(P(E)) with τ the tautological bundle of P(E).

Remark Actually, this is Grothendieck’s way of defining Chern classes in
algebraic geometry.

8.24. Classification of Line Bundles Use the Eilenberg–MacLane space 5.13
to show that the isomorphism class of a line bundle ξ is determined by its first
Chern class c1(ξ).
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9 Geometry (II)

9.1. In this section, we assume every space to be paracompact (every open
cover has a locally finite open refinement) which admits partitions of unity.
For example, manifolds, CW complexes, algebraic varieties under complex
topology.

Sheaf-theoretic Leray Spectral Sequences
9.2. Push Forward Let X → Y be a continuous map. If we have a sheaf F
over X, then we can define the push forward

f∗F =

[
U 7−→ F(f−1(U))

]
a sheaf over Y .

It turns out that f∗ is left exact, we define Rif∗ by its derived functor, the
higher push forward.

9.3. For example, when Y = pt, f∗ = Γ(X,−) is the same as the functor
of taking global sections. Thus Rif∗ = Hi(X;−) the functor taking i-th
cohomology.

9.4. Higher Direct Image The higher push forward admits an explicit de-
scription

Rif∗F = associated sheaf of
[
U 7−→ Hi

(
f−1(U);F|f−1(U)

)]
.

This techenique is known as higher direct image.

9.5. Leray Spectral Sequences For continous maps X f−→ Y
g−→ Z, there is

a spectral sequence

Epq
2 = Rpg∗(R

qf∗(F)) =⇒ Rp+q(g ◦ f)∗F ,

natural in F .

Proof Note that flabby (flasque, en français) sheaves are preserved by f∗, thus
it satisfies the condition of Grothendieck spectral sequences 7.2. Q.E.D.
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9.6. Sheaf-theoretic Leray Spectral Sequences For any continous mapX f−→
Y , there is a spectral sequence

Epq
2 = Hp(Y ;Rqf∗F) = Hp+q(X;F),

natural in F .

9.7. Assume a space X is locally contractible.
It is known that Hn(X;ZX) is the n-th singular cohomology of X, where

ZX is the constant sheaf. In general, Hn(X;LX) is the n-th singular coho-
mology of X with coefficient in L, see the remark 9.8 below.

Now consider a fibre bundle ξ =
[

E

↓
X

]
with fibre F . Then using the higher

direct image 9.4, we see that Rqξ∗ZE is the local system Hq(F ) over X. Thus
above spectral sequence recovers Leray–Serre spectral seqeuences 4.6.

9.8. Locally Constant Sheaves Recall a local system 4.7 is a functor from
the fundamental groupoid Π(X) to the category of abelian group Ab. We can
define a sheaf from a local system L, by

LX(U) = NatΠ(U)→Ab(Z,L|Π(U)),

where Z is the constant functor to Z ∈ Ab. That is, assign each x ∈ U an
element sx ∈ Lx, such that for any path x → y, the inducing map Lx → Ly

sending sx to sy.
Assume X to be locally simply-connected, This construction defines a lo-

cally constant sheaf. Conversely, we can recover the local system by taking
stalks. Actually, local system is the same thing as locally constant sheaf, and
we will not differ them in notation.

Čech Cohomology
9.9. Čech Spectral Sequences For a sheaf F and an open covering U , there
is a spectral sequence

Epq
1 = Hq(Up;F|Up) =⇒ Hp+q(X;F),

where Up is the formal disjoint union of all intersections of (p + 1) different
members of U , and F|Up is the pull back from X to Up.
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9.10. Before the proof, let us introduce a symbol convention. Pick a set of
symbol {ei : i ∈ I}. We define the wedge product ∧ which is associative with
the properties

ei ∧ ej = −ej ∧ ei, ei ∧ ei = 0.

We define the interior product ιei by

ιei
(ei0 ∧ · · · ∧ ein) =

∑
(−1)ℓ 〈ei, eiℓ〉 · ei0 ∧ · · · êiℓ · · · ∧ ein

where we assume 〈ei, ej〉 = δij . Note that for all i, j ∈ I

ιei
(ej ∧ −) + ej ∧ (ιei

−) = δij · id .

9.11. Proof of 9.9 Assume U is totally ordered by {Ui : i ∈ I}. Denote for
p ≥ 0, Ui0,...,ip = Ui0 ∩ · · · ∩ Uip , then Up =

⊔
i0<...<ip

Ui0,...,ip . Denote the
Čech complex Č(U ,F) by

Čp(U ;F) = F(Up) =
∏

i0<...<ip

ei0 ∧ · · · ∧ eip · F(Ui0,...,ip).

So every element α can be written in a form sum

α =
∑

i0<···<ip

ei0 ∧ · · · ∧ eip · αi0···ip , αi0···ip ∈ F(Ui0,...,ip).

The differential is defined to dα =
∑

i∈I ei ∧ α|Ui
.

• Firstly, by definition of a sheaf,

H0(Č(U ;F)) = ker

[ ∏
U∈U
F(U) −→

∏
U,V ∈U

F(U ∩ V )

]
= F(X).

• Secondly, assume F = (ix)∗F is supported on one point x, then Č(U ;F)
is acyclic. Actually,

[ −1

F −→
≥0

Č(U ;F)
]
=

⊗
Ui3x

[ 0

Z −→
1

eiZ
]
⊗ F [1].

A general fact of Kozsul complex tells us any exactness of tensor factor
kill the cohomology. Explicitly, we can pick one Uk 3 x, and define the
homotopy by α 7→ ιek

α the interior product.
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• Thirdly, assume F =
∏

x(ix)∗Fx for some abelian group Fx at each point
x

ix−→ X, then Č(U ;F) is acyclic.

Recall the construction of Godement resolution, we can pick a resolution F →
I with Č(U ; Iq) acyclic by above discussion. Then

I
2 (U

0 ) //
I
2 (U

1 ) //
I
2 (U

2 )

I
1 (U

0 ) //
I
1 (U

1 ) //
I
1 (U

2 )

I
0 (U

0 ) //
I
0 (U

1 ) //
I
0 (U

2 )

I
2 (X

)

I
1 (X

)

OO

I
0 (X

)

OO

H
2 (X

;F)

H
1 (X

;F)

H
0 (X

;F)

shows that Tot Č(U , I) computes Hn(X,F). On the other hand,

I
2 (U

0 )

I
2 (U

1 )

I
2 (U

2 )

I
1 (U

0 )

OO

I
1 (U

1 )

OO

I
1 (U

2 )

OO

I
0 (U

0 )

OO

I
0 (U

1 )

OO

I
0 (U

2 )

OO

H
2 (U

0 ,F|U
0)
//

H
2 (U

1 ,F|U
1)
//

H
2 (U

2 ,F|U
0)

H
1 (U

0 ,F|U
0)
//

H
1 (U

1 ,F|U
1)
//

H
1 (U

2 ,F|U
0)

H
0 (U

0 ,F|U
0)
//

H
0 (U

1 ,F|U
1)
//

H
0 (U

2 ,F|U
0)

This is the spectral sequence claimed in the theorem. Q.E.D.

9.12. Čech Cohomology In particular, when F has no higher cohomology
over Up, the Čech cohomology

Ȟn(U ,F) = Hn
(
Č•(U ,F)

)
computes the cohomologyHn(X;F). In particular, when F is flabby, the Čech
complex is acyclic. For example, when F = ZX , and X is locally contractible
topological space, lim−→U finer Ȟ

n(U ;F) = Hn(X;Z). For neotherian seperated
scheme X, any open affine cover U , we have Ȟn(U ;F) = Hn(X;F) for any
quasi-coherent sheaf F .

Spectral Sequences for Stratifications
9.13. For a sheaf F over X, and K ⊆ X, the notation restriction F|K stands
the pull back of F to K. Note that for example, when K is a point, this
notation stands the stalk at this point. Historically, this notation has different
meanings.
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9.14. Shriek Push Forward Let f : X → Y be continous. Let F be a sheaf,
denote the shriek push forward f!F to be the subsheaf of f∗F with section
of proper support, that is

f!F(U) = {s ∈ F(f−1(U)) : f |supp s is proper}.

It is known that f! is left exact, thus we can define its right derived functor
Rif!. It is known that the shriek push forward maps injective sheaves to c-soft
sheaves, thus satisfies the condition of Grothendieck spectral sequences.

9.15. For example, when Y = pt, f! = Γc(X,−) is the same as the functor of
taking global sections of compact support. Thus Rif! = Hi

c(X;−) the functor
taking i-th cohomology of compact support.

9.16. Higher Direct Image of proper support The higher shriek push forward
admits an explicit description on stalk

(Rif!F)y = Hi
c(f

−1(y);F|f−1(y)).

9.17. Excision Triangle For any open subset U ⊆ X, denote its complement
F := X \ U , and two inclusions j : U → X and i : F → X. For any sheaf F ,
we have a long exact sequence called excision long exact sequence

· · · −→ Hi
c(U ;F|U ) −→ Hi

c(X;F) −→ Hi
c(F ;F|F ) −→ Hi+1

c (U ;F|U ) −→ · · ·

9.18. For example, for F = ZX , this gives the long exact sequence of coho-
mology of compact support

· · · −→ Hi
c(U) −→ Hi

c(X) −→ Hi
c(F ) −→ Hi+1

c (U) −→ · · · .

9.19. Stratification Let X be a topological space. A stratification of X is
a finite set of manifolds S (strata) such that

X =
⋃
S∈S

S (disjoint) S1 ∩ S2 = S2 or ∅ for S1, S2 ∈ S.

We set

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xn = X Xk =
⋃

dimS≤k

S

We assume further that each Xk is closed (it is enough for applications).
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9.20. Spectral Sequences for Stratifications Assume F is sheaf over X with
a stratification S. Then there exists a spectral sequence

Epq
1 = Hp+q

c (Sp;F|Sp
) =⇒ Hp+q

c (X;F),

where Sp is the disjoint union of all dim p strata.

Proof Set Xk = X \Xk−1 =
⋃

dimS≥k S. Note that the excision long exact
gives

· · · −→ Hi
c(X

k+1;F|Xk−1) −→ Hi
c(X

k;F|Xk) −→ Hi
c(Sk;F|Sk

) −→ · · ·

Thus we have an exact couple.

Epq
1 = Hp+q

c (Sp;F|F ) =⇒ Hp+q
c (X;F).

This proves the theorem. Q.E.D.

9.21. Simplicial Cohomology For example, we apply this theorem on constant
sheaf ZX . It tells

Epq
1 = Hp+q

c (Sp) =⇒ Hp+q
c (X).

We know that for an open disc Dp of dimension p,

Hp+q
c (Dp;Z) =

{
Z, q = 0,

0 otherwise.

Thus when X has an affine stratification, i.e. each stratum is homoemorphic
to Rp for some p, then the cohomology of compact support can be computed
as simplicial cohomology 1.12. Note that to be a CW complex, we also need
to assume further that the boundary of each stratum is attached to lower
dimensional strata.

9.22. Complex Version of 9.20 The same excision long exact sequence holds
for hypercohomology Hi

c = RiΓc of compact support. Actually, in derived
category, we have a triangle (under the notation of 9.20)

Rj!j
∗F −→ F −→ Ri∗i

∗F +1−→ .

Thus there is a spectral sequence

Epq
1 = Hp+q

c (Sp;F|Sp) =⇒ Hp+q
c (X;F).
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9.23. Dual Version We have another excision triangle in the derived category
(still under the notation of 9.20)

Ri∗i
!F −→ F −→ Rj∗j

∗F +1−→

where f ! is the shriek pull back defined by Verdier. For example, this gives
the long exact sequence of Borel–Moore homology

· · · −→ HBM
i (F ) −→ HBM

i (X) −→ HBM
i (U) −→ HBM

i−1(F ) −→ · · ·

where U is open in X and F is the complement. Note that HBM
i (X) =

H−i(ωX) with ωX = a!XQ for the unique map aX : X → pt. Hence, applying
to

· · · −→ Hi(Xk−1;F|Xk−1
) −→ Hi(Xk;F|Xk

) −→ Hi(Sk;F|Sk
) −→ · · ·

we see that there is a spectral sequence

E−p,−q
1 = Hp+q(Sp; i

!
pF) =⇒ Hp+q(X;F),

where ip : Sp → X the inclusion. For example, there is a Borel–Moore homol-
ogy version

E1
pq = HBM

p+q(Sp) =⇒ HBM
p+q(X).

Hodge Theory
9.24. Dolbeault cohomology For a smooth algebraic variety X of dimension
n, we have the holomorphic de Rham complex

Ω•
X :

0

OX
∂−→

1

ΩX
∂−→ · · · ∂−→

n

ωX

where ΩX the Kähler differential, and ωX the canonical bundle. Note that the
morphisms in the complex are only sheaf morphisms rather than coherent.

Define the Dolbeault cohomology

Hpq(X) = Hq(X; Ωp
X).

9.25. Frölicher Spectral Sequences We have a spectral sequence

Epq
1 = Hq(X; Ωp

X) = Hpq(X) =⇒ Hp+q(X;C).
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Proof For the differentiable de Rham complex Ω•
R, we have a decomposition

C⊗Ω•
R = TotΩpq

R where Ωpq
R is the direct summand of C⊗C∞-sheaf C⊗Ωp+q

R
locally spanned by

f(z)dzi1 ∧ · · · ∧ dzip ∧ dz̄i1 ∧ · · · ∧ dz̄iq , f ∈ C⊗ C∞,

under a local coordinate (z1, . . . , zn). The two direction differential ∂̄ and ∂ is
given by α 7→

∑
i dz̄i ∧

∂
∂z̄i
α and α 7→

∑
i dzi ∧

∂
∂zi
α. By Dolbeault theorem,

(Ωp −→)Ωp0
R

∂̄−→ · · · ∂̄−→ Ωp,n−p
R

forms a resolution. Thus Dolbeault cohomology is the cohomology of
0

Ωp0
R (X)

∂̄−→ · · · ∂̄−→
n−p

Ωp,n−p
R (X) .

Ω
02
R
(X

)

Ω
12
R
(X

)

Ω
22
R
(X

)

Ω
01
R
(X

)

OO

Ω
11
R
(X

)

OO

Ω
21
R
(X

)

OO

Ω
00
R
(X

)

OO

Ω
10
R
(X

)

OO

Ω
20
R
(X

)

OO

H
02 (X

) //
H
12 (X

) //
H
22 (X

)

H
01 (X

) //
H
11 (X

) //
H
21 (X

)

OX
(X

) //
Ω
1
X
(X

) //
Ω
2
X
(X

)

It converges to the de Rham cohomolog with coefficient in C i.e. Hp+q(X;C).
Q.E.D.

9.26. Degeneration When X is projective, or in general is a compact Kähler
manifold, the Frölicher spectral sequence degenerates at E1, i.e. E1 = E∞.
Actually, this is equivalent to say that we have the following Hodge decom-
position

Hn(X;C) =
⊕

p+q=n

Hpq(X).

Theoretically, if we denote F pΩ• = Ω≥p, then the spectral sequence for this
filtration degenerates at E1.

9.27. Deligne Degeneration Let
[
X

↓
Y

]
be a smooth projective morphism of

varieties which is a topological fibre bundle with fibre F . Then the Leray–Serre
spectral sequence 4.6 with coefficient Q

Epq
2 = Hp(X;Hq(F ;Q)) =⇒ Hp+q(E;Q)

degenerates at E2, that is, E2 = E∞.
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Proof By definition, it factors through X ↪→ Pn×Y ↠ Y with the first map a
closed embedding and last map the natural projection. Denote H ∈ H2(X;Q)
the restriction of the class of hyperplane section from H2(Pn × Y ). The
restriction of H to E, each fibre F holds the hard Lefschetz theorem

Lk : Hd−k(F ;Q)
∼−→ Hd+k(F ;Q), α 7−→ α ^ H|kF ,

where d = dimC F = 1
2 dimR F . At E2, it looks like

E
p−

2,d
+k+

1

''OO
OOO

OOO

E
p,
d+

k

E
p−

2,d
+k−

1

''OO
OOO

OOO

L

OOOO

E
p,
d+

k−
2

OO

E
p−

2,d
−k+

1

Lk−1

KS

''OO
OOO

OOO

E
p,
d−

k

Lk

KS

OO

[· · · d→ Ep,d+k] = 0
‖⇓

[· · · d→ Ep,d−k] = 0
‖⇓

[· · · d→ Ep,d+k−2] = 0

Thus by induction, the differentials of E2 all vanish. The same reason for E3,
etc. Q.E.D.

Exercises
9.28. Complex Version of 9.9 The theorem 9.9 is also true when F is a
complex of sheaves with respect to the hyper-cohomology Hi = RiΓ

Epq
1 = Hq(Up;F|Up) =⇒ Hp+q(X).

One may use the fact that Č(U , I) is acyclic for injective I.

9.29. Sheaf-theoretic Čech cohomology Under the notation of 9.9, show that

Čp(U ,F) =
[
V 7−→ Čp(U|V ,F|V )

]
, U|V = {U ∩ V }U∈U

forms a sheaf of complex. Show that it is exact. Actually, we were equivalently
doing this in the proof of 9.9.
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9.30. The First Čech Cohomology Show that

lim−→U finer Ȟ
1(U ;F) = H1(X;F).

Actually, Č(U ,−) does not preserves exactness. But at least, the lim−→H0 of a
quotient of a flabby sheaf is the same by direct computation.

9.31. We can define H1(X;G) as above for any sheaf of group G. Say,

H1(X;G) = lim−→
U finer

{
fij ∈

∏
i<j F(Ui ∩ Uj) :

fijfjk = fik
over each Ui ∩ Uj ∩ Uk

}
fij = f ′ij ⇐⇒ ∃(ϕi)i ∈

∏
i F(Ui) :

fijϕj = ϕif
′
ij

over each Ui ∩ Uj

It is the set of the equivalence classes of G-principle bundle (or G-torsor),
that is, the sheaf of right G-set locally isomorphic to Gright. A typical example
is H1(X;O∗

X) = Pic(X) = {equivalence classes of lines bundles}.

9.32. Prove that for any subset i : F ⊆ X, the shriek push forward i! is an
exact functor (extending by zero) with i∗ a one-direction inverse.

Thank You For Your Reading
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