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The space of constructible functions

For a variety X, we define the space of constructible functions
Fun(X) =span(ly : W C X open).
This forms a functor via
[Y L X] = [Fun(Y) & Fun(X)]

such that (f.1y)(x) = x(f*(x))

where x is the topological Euler characteristic, e.g.

Xx(C) =x(pt) =1, x(C*) =x(@) =0.
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Chern classes and Segre classes

There is a natural transformation, generalizing the concept of Chern
classes

csm ¢ Fun(—) — Hy(—) Fun(X) —> H,(X)
X smooth = cm(1x) = c(Ix) fo (k) i
x5y proper = (%) commutes Fun(Y) 25 H,(Y)

For a constructible subset W C X, we define the CSM class

csm(W) = csm(lw) € Hi(X).

When X is smooth, we can identify H,(X) = H*(X), we define the
SSM class

_oMm(Iw)  csm(Tw) «
W) = c(Tx)  omllx) € H(X).
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Example P!

We identify P! = C U {oo}. We know Fp1 = €(2), so

csm(P) = 1+ 2[pt].

It is clear that cgp(pt) = [pt], so

csm(C) = csm(P') — csm(pt) = 1+ [pt].

If we delete two points

csm(C*) = com(P) — 2cem(pt) = 1.
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Relation to characteristic cycles

For experts, Fun(X) is the character group of constructible sheaves. We
have a character

X : DP . (X) — Fun(X), Qw — 1.

Actually, cgp-class (or more precisely ssy-class) can be constructed
directly from

DE (X) D Perv(X) — H*(X)

via the shadow of characteristic cycles.

[@ P Aluffi, L. Mihalcea, J. Schiirmann and C. Su, Shadows of
characteristic cycles, Verma modules, and positivity of

Chern-Schwartz—MacPherson classes of Schubert cells, Duke
Math. J.
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Flag varieties

Fix a reductive algebraic group
G €{GLy,SLy, PGL;, SO, . ..}.

Let B = G/B be its flag variety and P = G/P be a partial flag variety
with natural projection t: B — P.

For example, when G = GL,, we have an example of B and P

FIC"={0=VCcWC - CVp1CV,=C":dimV; =i},
Gre(C") ={V cC":dimV = k}.

The projection is given by (V,) — V.
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Stratifications of B

The space B is stratified by B-orbits (and also B~ -orbits)

B:|_|£W 93=|_|iw

weWw weW
3, = Schubert cell $W = opposite Schubert cell
= B-orbit = B -orbit.

We have a finer stratification

B = |_| Ruw Note that
u<weW . i
éu,w = open Richardson varieties 2NLy #9
=3'ng, — u<w.
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Stratifications of P

Similarly, the space P is stratified by B-orbits (and also B~ -orbit)

P= || P= || zp

weWwP weWw?r
3P = Schubert cell " — opposite Schubert cell
= B-orbit = B -orbit.
We can stratify
P = |_| 'LO?/JD,W Note that
WPsu<weWwP

° X P
Rl’f: w» = open Richardson varieties LpNiy, # 0

fu P <w.
=54nsh T usw
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Projected Richardson varieties

There is finer stratification,

P= || Tuw \“

u<weWwP

ﬁu,W = projected Richardson

o

:T[(RU,W)' .

Note that

. (opposite)\  (opposite)
Schubert / ~ Schubert

But not the case for Richardson. So
in the sense, projected Richardson
is a replacement.
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Highlights

The projected Richardson varieties were first introduced by Lusztig to
study the total positivity.

[ G. Lusztig, Total positivity in partial flag manifolds, Represent.
Theory 2 (1998), 70-78.

When P is cominuscule, projected Richardson varieties represents
certain Gromov-Witten invariants.

[§ A.S.Buch, P-E. Chaput, L.C. Mihalcea and N. Perrin, Projected
Gromov-Witten varieties in cominuscule spaces, Proc. Amer. Math.
Soc. 146 (2018), no. 9, 3647-3660.

In type A, it relates to knot theory and Macdonald theory.

[@ P. Galashin, and T. Lam, Positroids, knots, and q, t-Catalan numbers,

Duke Math. J. 173(11): 2117-2195 (15 August 2024). DOI:
10.1215/00127094-2023-0049
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Computation for Schubert cells over B

Let us explain the computation of CSM classes of Schubert cells.

Over B, there is Demazure-Lusztig operator for each simple reflection
sseW

Ti: H7(B) — HT(B).

It coincides with the Springer action (actually not a coincidence).

Theorem (Aluffi-Mihalcea)

o

csm(Zig) = [id], csm(£"0) = [wl,

Ticsm(Zw) = com(Zws).  Ticom(EW) = com(E"0).

[3 P. Aluffi and L. Mihalcea, Chern—Schwartz—MacPherson classes for

Schubert cells in flag manifolds, Compos. Math. 152 (2016),
2603-2625.
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Computation for Schubert cells over P
For w € WP,
MIn) =L, = mlewlls)) = aul(L]).

However, there is a more direct way of computing, without passing
through B. The technique is the left operator

Th: HE(P) — HE(P).

It only acts on the T-equivariant parameters.

Theorem (Mihalcea—Naruse-Su)

el . > WP
csm(Zh) = lid], cm(Zp°) = (W],
Tresm(Eh) = csm(Z85), THY com(ZF) = com(Z3").

[ L.Mihalcea, H. Naruse and C. Su, Left Demazure-Lusztig

operators on equivariant (quantum) cohomology and K-theory,
Int. Math. Res. Not. IMRN, 16 (2022):12096-12147.
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A close formula for Grassmannian

Over Grassmannian Gr, (C"), we can identify
wP = {partitions inside the rectangle (n — k).

There is a symmetric function representative

Theorem (Maulik—-Okounkov, Shenfeld)

ssm(ZN) = rational analogs of the interpolation Schur functions

Xi—Yj

Trx—x J<A+i—k

k n
=Sym HH T =Ntk
== J>N+i—k.

[@ D.Maulik, and A. Okounkov, Quantum groups and quantum
cohomology, Astérisque, 408, 1-225, 2019.

[3 D.Shenfeld, Abelianization of stable envelopes in symplectic
resolutions, MI, 2013. Thesis (Ph.D.)-Princeton University.
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Computation for Richardson varieties

Let us switch to CSM classes of open Richardson varieties.

We have a very general theorem on the CSM classes of transversal
intersections.

Theorem (Schiirmann)

csm(Z W) = csm(Z) —~ ssm(W)

In particular, we have
asm(RE ) = csm(Zp) —~ ssm(Zh).

[3 J. Schiirmann, Chern classes and transversality for singular spaces, In
Singularities in Geometry, Topology, Foliations and Dynamics,
Trends in Mathematics, pages 207-231. Birkh&user, Basel, 2017.
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Computation for Richardson varieties

Let us give another perspective.

Theorem (Aluffi-Mihalcea—Schiirmann-Su)

J csm(Zp)ssm(Zh) —J csm(REL) =x(RE,) =
P P

In particular, for any y € H3(P)

j csn(RE,) - =j (v - coml(£5)) - ssu(Z8)
P P

= coefficient of cov(£5) iny - com(Z%)

It suffices to give the formula for a set of generator of .

[3 P Aluffi, L. Mihalcea, J. Schiirmann and C. Su, Shadows of
characteristic cycles, Verma modules, and positivity of

Chern-Schwartz—MacPherson classes of Schubert cells, Duke
Math. J.
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A close formula for Grassmannian

For Grassmannian, the Chern classes of dual tautological bundle form
a set of generators.

Theorem (Fan, Guo and Xiong)

(’V\/ CsM Z)‘ Z CSM Z“ with w=A+ r(dec'reasing).

ribbons

It is well-known that the following two basis are dual (aka Cauchy
formula)

monomial of monomial symmetric
Chern classes function in Chern roots

This leads to a ribbon tableaux formula for cgy( /%\,;J

[@ N. Fan, P. Guo, and R. Xiong, Pieri and Murnaghan—Nakayama type
rules for Chern classes of Schubert cells, arXiv:2211.06802, 2022.
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Projected Richardson varieties

Now, let us switch to the projected Richardson varieties.
@ Recall

o

ﬁu,w = 7T*(Ru,w) = CSM(ﬁu,W) = Tl (CSM('L%U,W))-
@ On the other hand, one can repeat the above argument (with
projection formula) to see

J CSM(ﬁu,W) -y = coefficient of cSM(fW) in 7 (y) - CSM(f“).
P

This two formuleae provide two aspects of computation. As promised, I
will add a new perspective by relating them to affine flag varieties.
From now, we will assume the Dynkin diagram of G to be connected
for simplicity.
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Affine flag varities

Let Flg = G((z))/(Iwahori) be the affine flag variety. For an element of
(extended) affine Weyl group w € W x X,(T), we have

¥, = Schubert cell C Flg, csM()OZW) e H] (Flg).

Different from the finite cases, we do not have an opposite Schubert
“cell”, but we still can define algebraically

SSM()D:W) = dual basis of CSM(iW) € Hﬁﬁg).

Theoretically speaking, the class lies in the cohomology of Kashiwara’s
thick flag variety.

Remark: We believe this class should have a geometric meaning.
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Affine Grassmannians

Let Grg = G((2))/G[[z]] be the affine Grassmannian. For example, for
G = GL,,

Grg = {(C[[t]]—lattice LcC (C((t))@"}.

Let A € X,.(T) be a dominant coweight such that W\ = Wp. We have a
torus fixed point
zGl[z]] € Grg.

Then

@ the G-orbit of it is isomorphic to P;
o the G[[z]]-orbit of it is an affine bundle over the G-orbit.
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Comparison

Our main theorem relates two SSM classes.

Ao® 5 soulMuw) VS su(E) € Hi(Flo).

Theorem (FGSX, 2025+)

o

i (sSM(r”ru,W) - cT(N)> (o r) <sSM(zf>> € H (G )ioos

where
eu<weWPand f=unw!e Wt;\WCW;
@ N is the normal bundle of G-orbit P in G[[z]]-orbit Gr};
@ i : P — Gr, the inclusion and jy : Gry < Gr¢ the inclusion;
0 r:Grg = QK C LK — LK/(TNK) = Flg the “wrong way map”.
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Question

Let us explain the evidence that the two classes are related.

Let us start from the answer of the following geometric question.
Recall 7t : B — P is the natural projection.

How to characterize the pair (u, w) such that the 7. (1

) is non-zero?
u,w

Note that 7. (1 ) =0=—~ 7t( .w) = @. For example, when G = SL»,
B=Pland P = pt we have

éid,s =P! \{O) OO}» ﬂ*(léid‘s) = X(éid,s) =0.

The answer turns out to be very combinatorial.
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Answer

Let us define the extended P-Bruhat order
. . P P P P
u<pw & thereexistsachainu — u; — -+ = U_1 > w

ubw & w = ut > u for some reflection t such that wWp # uWp.

This definition is motivated by the Chevalley formula of CSM classes
of Schubert cells.

Theorem (FGSX, 2025+)

The following statements are equivalent
o u<pw
o f < t, for some p € WA;
o m.(lg )#0

where uyw € Wand f = uthw™ L.
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Wrong way map

Recall the “wrong way map”
r:Gre =2 QK CLK - LK/(TNnK) =Fl¢.

We have the following commutative diagram

WA == WA ——= X,(T) —= W in particular,
ﬂi ﬁl ﬂl lﬂ fory € H3(Flg),
o J— Gry, = Grg Flg Ux © ) (V)ley = Ylta-

i A r

From above, we roughly have

T (com(Ruw)) #0 &= u<pw < (jior)(ssu(Z)) #0.
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Example (W = G, Wp = {1, s})




Example (W = 54, Wp = 51 x5,%x51)

4231 4321

3241 4312 4132 3421

2341 4213 3142 3412 4123 2431
[ 4 /1 |
| }‘4 |
| |
\ ‘ ‘ |
1342 3214 | 2143 2413 | | 3124 1432

1243 2314 2134 1423

1234 1324
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Example

Theorem (Fan—-Guo—Xiong)
When W = S, and Wp = S x S,_i (i.e. P is a Grassmannian)

u(l) < w(l) uk+1)>wk+1)
u<pw & (... and

u(k) < w(k) u(n) > wi(n)

We have a similar descriptionin W = BC, and Wp = 5, (i.e. Pisa

maximal isotropic Grassmannian or maximal Lagrangian
Grassmannian).

[@ N. Fan, P. Guo, and R. Xiong, Pieri and Murnaghan—Nakayama type
rules for Chern classes of Schubert cells, arXiv:2211.06802, 2022.
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Grassmannians

Now let us restrict ourselves to Grassmannian. The (open) projected
Richardson varieties are known as (open) positroid varieties, after
Postnikov. We choose the fundamental coweight A = @'

Theorem (Knutson-Lam-Speyer)

, i) = 1) +

{uty\wlzuéweWP}Z Z;._).Z Da ()=
bijective

i<f(i)<i+n

The right-hand side is called the bounded affine permutations,
obviously bijective to decorated permutations by Postnikov.

[3 A.Knutson, T. Lam, and D. Speyer, Positroid varieties: juggling and
geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.

Rui Xiong
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Symmetric function representative

We take G = GL,,. Let us identify

HTr(Pt) = Q[_)/l) cee ayn]
H7(Grk(C")) = a quotient algebra of HF(pt)[x1, ... s X2k

Let us denote ﬁf = ﬁu,w for f = utyw L. Then we have

Theorem (FGSX, 2025)

weighted sum of certain

somlTr) = “periodic pipe dreams”

€ H3(Grg(CM).

Comparing with Shimozono-Zhang, the lowest degree component of
the weighted sum is a (double) affine Stanley polynomial.
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Example

Gr(2,4) Efm m m

u=1324
W=2413 1 1 1 1
P 112341 112341 11234

Thus

(x2 = y1)(x2 — y3) + (x1 — y2) (x2 — y3)
1 +0x1 —ya) (2 — y1) + (x1 — y2) (x1 — ya)
+(x1 —y3)(x1 — ya) (x2 — y1) (x2 — y2)

2 4
HH(1+Xi—)/j) +(x1 —y1)(x1 — y2) (x2 — y3) (x2 — ya)
=1 j=1

som(TT¢) =
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R-matrices

The proof uses a diagrammatic calculation of the classical R-matrices.

The R-matrices we are using is the classical one, i.e.

X

X
R . i
)Tt Tk

¢ Group ring of S,

which is from the Yangian Y%(gl,,) on V = C". These R-matrices were
used to compute the SSM classes of type A flag varieties. An
explanation is, in type A,

T"P=Mm \

Of...fo

is a Nakajima quiver varieties.
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Diagram

We represent it diagrammatically by a cross

v u v u v u

N

= X y + X y

u Vv u”’ % u”’ A
R( ) u—v 1

u—v e P —

l1+u—v l1+u—v

Then the Yang-Baxter equation and the unitary equation can be
drawn as the invariance of two local moves

(X- <) &

Yang-Baxter equation (YBE) unitary equation (UE)
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The proof

The generating function is symmetric in xg, ..., xx by the following old
argument due to Baxter (commutativity of transfer matrices).

Xi

Xi+1

Rui Xiong

Xi

X

XX

XX

XX

Xi+1
Xj
Xi+1
Xi+1
Xi
Xi+1
Xj
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The proof

It rests to prove the localization agrees. This can also be done by a
diagram calculus.

Y1 o Y2 (Y3 (Y4 (Y5 (Yo Vi Yi o Y2 (Y3 (Y4 (Y5 (Y6 Vi
L
X1 y1
_ J
= s
X2 ¥3
J
X3 X1y1 Y6 (
X2—y3
X3 Y6

The resulting diagram computes the localization of SSM of affine
Schubert cells (say, a Billey type formula). By our theorem, it is also the
SSM of the open positroid varieties. So the proof is complete.
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THANK YOU

(4 - <)

Yang-Baxter equation (YBE)
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