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1 Associative Algebras
1.1. We fix a field k. All the algebras and the modules are assumed to be
finite-dimensional. Let R be an algebra. Denote R-mod the category of finite-
dimensional modules over R.

1.2. Radical Let R be an algebra. Denote radR be the Jacobson radical.
It can be described as follows.

u ∈ radR ⇐⇒ ∀x∈R, 1− xu ∈ unitR ⇐⇒ ∀x∈R, 1− ux ∈ unitR.

Then it is the intersection of all maximal left (right) ideals, thus an ideal.
It is also a nilpotent ideal. Hint: It is a classic ring theory excises
that 1− ab is invertible if and only if 1− ba is invertible. Say
1 + b(1 − ab)−1a. If 1 − xu ∈ M for some maximal ideal and x ∈ R,
then u cannot in M. Conversely, if x /∈M, then 1 ∈ Rx+M. Note
that radRn = radR · radRn for some n, then by Nakayama lemma, it
is zero.

1.3. Nakayama Lemma For any module M ∈ R-mod, denote the radical
of M by radM = radR ·M . We call M/ radM the top of M . For a module
morphism M

f→ N , it induces

0 // radM //

��

M //

f

��

f ′

$$I
I

I
I

I M/ radM //

f ′′

��

0

0 // radN // N / / N/ radN // 0

The Nakayama lemma claims that

f is surjective ⇐⇒ f ′ is surjective ⇐⇒ f ′′ is surjective.

Hint: f(M) + radR ·N = N, thus radR ·N/f(M) = 0. So N = f(M),
this is the usage of classic Nakayama lemma. Pick a set of minimal
generators etc.

1.4. Semisimple For any module M ∈ R-mod, radM is the intersection of
all maximal proper submodule, and the top of M/ radM is semisimple (di-
rect sum of simple modules). Thus the algebra R/ radR is semisimple. Hint:
Consider the inclusion of M ′→M for any maximal proper submodule.
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We see radR·M+M ′ must be M ′. For any maximal submodule, we can
construct M/M ′ ↪→

⊕
M/M ′ ↪→ M/ radM ↠ M/M ′. Then we can

split a simple summand, etc.

1.5. Projective modules For any projective module P ∈ projR-mod, the
natural ring homomorphism End(P )→End(P/ radP ) is surjective has kernel
radEnd(P ). In particular,{

indecomposable
projective modules

}/ ∼= taking top−→←−
taking projective cover

{
simple modules

}/ ∼=
gives a bijection of finite sets. Hint: It follows from the fact that the
map is surjective and End(P/ radP ) is already semi-simple, thus the
kernel must be the radical. To see it is a bijection, it suffices
to show each simple module has a projective cover. Actually, we can
lift the idempotent elements by a nilpotent ideal. Say e2 ≡ e mod
J, then (3e2 − 2e3)2 ≡ 3e2 − 2e3 mod J2. Pick any simple module S,
and any projective P ↠ S. The projection to S in P/ radP can be
lift to a projection in P.

Warning For general indecomposable module M , M/ radM is not necessar-
ily simple.

1.6. Projective cover For any module M , the lift of the projective cover for
M/ radM is a projective cover for M . In particular, in the category R-mod,
every object has a projective cover.

1.7. Basic Algebra By decompose R/ radR, we see that any indecoposable
projective module is a direct summand of left regular module R. Consider
the algebra R′ = EndR(P )op where P is the direct sum of all indecomposable
projective modules (with multiplicity 1). Then R-mod and R′-mod are Morita
equivalent. Then each indecomposable module has multiplicity one in R′.
This is called basic algebra.

1.8. Duality Denote Homk(−, k) the duality functor. It defines an anti-
equivalence of category R-mod and Rop-mod. In particular, for any module
M ∈ R-mod, the sum of all simple module is called socle. Dually,{

indecomposable
injective modules

}/ ∼= taking socle−→←−
taking injective hull

{
simple modules

}/ ∼=
2



gives a bijection of finite sets. For any moduleM , the extension of the injecitve
hull for socM is an injective hull for M . In particular, the injective hull of
each object in R-mod lies in R-mod.

Exercises
1.9. Let {P1, . . . , Pn} be the set of indecomposable projective modules over
R. Let Si = Pi/ radPi the corresponding simple modules. Show that

dimk Hom(Pi, Pj) = multiplicity of Si in composition series of Pj .

Hint: Since Hom(P,−) is exact for projective P, and Hom(M,S) =
Hom(M/ radM,S) for simple S.

1.10. Show that M is indecomposable if and only if End(M) is a local ring.
Hint: A local ring has no nontrivial idempotent. End(M) is a local
ring follows from Fitting lemma.

Warning When M is simple, End(M) is a division algebra (Schur lemma),
but the converse is not true in general.
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2 Quivers
2.1. For a pseudo-abelian category C over k (that is, an k-categroy with each
idempotent morphism realized as a projection to some object). Assume this
category has Krull–Schmidt property.

2.2. Radical To do this, for indecomposable objects M and N , denote the
radical radC(M,N) ⊆ HomC(M,N) the space of non-isomorphism maps.
That is, it is just Hom(M,N) when M /∼= N , and it is the radical of the local
ring End(M).

Denote rad2C(M,N) the space spanned by f ◦ g with g ∈ radC(M,L) and
f ∈ radC(L,N) for an indecomposable L. Equivalently, M g→ K

f→ N with
K ∈ C and g not a split injection, f not a split surjection.

Similarly, we denote radnC(M,N) the space spanned by f1 ◦ · · · ◦ fn with
each fi ∈ radC(•, •). We take the convention that rad0C = HomC(M,N).

2.3. Quiver Category A quiver is a directed graph. For a quiver Q, we
define the category

k 〈Q〉 =


Obj : i vertex of Q
Mor : |↓

j

∈
⊕

k · (paths from i→ j)

The path algebra is defined by

kQ =
⊕

i,j vertices
11j Hom(i, j)11i =

⊕
k · (all paths).

with {11i} the formal orthogonal idempotents. Here we take empty path into
consideration (the identity morphism).

2.4. Quiver of a category The quiver Q = (I,H) of the category C is a
directed graph with I the equivalence classes of indecomposable objects and

#{M→N} = dimk radC(M,N)/ rad2C(M,N).

If we pick a lift of a choice of basis in radC(M,N). Then each arrow cor-
responds to a morphism in C. It defines a functor k 〈Q〉→C which is full
(surjecive in Hom). Moreover, it is compatible with the radical filtration.
That is,

radnC(M,N) = span(paths M→N of length ≥ n).
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Thus, the quiver of the category is an approximation (of degree 1) of the
category.

2.5. Quiver of an algebra For an algebra R, assume that R/ radR is a
product of copies of k’s (for example k is algebraically closed). The quiver of R
is the quiver of projR-mod. Then there is a surjective algebra homomorphism
kQop→R with kernel in rad2 kQ.

2.6. Auslander–Reiten Quiver of an algebra For an algebra R, the
Auslander–Reiten Quiver (AR quiver) is the quiver of R-mod.

2.7. Quiver Reprsentation Denote the category of quiver representa-
tion to be Q-rep = Funk(k 〈Q〉 , k-mod). Equivalently, Q-rep = kQ-mod.
Note that, to give a quiver representation is to give a vector space for each
vertex and to give a linear map for each arrow.

Warning My notation of kQ is converse to most of books (where they use
right modules mostly).

2.8. Consider the quiver
Q : •

1

f−→ •
2

Then kQ = ke1 ⊕ ke2 ⊕ kf with product

↓ · → e1 f e2
e1 e1 0 0
f f 0 0
e2 0 f e2

It is isomorphic to the algebra
(
k k
k

)
. A Q-representation is just to give V1

f→
V2. Thus it is just classified by dimV1, dimV2 and rank f . There are three
indecomposable objects in Q-rep.

S(1) =
[
k→ 0

]
S(2) = P (2) =

[
0→ k

]
P (1) =

[
k

id→ k
]
.

Note that S(i) is simple for i = 1, 2. For V =
[
V1

f→ V2

]
, we have

Hom(S(1), V ) = ker f Hom(S(2), V ) = V2 Hom(P (1), V ) = V1.
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Thus P (i) is projective cover of S(i) for i = 1, 2. The following is the
Auslander–Reiten quiver of kQ

P (1)

��?
??

??
?

P (2) = S(2)

??������
S(1)

Exercise
2.9. Let {P1, . . . , Pn} be the set of indecomposable projective modules over
R. Show that

radn(Pi, Pj) = Hom(Pi, radn Pj).

Hint: Any f ∈ Hom(Pi, Pj), it is an isomorphism if and only if the
induced map Si→Sj is an isomorphism. The general case follows from
definition.

2.10. Under the same notation, assume Si = Pi/ radPi. Show that

dimExt1(Sj , Si) ∼= dim rad(Pi, Pj)/ rad2(Pi, Pj).

Hint: We have radPj→Pj→Sj. Then we get

0→Hom(Sj , Si)
∼=→ Hom(Pj , Si)→ HomR(radPj , Si)︸ ︷︷ ︸

HomR/ rad R(rad Pj/ rad2 Pj ,Si)

→Ext(Sj , Si)→ 0

So Ext(Sj , Si) = HomR/ rad R(radPj/ rad2 Pj , Si). Since R/ radR is semisimple,
it has the same dimension as HomR/ rad R(Si, radPj/ rad2 Pj) = HomR(Pi, radPj/ rad2 Pj).
Since HomR(Pi,−) is additive, this proves the assertion.

2.11. Consider the quiver

Q : •
1

g−→ •
2

f−→ •
3

Then kQ = ke1 ⊕ ke2 ⊕ kf ⊕ kg ⊕ k(fg). Show that it is isomorphic to the
algebra

(k k
k
k
k
k

)
.

6



3 Functor Category
3.1. Functor Category Denote Fun(R) the category of additive functor
from R-mod to k-mod. Note that it is an abelian category with kernel and
cokernel object-wise. We have the Yoneda embedding, a contravariant
functor R-mod −→ Fun(R) sending M to M̃ := HomR(M,−). Then

HomFun(R)(M̃, F ) = F (M), c̃ok f = ker f̃ .

In particular, the Yoneda embedding is fully faithful (isomorphic in Hom).

3.2. Finitely Generated Functor Note that M̃ is projective in Fun(R) by
definition. We say F ∈ Fun(R) finitely generated if it is a quotient of M̃ .
By Yoneda embedding,{

indecomposable
modules in R-mod

}/ ∼= 1:1−→←−
{

indecomposable finitely
generated projective objects

}/ ∼=
gives a bijection of sets (not necessarily finite). Hint: If M̃ ↠ F with F
projective, then the splitting can be realized as an idempotent over
M̃, then over M, so F is representable.

3.3. Simple Functor For any simple object S in Fun(R), it has a finitely gen-
erated projective cover say M̃ for some indecomposable M ∈ R-mod. More-
over, S(N) ∼= Hom(M,N)/ rad(M,N) for any indecomposable N . Hint:
Actually, M is the indecomposable module such that S(M) = Hom(M̃, S) /= 0.
The nonzero element in Hom(M̃, S) must be surjective. Note that S(M)
has to be a End(M)-module, the maximal choice of the kernel is rad(M,M) =
rad(M).

3.4. For an indecomposable module M , rad(M,L) =
⊕

rad(M,Li) where
L =

⊕
Li the decomposition of indecomposable modules. Equivalently, it is

given by the space of M→L which is not a split injection.

3.5. Almost split We say M
f→ N is left almost split if

Ñ→ M̃→ M̃/ rad M̃→ 0

is a resolution. That is, it is surjective for any L

Hom(N,L) ↠ rad(M,L).
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Equivalently,

Any map M
g→ L which is not a split

injection factor through N .

M
f //

��

N

~~}
}
}
}

L

Moreover, we say f is minimal if the above resolution is minimal. It is
equivalent to,

Any endmorphism of N commuting
with f is invertible.

M
f //

f   B
BB

BB
BB

B N

��
N

Hint: By a modification of the proof of Fitting lemma.

3.6. Combinatorially, assume [M
f→ N ] =

⊕
[M

fi→ Ni] with Ni all indecom-
posable (possibly with repeatition). The condition is equivalent to say, for
any path M→L of length ≥ 1, it has to go through the sum of M fi→ Ni. So
it is not difficult to see that when fi corresponds to the arrow of AR quiver
from M , f is left almost split and minimal.

3.7. Duality Similarly, we can consider Fun∨(R) the category of additive
contravariant functor from R-mod to k-mod. We can similarly define Yoneda
embedding M 7→ HomR(−,M), radical rad(−,M) the space of map to M
which is not a split surjection, right almost split

Any map L→M which is not a split
surjection factor through N .

N
f // M

L

OO``B
B
B
B

and minimal

Any endmorphism of N commuting
with f is invertible.

N
f //

��

M

N

f

>>}}}}}}}}

map. Then we see that when fi corresponds to the arrow of AR quiver to M ,
f is right almost split and minimal.
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3.8. Auslander–Reiten translation For M ∈ R-mod, define the trans-
pose TrM ∈ Rop-mod by sequence

0→Hom(M,R)→Hom(P0, R)→Hom(P1, R)→TrM→ 0

where P1→P0→M→ 0 is the minimal resolution ofM . Define the Auslander–
Reiten translation τM = DTrM ∈ R-mod. It maps non-projective inde-
composable modules to non-injective indecomposable modules.

3.9. Stable Hom For two modules M,N ∈ R-mod, define the stable hom

HomR(M,N) = HomR(M,N)

/
{M→P →N : for some projective P}.

We have Auslander–Reiten formula

HomR(M,N) = Tor(TrM,N) = DExtRop(TrM,DN) = DExtR(N, τM)

where D = Homk(−, k) the duality functor. Hint: One can apply the
universal coefficient theorem on the complex P1→P0 (spectral sequence).

3.10. Denote Fun(R) the subcategory of Fun(R) vanishing on projective mod-
ules. Denote Fun∨(R) the subcategory of Fun∨(R) vanishing on projective
modules. Then the Auslander–Reiten formula can be reformulated as

R-mod

τ

��

M 7→HomR(M,−)// Fun(R)

D

��
R-mod

M 7→ExtR(−,M)
// Fun∨(R)

Exercises
3.11. For a projective resolution P ↠ N , show that

HomR(M,N) = cok
[
HomR(M,P )→HomR(M,N)

]
= cok

[
HomR(M,R)⊗R N→HomR(M,N)

]
.
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4 Auslander–Reiten Theory
4.1. Almost split sequence For a short exact sequence

0 −→M
f−→ L

g−→ N −→ 0

Then

f is left almost split and minimal
(in particular M is indecomposable) ⇐⇒ g is right almost split and minimal

(in particular N is indecomposable)

⇐⇒ f is left almost split
g is right almost split

In this case we say this sequence is almost split. Hint: The trick is
standard --- taking pull back to construct splitting/factorization
etc.

4.2. Auslander–Reiten Theorem WhenM is indecomposable but not pro-
jective,

0 −→ τM −→ L −→M −→ 0

is an almost split sequence.

Proof Denote M̃ = Hom(−,M), and SM = M̃/ rad M̃ . Note that M̃→SM

fact through Hom(−,M). Then we get

DSM ↪→ DHom(−,M) = ExtR(M, τ−).

Take into M , the nonzero element ∗ ∈ DSM (M) corresponds to an extension
L. We will show it is an almost split sequence. For any N→M which is not
a split surjection, that is, in rad(M,N),

∗ ∈_

��

DSM (M) �
� //

��

DHom(M,M)

��

ExtR(M, τM)

��
0 ∈ DSN (M)

� � // DHom(M,N) ExtR(N, τM)

Thus the pull back splits, we see N→M factor through L. Similarly, we do
it dually on τM . Q.E.D.
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4.3. As a result, when M is indecomposable non-projective. in Fun∨(R), we
have minimal resolution

0 −→ τ̃M −→ L̃ −→ M̃ −→ M̃/ rad M̃ −→ 0.

In Fun(R), we have minimal resolution

0 −→ τ̃−1N −→ L̃ −→ Ñ −→ Ñ/ rad Ñ −→ 0,

where N = τM is indecomposable non-injective.

4.4. When P is indecomposable projective,

rad(−, P ) = Hom(−, radP )

is representable, thus we have minimal resolution in Fun∨(R)

0 −→ r̃adP −→ P̃ −→ P̃/ rad P̃ −→ 0.

Dually, when I is indecomposable injective, we have minimal resolution

0 −→ ˜I/ soc I −→ Ĩ −→ Ĩ/ rad Ĩ −→ 0.

4.5. Consider the example

Q : • −→ • ←− •

It has 6 indecomposable representations[
1 0 0

]
,

[
0 1 0

]︸ ︷︷ ︸
projective

,
[
0 0 1

]
,

[
1

id→ 1 0
]︸ ︷︷ ︸

projective

,
[
0 1

id← 1
]︸ ︷︷ ︸

projective

,
[
1

id→ 1
id← 1

]
.

Then we can draw the AR quiver

011

��?
??

??
??

100oo

010

��?
??

??
??

??�������
111oo

??�������

��?
??

??
??

110

??�������
001oo
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4.6. Consider k[x]/(x3)
Q : •⟲ x

x3 = 0

It has 3 indecomosable representations

1 : x = (0), 2 : x =
(
0 1
0

)
, 3 : x =

(0 1
0
0
1
0

)
.

The AR quiver
1DD

((
2DD

((
hh 3DDhh

Exercises
4.7. Draw the AR quiver of Q-rep with Q

Q : • −→ • −→ •

Hint: It has 6 indecomposable representations[
1 0 0

]
,

[
0 1 0

]
,

[
0 0 1

]︸ ︷︷ ︸
projective

,
[
1

id→ 1 0
]
,

[
0 1

id→ 1
]︸ ︷︷ ︸

projective

,
[
1

id→ 1
id→ 1

]︸ ︷︷ ︸
projective

.

The the AR quiver

001

��?
??

??
??

010

��?
??

??
??

oo 100oo

011

��?
??

??
??

??�������
110oo

??�������

111

??�������
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5 Quiver Representations
5.1. Quiver Representations Assume Q is a quiver without oriented loop.
For any M ∈ Q-rep, the radical is the sum of images of arrows, the socle is
the intersection of kernel of arrows.

§ For each vertex i, denote S(i) the one-dimensional representation supported
over i, that is

S(i) : the path at i, i.e. S(i)j = δij · k.

Denote P (i) the representation such that

P (i) : paths from i, i.e. P (i)j =
⊕

k(path from i to j)

the arrows is the tautological one. Denote I(i) the representation such that

I(i) : dual of paths to i, i.e. I(i)∗j =
⊕

k(path from j to i)

the arrows is the tautological one.

§ Then, the set of simple representation is {S(i)}. The projective cover of
S(i) is P (i). More precisely, we have the following exact sequence

0 −→
⊕

arrow i→ j

P (j) −→ P (i) −→ S(i) −→ 0.

The injective hull of S(i) is I(i). More precisely, we have the following exact
sequence

0 −→ S(i) −→ I(i) −→
⊕

arrow j → i

I(j) −→ 0.

In particular, the category Q-rep has projective dimension 1 (for nontrivial
Q).

§ We see that the quiver for proj(Q-rep) is Qop.

5.2. Dimension vector Denote the vertices set of Q to be I. For a V ∈
Q-rep, define the dimension vector dimV = (dimVi)i∈I . Then this defines
an isomorphism of Grothendieck group

G0(Q-rep) dim−→ ZI ,
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where

G0(Q-rep) =
⊕

V ∈Q-rep Z · [V ]

[V2] = [V1] + [V3] :
short exact sequence
0→V1→V2→V3→ 0

5.3. Euler form For representation V,W , define the Euler form

〈V,W 〉 = dimHomQ-rep(V,W )− dimExtQ-rep(V,W ).

Note that this is bi-additive, thus factor though G0(Q-rep). Say, for v,w two
dimension vectors, define

〈v,w〉 =
∑

vertex i

viwi −
∑

arrow i→ j

viwj

Then 〈V,W 〉 = 〈dimV,dimW 〉. Hint: Since we computed Ext of simple
modules.

5.4. Moduli of Q-rep Let v = (vi)i∈I ∈ NI , where N = {0, 1, 2, . . .}. Denote

E(v) =
∏

arrow i→ j

Homk(k
vi , kvj ), G(v) =

∏
vertex i

GL(kvi).

The group G(v) acts on E(v) by conjugation. Then tautologically, we have{
representations of

dimenison v in Q-rep

}/ ∼= 1:1−→←−
{

G(v) orbits
of E(v)

}
So the space E(v) with the group action G(v) is said to be the moduli of
Q-rep. One can also think it as the quotient stack. Let us compute the
dimension of E(v) and G(v).

dimE(v) =
∑

arrow i→ j

vivj , dimG(v) =
∑

vertex i

v2i .

In particular,
dimE(v)− dimG(v) = −〈v, v〉 .

5.5. We see that if the G(v)-orbits are finite, then we need to require that
dimE(v) − dimG(v) < 0 (since the action of k× ∈ G(v) is trivial, we need
to quotient by PG(v)). That is, the Euler form is positive-definite. This
only happens when the underlying graph is a disjoint union of simply-laced
Dynkin diagrams, say ADE type.
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5.6. Simply-laced Dynkin Diagrams

An
•
1

•
2

· · · •
n−1

•
n

Dn

n•

•
1

•
2

· · · •
n−2

•
n−1

E6 :
•

• • • • •

E7 :
•

• • • • • •

E8 :
•

• • • • • • •

5.7. Gabriel Theorem A quiver Q with finite many indecomposable repre-
sentations if and only if the underlying graph is disjoint union of simply-laced
Dynkin diagrams.

We have proved the “only if” part. The “if” part will be done in the next
section.

Exercises
5.8. Show that

HomQ(P (i), V ) = Vi, HomQ(S(i), V ) = ker
[
Vi→

⊕
arrow i→ j

Vj

]
.

Dually,

DHomQ(V, I(i)) = Vi, DHomQ(V, S(i)) = cok
[ ⊕

arrow j → i

Vj→Vi

]
.
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6 Reflection Functors
6.1. Let us start from an example. Consider the quiver

Q :

•

��?
??

??
?

• // •

•

??������

By consider “three different lines passing through 0 in

the plane”,

`1
��?

??

`2 // k2

`3

??����

we have a representation of

dimension 1
1
1
2. It is easy to see this representation is

indecomposable.

If we take the cokernel of one arrow, say
`1

��?
??

k2/`2 k2oo

`3

??����

, we get an indecomposable rep-

resentation for Q′.

Q′ :

•

��?
??

??
?

• •oo

•

??������

6.2. For a quiver Q, and a sink i (no arrow from i). S(i) = P (i) is projective.
If V ∈ Q-rep is indecomposable but not S(i), then the map⊕

arrow i→ j

Vj −→ Vi

is surjective. Dually, for a sourse i (no arrow to i), S(i) = I(i) is injective.
If V ∈ Q-rep is indecomposable but not S(i), then the map

Vi −→
⊕

arrow i→ j

Vj

is injective. Hint: The kernel can be thought as a coply of S(i) which
is injective.

6.3. In general, for a quiver Q and a vertex i, we define a new quiver SiQ
by reverse all arrows incident (to or from) i. Define the reflection functor
when i is a sink

S+
i : Q-rep −→ SiQ-rep
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sending V to S+
i V by replacing the Vi→Vj by Vj→(S+

i V )i such that the
following sequence

0 −→ (S+
i V )i −→

⊕
arrow i→ j

Vj −→ Vi

exact. In particular, S+
i S(i) = 0.

Define the reflection functor when i is a source

S−
i : Q-rep −→ SiQ-rep

sending V to S−
i V by replacing the Vj→Vi by (S+

i V )i→Vj such that the
following sequence

Vi −→
⊕

arrow i→ j

Vj −→ (S−
i V )i −→ 0

exact. In particular, S−
i S(i) = 0.

6.4. From the discussion above, we see that for a sink (or source) i, the functor
S∓
i S±

i : Q-rep→Q-rep is natural isomorphic to the projection to the direct
summand without S(i) (this is a functor since Hom(−, S(i)) = 0 for this
summand).

6.5. Denote the quadratic form B(v,w) = 〈v,w〉 + 〈w, v〉 and αi = ei the
standard basis. Define siv = v− 2B(v,αi)

B(αi,αi)
αi = v−B(v, αi)αi. Note that

dimS±
i V = max(si dimV, 0)

for indecomposable representation V .

6.6. For any simply-laced Dynkin diagram Q (actually, any quiver whose un-
derlying graph is a tree), we can find an order I = {1, . . . , n} such that

Q0-rep S+
1−→ Q1-rep S+

2−→ · · · −→ Qn-rep S+
n−→ Q0-rep.

is well-defined (i.e. i is a sink for Qi). We call the above functor the
Coxeter functor. Hint: Actually, we can assign certain height of
each vertex such that all arrows go down, then reflection of a sink
is to pick the lowest vertices up.

17



6.7. The standard theory of Coxeter group tells us the group generated by si
(Weyl group) has a Coxeter representataion

s2i = 1 for all vertex i
sisjsi = sjsisj i−−− j exists an edge
sisj = sjsi i j no edge

Denote the product of si in any order is said to be a Coxeter element.
There is no nonzero element RI

≥0 fixed by Coxeter element c. Moreover, every
nonzero element of RI

≥0 will be send out by some power of c. Hint: Say c =
sn · · · s1. Then the first component of s1v will never be changed after
the end, so it is zero, so v1 = 0 and s1v = v. The by induction
we see v = 0. For any v ∈ RI

≥0, the element v+cv+· · · ch−1v is fixed
by c, where h is the order of c, the Coxeter number.

6.8. By the discussion above, every indecomposable module is killed by iter-
ated Coxeter functor. That is, it is a simple representation in some Qi-rep.
By reflecting back, we see it has finite many indecomposable representations.
This finishes the proof of Gabriel theorem.

6.9. We see that{
indecomposable

representations in Q-rep

}/ ∼=dim−→
{

positive roots
of the root system

}
is a bijection. Hint: When it vanishes depends only on the dimension
vector, thus it is injective. Any root can be reflected to a simple
root, then we can just reflect back to get an indecomposable representation.

Exercises
6.10. Show that the Coxeter elements are all conjugate. Hint: s1s2 · · · ∼
s2s1s2 · · · s2 = s1s2s1 · · · s2 ∼ s1 · · · s2s1s2 = s1 · · · s1s2s1 ∼ s2s1 · · · .
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7 More Examples
7.1. Type A The type A quiver

An : •1 •
2

· · · •
n−1

•
n

The indecomposable representations are given by connected subgraphs.

0 · · · 0 1 · · · 1 0 · · · 0.

The maps between 1’s are all identities.

7.2. Consider
• −→ • −→ • ←− • −→ •

The AR quiver is

11100

��?
??

??
00011oo

��?
??

??

01100

??�����

��?
??

??
11111oo

��?
??

??

??�����
00010oo

00100

? ?�����

��?
??

??
01111oo

��?
??

??

??�����
11110oo

??�����

��?
??

??

00111

??�����

��?
??

??
01110oo

??�����

��?
??

??
11000oo

��?
??

??

00001

??�����
00110oo

??�����
01000oo

??�����
10000oo

7.3. Type D The type D quiver

Dn :

n•

•
1

•
2

· · · •
n−2

•
n−1

We have indecomposable representations given by connected subgraphs.
0

0···01···10···00,
1

0···01······10,
0

0···01······11,
1

0···01······11.

We also has “3-star representation”
1

0···01···12···21,
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with identities between 2’s and 1’s respectively, and the three maps between
1 and 2 are given as D4.

Consider three different lines passing through 0 in the plane. This gives
the case of one of orientations (reflection functor). For other orientations, just
replacing the inclusion by its cokernel.

7.4. Let us consider

Q :

•

��?
??

??
?

• // •

•

??������

It has 12 indecomposable modules
1
0 0
0
,

0
1 0
0
,

0
0 0
1
,

0
0 1
0︸︷︷︸, 1

0 1
0︸︷︷︸, 0

1 1
0︸︷︷︸, 0

0 1
1︸︷︷︸, 1

1 1
0
,

0
1 1
1
,

1
0 1
1
,

1
1 1
1
,

1
1 2
1
.

The representation 1
1 2
1

is given by three different lines going through 0 in a
plane. The AR quiver

1
0 1
0

��?
??

??
?

0
1 1
1

��?
??

??
?

ss 1
0 0
0

ss

0
0 1
0

??������
//

��?
??

??
?

0
1 1
0

// 11 2
1

??������
//

��?
??

??
?

ww 1
0 1
1

//gg
1
1 1
1

ww

??������

��?
??

??
?

// 01 0
0gg

0
0 1
1

??������
1
1 1
0

??������
kk

0
0 0
1

kk

7.5. Let us consider

Q :

•

��?
??

??
?

• // •

•

??������

It has 12 indecomposable modules
1
0 0

0
,

0
0 1

0︸︷︷︸, 0
0 0

1
,

0
1 0

0
,

1
1 0

0
,

0
1 1

0︸︷︷︸, 0
1 0

1
,

1
1 1

0︸︷︷︸, 0
1 1

1︸︷︷︸, 1
1 0

1
,

1
1 1

1
,

1
2 1

1
.
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The AR quiver

1
1 1

0

� �?
??

??

0
1 0

1

ss

��?
??

??

1
0 0

0

ss

0
0 1

0
/ / 0 1 1
0

??�����

��?
??

??
// 0 1 0
0

/ /
gg

1
2 1

1

??�����

��?
??

??
//

ww 1
1 1

1gg
// 1 1 0
1

ww

??�����

��?
??

??

0
1 1

1

? ?�����
1
1 0

0
kk

??�����
0
0 0

1
kk

Exercises
7.6. Compute for the quiver

Q :

•

��?
??

??
?

• // •

•

??������ // •

Hint:

1
0 1
0 0

��?
??

??
?

0
1 1
1 1

��?
??

??
?

1
0 1
1 0

��?
??

??
?

0
1 0
0 0

0
0 1
0 0

//

��?
??

??
?

??������
0
1 1
0 0

// 11 2
1 1

��?
??

??
?

??������
// 10 1
1 1

// 11 2
2 1

��?
??

??
?

??������
// 01 1
1 0

// 11 1
1 0

??������

��?
??

??
?

// 10 0
0 0

0
0 1
1 1

??������

��?
??

??
?

1
1 2
1 0

??������

��?
??

??
?

1
1 1
1 1

??������

��?
??

??
?

0
0 0
0 1

0
0 0
0 1

??������
0
0 1
1 0

? ?������
1
1 1
0 0

??������
0
0 0
1 1

??������

The τ is omitted.
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8 Tilting Modules
8.1. Morita Theory For a projective generator P ∈ B-mod (any M ∈
B-mod is a quotient of Pn). Denote A = EndB(P )op. Then the adjoint
functor gives

A-mod
P⊗A−

−−−−−−−→←−−−−−−−
HomB(P,−)

B-mod

an equivalence. Since the natural transform

id −→ HomB(P, P ⊗A −)

is an isomorphism on any finitely generated projective module, and both sides
are right exact, thus it is an isomorphism; the natural transform

P ⊗A HomB(P,−) −→ id

is an isomorphism on P , and both sides are right exact, thus it is an isomor-
phism.

8.2. Actually, if we denote Q = HomB(P,B). Then

Q⊗B − = HomB(P,B)⊗B − = HomB(P,−).

So Q⊗B P ∼= A and P ⊗A Q ∼= B.

8.3. General Tilting Module Now we want to do the same work on derived
category. Assume the algebra R is of finite homological dimension. Denote
D(R) the derived category of bounded complexes over R. We say a module
M ∈ R-mod is a (general) tilting module if

Ext≥1(T, T ) = 0

and the minimal triangulated category containing T isD(R). Then the adjoint
functor gives

D(S)
T⊗L

S−
−−−−−−−→←−−−−−−−

R HomR(T,−)

D(R)

where S = End(T )op.
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8.4. Tilting Module We say a module M ∈ R-mod is a tilting module if
Ext≥2(T,−) = 0, Ext1(T, T ) = 0

and there is a short exact sequence
0 −→ R −→ T1 −→ T2 −→ 0

with T1, T2 ∈ addT the set of direct sums of summands of T .
Two stronger conditions ensure that T is of projective dimension ≤ 1 as

R-mod and also as mod-S. Hint: The functor HomR(−, T ) is exact on
0→R→T1→T2→ 0, so we get a resolution of T as S-module of length
≤ 1.

8.5. Denote the T -torsion part and T -torsionfree part
T (T ) = ker[Ext1R(T,−)], F(T ) = ker[HomR(T,−)].

Denote
X (T ) = ker[T ⊗S −], Y(T ) = ker[TorS(T,−)].

The Brenner and Butler theorem tells us for any M ∈ R-mod, there is a
functorial exact sequence

0 −→ T ⊗S HomR(T,M)︸ ︷︷ ︸
∈T (T )

−→M −→ TorS(T,Ext1R(T,M))︸ ︷︷ ︸
∈F(T )

−→ 0

and for any N ∈ S-mod, there is a functorial exact sequence
0 −→ Ext1R(T,TorS(T,N))︸ ︷︷ ︸

∈X (T )

−→ N −→ HomR(T, T ⊗S N)︸ ︷︷ ︸
∈Y(T )

−→ 0

Hint: This is a standard usage of Grothendieck spectral sequence
(derived version).

8.6. Moreover, we conclude that
T (T ) = im[T ⊗S −)], F(T ) = im[TorS(T,−)].
X (T ) = im[Ext1R(T,−)], Y(T ) = im[HomR(T,−)].

The functors

Y(T )
T⊗S−

−−−−−−−→←−−−−−−−
HomR(T,−)

T (T ), X (T )
TorS(T,−)
−−−−−−−→←−−−−−−−
Ext1R(T,−)

F(T )

are equivalences.
HomR(T (T ),F(T )) = 0, HomS(X (T ),Y(T )) = 0.
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Exercises
8.7. Let GenT be the category of modules can be written as a quotient of
T . Let T be a tilting module. Show that GenT = T (T ). Hint: Show that
im[T ⊗S −] ⊆ GenT ⊆ ker[Ext1R(T,−)]

8.8. Denote HomR(M,N) = HomR(M,N)
/
{M→ I→N : from some injective I}.

Show the dual Auslander–Reiten formula

HomR(M,N) = DExtR(τ−1N,M).

Or
ExtR(M,N) = DHomR(τ

−1N,M) = DHomR(N, τM).

8.9. Assume Ext≥2(−, τM) = 0, then

Ext1(N, τM) = DHom(M,N).

Dually, if Ext≥2(N,−) = 0, then

Ext1(N,M) = DHom(M, τN).

Hint: The condition tells HomR(M,R) = 0. Thus Hom(M,N) = Hom(M,N)
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9 Reflection Functors Again
9.1. Let Q be a quiver. Let i be an vertex. Let us compute τS(i). The
following resolution is minimal

0 −→
⊕

arrow i→ j

P (j) −→ P (i) −→ S(i) −→ 0.

Thus by a careful computation, we get

0 −→ τS(i) −→
⊕

arrow i→ j

I(j) −→ I(i) −→ 0.

When i is a sink, S(i) = I(i), the above sequence is an almost split sequence.
Dually,

0 −→ P (i) −→
⊕

arrow j → i

P (j) −→ τ−1S(i) −→ 0 (∗)

When i is a source, S(i) = P (i), the above sequence is an almost split sequence.

9.2. Let i be a sink. Let V ∈ Q-rep. We see HomQ-rep(P (i), V ) = Vi, thus

HomQ-rep(τ
−1S(i), V ) = ker

[ ⊕
arrow j → i

Vj −→ Vi

]
.

Consider
T = τ−1S(i)⊕

⊕
j /= i

P (j).

Then we see directly from the AR quiver that EndR(T )op = SiQ. Moreover,

HomR(T, V ) = S+
i V.

We will show T is a tiling module. It is extension-free by Auslander–Reiten
formula

Ext1(τ−1S(i), P (j)) = DHom(P (j), S(i)) = 0.

The sequence (∗) shows the last condition of definition of tilting module.
Moreover, for V ∈ SiQ-rep, one can check that

T ⊗SiQ V = S−
i V.
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9.3. Assume i is a sink, then the functorial exact sequence is

0 −→ S−
i S+

i V −→ V −→ V /S−
i S+

i V −→ 0

Note that V /S−
i S+

i V is a copy of S(i) = P (i) thus above sequence splits.

9.4. Then one can consider the derived version of reflection functor RHomR(T,−) =
RS+

i . Actually, it send S(i) to Ext1(T, S(i)) = Ext1(τ−1S(i), S(i)) = S(i)[−1]
(from the (∗) above).

For a complex in derived category of Q-rep, define

dimV • =
∑

(−1)i dimV i ∈ ZI .

Then
dim RS+

i (V •) = si dimV •.

Similar result holds for T ⊗L
SiQ
− = LS−

i .

9.5. Consider the example.

•

��?
??

??
?

• // ◦

•

??������
Q

1
1 1

0

��?
??

??

0
1 0

1

��?
??

??

1
0 0

0

0
0 1

0
// 0 1 1
0

??�����

��?
??

??
// 0 1 0
0

// 1 2 1
1

??�����

��?
??

??
// 1 1 1
1

// 1 1 0
1

??�����

��?
??

??

0
1 1

1

??�����
1
1 0

0

??�����
0
0 0

1

•

��?
??

??
?

◦ // •

•

??������
S◦Q

1
0 1
0

��?
??

??
?

0
1 1
1

��?
??

??
?

1
0 0
0

0
0 1
0

??������
//

��?
??

??
?

0
1 1
0

// 11 2
1

??������
//

��?
??

??
?

1
0 1
1

// 11 1
1

??������

��?
??

??
?

// 0
1 0
0

0
0 1
1

??������
1
1 1
0

??������
0
0 0
1

Note that{
representations of

s◦Q in box

} TorS◦Q(T,−)

−−−−−−−→←−−−−−−−
ExtQ(T,−)

{
representations of

Q in box

}
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{
representations of
s◦Q out of box

} T⊗S◦Q−=S−
◦

−−−−−−−→←−−−−−−−
HomQ(T,−)=S+

◦

{
representations of

Q out of box

}
are both equivalences.

Exercises
9.6. Analyse

• −→ • −→ ◦ S◦−→ • −→ • ←− ◦

Hint:

• −→ • −→ ◦

001

��?
??

??
?

010

��?
??

??
??

oo 100oo

011

��?
??

??
??

??�������
110oo

??�������

111

??�������

• −→ • ←− ◦

011

��?
??

??
??

100oo

010

��?
??

??
??

??�������
111oo

??�������

��?
??

??
?

110

??�������
001o o
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10 Hall–Ringel Algebras
10.1. Let q be a power of a prime number, and q = q1/2 a square root. Assume
k = Fq2 the finite field. We are going to do counting over k-rep. This relates
the Lie algebra corresponding to the Dynkin diagrams.

10.2. Denote

[n]q =
qn − q−n

q − q−1
, [n]!q = [1]q · · · [n]q,

[n
k

]
q
=

[n]!q
[k]!q[n− k]!q

.

Note that

q−n·#Pn = [n+1]q, q−n(n−1)/2·#F`(n) = [n]!q, , q−k(n−k)·#Gr(n, k) =
[n
k

]
q
.

10.3. Denote the Hall algebra of Q

H(Q) =
⊕

V ∈Q-rep/∼=

Z · [V ]

the formal direct sum of isomorphic classes of Q-rep. It is equipped with the
Hall convolution

[U ] ∗ [V ] =
∑

#
{
W ′ ⊆W :

W ′ ∼= V
W/W ′ ∼= U

}
· [W ].

Denote the virtual Hall convolution

[U ] · [V ] = q〈U,V 〉[U ] ∗ [V ].

It is not difficult to see (H(Q), ∗) or (H(Q), ·) forms an associative algebra
graded by dim.

10.4. We are going to compute the case

•
1
−→ •

2
.

Denote
θ1 = S(1) = [1 0], θ2 = S(2) = P (2) = [0 1].

§ Consider the degree dim = 20. The only module is [2 0]. Thus θ1 ∗ θ1 =
#P1 · [2 0]. As a result,

θ21 = q1 · #P1 · [2 0] = q2[2]q · [2 0].
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§ Similarly, for the degree dim = 02,

θ22 = q2[2]q · [0 2].

§ Consider the degree dim = 11. There are two candidates P (1) = [1
id→ 1]

and S(1)⊕ S(2) = [1 1].

[1→ 1] [1 1]
S(2) ⊆? unique unique
S(1) ⊆? never unique

Thus
θ1 · θ2 = q−1[1→ 1] + q−1[1 1], θ2 · θ1 = [1 1].

Note that 〈θ1, θ2〉 = −1, and 〈θ2, θ1〉 = 0.

§ Consider the degree dim = 21. There are two candidates S(1) ⊕ P (1) =
[2→ 1] and S(1)⊕2 ⊕ S(2) = [2 1].

[2→ 1] [2 1]
S(2) ⊆? unique unique
S(1) ⊆? unique, the kernel P1-many choices

Thus
[2 0] · θ2 = q−2 · [2→ 1] + q−2 · [2 1]
[1→ 1] · θ1 = q · [2→ 1]
[1 1] · θ1 = q2 · [2]q · [2 1]

In particular,
θ21θ2 = [2]q · [2→ 1] + [2]q · [2 1]

θ1θ2θ1 = [2→ 1] + q[2]q · [2 1]
θ2θ

2
1 = q2[2]q · [2 1]

So we get the Serre relation

θ21θ2 − [2]qθ1θ2θ1 + θ2θ
2
1 = 0.

§ Consider the degree dim = 12. There are two candidates S(2) ⊕ P (1) =
[1→ 2] and S(1)⊕ S(2)⊕2 = [1 2].

[1→ 2] [1 2]
S(2) ⊆? P1-many choices * P1-many choices
S(1) ⊆? never unique
*: the quotient is [1 1] if it coincides with
image, and [1→ 1] otherwise.
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Thus
[1→ 1] · θ2 = q2 · [1→ 2]
[1 1] · θ2 = 1 · [1→ 2] + q[2]q · [1 2]
[0 2] · θ1 = [1 2]

In particular,

θ1θ
2
2 = (q + q−1)[1→ 2] + [2]q · [1 2]

θ2θ1θ2 = [1→ 2] + q[2]q · [1 2]
θ22θ1 = q2[2]q · [1 2]

So we get the Serre relation

θ21θ2 − [2]qθ1θ2θ1 + θ2θ
2
1 = 0.

10.5. Assume the underlying graph of Q is a simply-laced Dynkin diagram.
The computation is local thus Serre relation also holds. Thus we get the
Ringel map

Uv(g)
+
∣∣
v=q
−→ H(Q)

where Uq(g)
+ is the negative part of quantum group of the corresponding Lie

algebra. This is an isomorphism by PBW basis theorem for Uv(g)
+ and the

classification of representations of Q.

Exercises
10.6. Show that for the quiver • −→ •

[m 0] ∗ [0 n] = [m n], [m 0] · [0 n] = qmn[m n].

10.7. Show that for the quiver • −→ •

[m 0]∗[n 0] = qmn

[
m+ n

m

]
[m+n 0], [m 0]·[n 0] = q2mn

[
m+ n

m

]
[m+n 0].

In particular,
θn1 = qn(n−1)[n]!q · [n 0].
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