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1 Associative Algebras

1.1. We fix a field k. All the algebras and the modules are assumed to be
finite-dimensional. Let R be an algebra. Denote R-mod the category of finite-
dimensional modules over R.

1.2. Radical Let R be an algebra. Denote rad R be the Jacobson radical.
It can be described as follows.

ueradR < "1 _ gy e wmit R < "% 1 — yz € unit R.

Then it is the intersection of all maximal left (right) ideals, thus an ideal.
It is also a nilpotent ideal.

1.3. Nakayama Lemma For any module M € R-mod, denote the radical
of M by rad M =rad R- M. We call M /rad M the top of M. For a module

morphism M LN , it induces

0——radM ——= M —— M/radM ——=0

N
h f/ "
N

0 rad N N N/rad N ——=0

The Nakayama lemma claims that

f is surjective <= f’ is surjective <= f" is surjective.

1.4. Semisimple For any module M € R-mod, rad M is the intersection of
all maximal proper submodule, and the top of M /rad M is semisimple (di-
rect sum of simple modules). Thus the algebra R/ rad R is semisimple.



1.5. Projective modules For any projective module P € proj R-mod, the
natural ring homomorphism End(P) — End(P/rad P) is surjective has kernel
rad End(P). In particular,

{ indecomposable } /= taking top {simple modules} =
pl"OJeCthe modules taking projective cover

gives a bijection of finite sets.

Warning For general indecomposable module M, M /rad M is not necessar-
ily simple.

1.6. Projective cover For any module M, the lift of the projective cover for
M /rad M is a projective cover for M. In particular, in the category R-mod,
every object has a projective cover.

1.7.Basic Algebra By decompose R/rad R, we see that any indecoposable
projective module is a direct summand of left regular module R. Consider
the algebra R’ = End g (P)°P where P is the direct sum of all indecomposable
projective modules (with multiplicity 1). Then R-mod and R’-mod are Morita
equivalent. Then each indecomposable module has multiplicity one in R'.
This is called basic algebra.

1.8. Duality Denote Homy(—, k) the duality functor. It defines an anti-
equivalence of category R-mod and R°P-mod. In particular, for any module
M € R-mod, the sum of all simple module is called socle. Dually,

: king socle
indecomposable taking 3 .

{ ndecomp dul /% — simple modules /%
HlJeCthe modules taking injective hull



gives a bijection of finite sets. For any module M, the extension of the injecitve
hull for soc M is an injective hull for M. In particular, the injective hull of
each object in R-mod lies in R-mod.

Exercises

1.9. Let {Py,..., P,} be the set of indecomposable projective modules over
R. Let S; = P,/ rad P; the corresponding simple modules. Show that

dimy Hom(P;, P;) = multiplicity of S; in composition series of P;.

1.10. Show that M is indecomposable if and only if End(M) is a local ring.

Warning When M is simple, End(M) is a division algebra (Schur lemma),
but the converse is not true in general.



2  Quivers

2.1. For a pseudo-abelian category C over k (that is, an k-categroy with each
idempotent morphism realized as a projection to some object). Assume this
category has Krull-Schmidt property.

2.2. Radical To do this, for indecomposable objects M and N, denote the
radical rade(M,N) C Home(M, N) the space of non-isomorphism maps.
That is, it is just Hom(M, N) when M 2% N, and it is the radical of the local
ring End(M).

Denote radg(M, N) the space spanned by f o g with g € rad¢(M, L) and
f € rad¢(L, N) for an indecomposable L. Equivalently, M % Kk Iy N with
K € C and g not a split injection, f not a split surjection.

Similarly, we denote radg (M, N) the space spanned by fi o--- o f, with
cach f; € radc(e,e). We take the convention that rady = Home (M, N).

2.3. Quiver Category A quiver is a directed graph. For a quiver @), we
define the category
Obj: i vertex of Q
k{Q) =4 Mor : l e@k~(paths from i — j)
J
The path algebra is defined by
kQ = @ 1; Hom(s, j)1; = @k - (all paths).

4,j vertices

with {1,} the formal orthogonal idempotents. Here we take empty path into
consideration (the identity morphism).

2.4. Quiver of a category The quiver Q = (I, H) of the category C is a
directed graph with I the equivalence classes of indecomposable objects and

#{M — N} = dimy, radc (M, N)/rad2(M, N).

If we pick a lift of a choice of basis in rade¢(M, N). Then each arrow cor-
responds to a morphism in C. It defines a functor k(Q)— C which is full
(surjecive in Hom). Moreover, it is compatible with the radical filtration.
That is,

radg (M, N) = span(paths M — N of length > n).



Thus, the quiver of the category is an approximation (of degree 1) of the
category.

2.5. Quiver of an algebra For an algebra R, assume that R/rad R is a
product of copies of k’s (for example k is algebraically closed). The quiver of R
is the quiver of proj R-mod. Then there is a surjective algebra homomorphism
kQ°P — R with kernel in rad? kQ.

2.6. Auslander—Reiten Quiver of an algebra For an algebra R, the
Auslander—Reiten Quiver (AR quiver) is the quiver of R-mod.

2.7. Quiver Reprsentation Denote the category of quiver representa-
tion to be Q-rep = Fung(k(Q),k-mod). Equivalently, Q-rep = kQ-mod.
Note that, to give a quiver representation is to give a vector space for each
vertex and to give a linear map for each arrow.

Warning My notation of kQ is converse to most of books (where they use
right modules mostly).

2.8. Consider the quiver

o S
Q:—>;

Then kQ = kei & kes @ kf with product

J, = | er f €9
el er |01 0
S 1 f]0]0
€9 0 f €9

It is isomorphic to the algebra (k ],:) A Q-representation is just to give V3 EN

V5. Thus it is just classified by dim V;, dim V5 and rank f. There are three
indecomposable objects in Q-rep.

S(1)=[k—=0] S@2)=P@2)=[0—k  P(1)=[k3k.
Note that S(i) is simple for i = 1,2. For V = [} S, Va], we have

Hom(S(1),V) =ker f Hom(S5(2),V) =V, Hom(P(1),V) =11.



Thus P(i) is projective cover of S(i) for i = 1,2. The following is the
Auslander—Reiten quiver of kQ

P(1)
N
2) = S(2) S(1)

P

Exercise

2.9. Let {P,..., P,} be the set of indecomposable projective modules over
R. Show that
rad"(P;, P;) = Hom(P;, rad"” P;).

2.10. Under the same notation, assume S; = P;/rad P;. Show that

dim Ext' (S}, S;) = dimrad(P;, P;)/ rad®(P;, P}).

2.11. Consider the quiver

Q:oi>oi>o
1 2 3

Then kQ = key ® kes @ kf @ kg ® k(fg). Show that it is isomorphic to the
algebra (k Z g) .



3 Functor Category

3.1. Functor Category Denote Fun(R) the category of additive functor
from R-mod to k-mod. Note that it is an abelian category with kernel and
cokernel object-wise. We have the Yoneda embedding, a contravariant
functor R-mod — Fun(R) sending M to M := Hompg(M, —). Then

HomFun(R) (Ma F) = F(M), (;)_I(_‘/f = ker f~

In particular, the Yoneda embedding is fully faithful (isomorphic in Hom).

3.2. Finitely Generated Functor Note that M is projective in Fun(R) by
definition. We say F' € Fun(R) finitely generated if it is a quotient of M.
By Yoneda embedding,

indecomposable / ~ 1l indecomposable finitely / ~
modules in R-mod - generated projective objects o

gives a bijection of sets (not necessarily finite).

3.3. Simple Functor For any simple object S in Fun(R), it has a finitely gen-
erated projective cover say M for some indecomposable M € R-mod. More-
over, S(N) = Hom(M, N)/rad(M,N) for any indecomposable N.

3.4. For an indecomposable module M, rad(M,L) = @rad(M, L;) where
L = @ L; the decomposition of indecomposable modules. Equivalently, it is
given by the space of M — L which is not a split injection.
3.5. Almost split We say M 4 N is left almost split if

N —M—M/rad M —0
is a resolution. That is, it is surjective for any L

Hom(N, L) — rad(M, L).



Equivalently,

M-t N
Any map M % L which is not a split e
injection factor through N. L

L

Moreover, we say f is minimal if the above resolution is minimal. It is
equivalent to,

f

M ——

N
Any endmorphism of N commuting
with f is invertible. \N l
N

3.6. Combinatorially, assume [M 5N | =DM 2L N;] with N; all indecom-
posable (possibly with repeatition). The condition is equivalent to say, for

any path M — L of length > 1, it has to go through the sum of M i N;. So
it is not difficult to see that when f; corresponds to the arrow of AR quiver
from M, f is left almost split and minimal.

3.7.Duality Similarly, we can consider Fun"(R) the category of additive
contravariant functor from R-mod to k-mod. We can similarly define Yoneda
embedding M — Hompg(—, M), radical rad(—, M) the space of map to M
which is not a split surjection, right almost split

N—Lom
Any map L — M which is not a split AN
surjection factor through V. N

N
L
and minimal

N—tom
Any endmorphism of N commuting
with f is invertible. ¥

N

map. Then we see that when f; corresponds to the arrow of AR quiver to M,
f is right almost split and minimal.



3.8. Auslander—Reiten translation For M € R-mod, define the trans-
pose Tr M € R°P-mod by sequence

0 — Hom(M, R) — Hom(Py, R) - Hom(P;, R) - Tr M —0

where P; — Py — M — 0 is the minimal resolution of M. Define the Auslander—
Reiten translation TM = DTr M € R-mod. It maps non-projective inde-
composable modules to non-injective indecomposable modules.

3.9. Stable Hom For two modules M, N € R-mod, define the stable hom
Hom g (M, N) = Hompg(M, N)/{M%P%N : for some projective P}.
We have Auslander—Reiten formula

Homp (M, N) = Tor(Tr M, N) = D Extgres (Tr M, DN) = D Extp(N,7M)

where D = Homyg(—, k) the duality functor.

3.10. Denote Fun(R) the subcategory of Fun(R) vanishing on projective mod-
ules. Denote Fun”(R) the subcategory of Fun”(R) vanishing on projective
modules. Then the Auslander—Reiten formula can be reformulated as

MHHOJR(Mv_)
R-mod ——— = Fun(R)

l £

R-mod ——— > Fun"(R)
M—Extgp(—, My

Exercises
3.11. For a projective resolution P — N, show that

Homp(M,N) = cok |Hompg(M,P)—Hompg(M, N)}

= cok | Homp(M, R) ® g N - Homp(M, N)] .



4 Auslander—Reiten Theory

4.1. Almost split sequence For a short exact sequence

0— M- 2% N0

Then
f is left almost split and minimal g is right almost split and minimal
(in particular M is indecomposable) (in particular N is indecomposable)

f is left almost split
g is right almost split

In this case we say this sequence is almost split.

4.2. Auslander—Reiten Theorem When M is indecomposable but not pro-
jective,
0— ™™ —L—M-—70

is an almost split sequence.

Proof Denote M = Hom(—, M), and Sy; = M/rad M. Note that M — Sy,
fact through Hom(—, M). Then we get

DSy — DHom(—, M) = Extg(M,7-).

Take into M, the nonzero element x € DSy (M) corresponds to an extension
L. We will show it is an almost split sequence. For any N — M which is not
a split surjection, that is, in rad(M, N),

3[ € DSy (M) D Hom(M, M) = Extr(M, M)
0 € DSy(M)~— DHom(M, N) == Extg(N, ™M)

Thus the pull back splits, we see N — M factor through L. Similarly, we do
it dually on 7M. Q.E.D.

10



4.3. As a result, when M is indecomposable non-projective. in Fun"(R), we
have minimal resolution

0—>T7\14—>E—>M—>M/rad]\~4—>0.

In Fun(R), we have minimal resolution

—_~—

0—7IN—L-—N-— N/rad N — 0,
where N = 7M is indecomposable non-injective.
4.4. When P is indecomposable projective,
rad(—, P) = Hom(—,rad P)

is representable, thus we have minimal resolution in Fun" (R)

0—radP — P — P/rad P — 0.

Dually, when I is indecomposable injective, we have minimal resolution

0— I/socl — I — I/radl — 0.

4.5. Consider the example
Q:0o—0e<— o

It has 6 indecomposable representations

1 oo, o 10, [0o 1, 1810, [0 1&1, 1381&1).
W_/

projective projective projective

Then we can draw the AR quiver

01T o 100
010 <o 111
110 <o 001



4.6. Consider k[z]/(x?)
Q: e 23 =0
Oa

It has 3 indecomosable representations

The AR quiver
Exercises

4.7. Draw the AR quiver of @-rep with @

Q:0e—0— 0

12
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5 Quiver Representations

5.1. Quiver Representations Assume @ is a quiver without oriented loop.
For any M € Q-rep, the radical is the sum of images of arrows, the socle is
the intersection of kernel of arrows.

§ For each vertex 4, denote S(i) the one-dimensional representation supported
over i, that is

S(7) : the path at 4, i.e. S(t); =65 - k.
Denote P(i) the representation such that
P(i) : paths from ¢, i.e. P(i); = @ k(path from i to j)
the arrows is the tautological one. Denote I(i) the representation such that
1(7) : dual of paths to 4, i.e. I(i); = @ k(path from j to )

the arrows is the tautological one.

§ Then, the set of simple representation is {S(7)}. The projective cover of
S(7) is P(i). More precisely, we have the following exact sequence

0— @ P(j) — P(i) — S(i) — 0.

arrow ¢ — j

The injective hull of S(7) is I(i). More precisely, we have the following exact
sequence
0— S(i) —I(i)) — @ 1I(j) —0.

arrow j — 1

In particular, the category @-rep has projective dimension 1 (for nontrivial

Q)-
§ We see that the quiver for proj(Q-rep) is Q°P.
5.2. Dimension vector Denote the vertices set of @ to be I. For a V €

Q-rep, define the dimension vector dimV = (dim V;);ec;. Then this defines
an isomorphism of Grothendieck group

Go(Q-rep) dim VAR

13



where

DvegrepZ- V]

_  short exact sequence
Vol =MI+DAl 0Ly v, S v —0

Go(Q-rep) =

5.3. Euler form For representation V, W, define the Euler form
(V,W) = dimHomg.rep(V, W) — dim Extrep(V, W).

Note that this is bi-additive, thus factor though Go(Q-rep). Say, for v,w two
dimension vectors, define

(v,w) = Z VWi — Z VW

vertex ¢ arrow ¢ — j

Then (V, W) = (dim V,dim W').

5.4. Moduli of Q-rep Let v = (v;);er € N/, where N = {0,1,2,...}. Denote

E(v)= ][] Homg(k", k), Gv)= ][] GL(*").

arrow ¢ — j vertex ¢

The group G(v) acts on F(v) by conjugation. Then tautologically, we have

representations of / ~ 11 G(v) orbits
dimenison v in Q-rep - of E(v)

So the space E(v) with the group action G(v) is said to be the moduli of
()-rep. Ome can also think it as the quotient stack. Let us compute the
dimension of E(v) and G(v).

dim E(v) = Z ViU;, dim G(v) = Z V7.

arrow ¢ — j vertex 1

In particular,
dim E(v) — dim G(v) = — (v,v).

5.5. We see that if the G(v)-orbits are finite, then we need to require that
dim E(v) — dim G(v) < 0 (since the action of k* € G(v) is trivial, we need
to quotient by PG(v)). That is, the Euler form is positive-definite. This
only happens when the underlying graph is a disjoint union of simply-laced
Dynkin diagrams, say ADE type.

14



5.6. Simply-laced Dynkin Diagrams

E62
o — 0 — — @ — @
An 1 2 n—1 n
n
° E72
D,
e — 0 — — @ — @
1 2 n—2 n-—1
EgZ

5.7. Gabriel Theorem A quiver ) with finite many indecomposable repre-
sentations if and only if the underlying graph is disjoint union of simply-laced

Dynkin diagrams.

We have proved the “only if” part. The “if” part will be done in the next

section.

Exercises

5.8. Show that

Homg (P(i), V) =V; Homg (S (i), V) = ker {Vi - &P Vj].

Dually,

arrow i — j

DHomq(V, I(i)) = V; DHomQ(V,S(i))—cok{ P vﬁvl}.

15
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6 Reflection Functors

6.1. Let us start from an example. Consider the quiver

By consider “three different lines passing through 0 in

. 4
\ AN
the plane”, ¢, ——— k2 we have a representation of
Q e —e /
e t
° dimension 12. Tt is easy to see this representation is
indecomposable.

If we take the cokernel of one arrow, say

zl\ \

k2 /ly <—— k2 , we get an indecomposable rep- Q' :e<—oe
2 /
resentation for @’.

6.2. For a quiver @), and a sink ¢ (no arrow from ¢). S(i) = P(i) is projective.
If V € Q-rep is indecomposable but not S(i), then the map

@ v

arrow ¢ — j

is surjective. Dually, for a sourse i (no arrow to i), S(i) = I(¢) is injective.
If V € Q-rep is indecomposable but not S(i), then the map

Vi @D v

arrow ¢ — j

is injective.

6.3. In general, for a quiver Q and a vertex i, we define a new quiver ;@
by reverse all arrows incident (to or from) i. Define the reflection functor
when i is a sink

ST Q-rep — S;Q-rep

(2

16



sending V' to S;"V by replacing the V; —V; by V; —(S;'V); such that the
following sequence

0—(SfV)i— P Vi—V

arrow i — j

exact. In particular, S;"S(i) = 0.
Define the reflection functor when ¢ is a source

S Q-rep — S;Q-rep

7

sending V to S; V by replacing the V; —V; by (S;"V); —V; such that the
following sequence

Vi @ Vi —(SV)i—0

arrow ¢ — j

exact. In particular, S; S(i) = 0.

6.4. From the discussion above, we see that for a sink (or source) i, the functor
S;FSZ.jE : Q-rep — QQ-rep is natural isomorphic to the projection to the direct
summand without S(¢) (this is a functor since Hom(—, S(¢)) = 0 for this
summand).

6.5. Denote the quadratic form B(v,w) = (v,w) + (w,v) and «; = e; the

standard basis. Define s;v =v — %]?(E‘T’ngai = v — B(v,a;);. Note that

dim SV = max(s; dim V, 0)

for indecomposable representation V.

6.6. For any simply-laced Dynkin diagram @ (actually, any quiver whose un-
derlying graph is a tree), we can find an order I = {1,...,n} such that

s S5 St
Qo-rep —> Q1-rep — - - - —> Q-rep —= Qp-rep.

is well-defined (i.e. ¢ is a sink for @;). We call the above functor the
Coxeter functor.

17



6.7. The standard theory of Coxeter group tells us the group generated by s;
(Weyl group) has a Coxeter representataion

s2=1 for all vertex @
8;8;8; = 8j8;8; 1 —— j exists an edge
8;5; = 8j8; 1 J no edge

Denote the product of s; in any order is said to be a Coxeter element.
There is no nonzero element Réo fixed by Coxeter element c¢. Moreover, every

nonzero element of RI>0 will be send out by some power of c.

6.8. By the discussion above, every indecomposable module is killed by iter-
ated Coxeter functor. That is, it is a simple representation in some Q;-rep.
By reflecting back, we see it has finite many indecomposable representations.
This finishes the proof of Gabriel theorem.

6.9. We see that

indecomposable / dim positive roots
representations in ()-rep of the root system

1

is a bijection.

Exercises

6.10. Show that the Coxeter elements are all conjugate.

18



7 More Examples
7.1. Type A The type A quiver
A 1TSS
The indecomposable representations are given by connected subgraphs.
0---01---10---0.

The maps between 1’s are all identities.

7.2. Consider
e — 0 —> 00— 00— 0

The AR quiver is
11100 < ~00011

NN

01100 <o 11111 < 00010

SN SN S

00100 < 01111 < ~11110

NN SN

00111 < 01110 < 11000

SN TN N

00001 < 00110 < ~01000 < 10000

7.3. Type D The type D quiver

o3

D, :

*o— o0 — ---—0—o
1 2 n—2 n—1

We have indecomposable representations given by connected subgraphs.

0
0---01---10---00>  0---01-+---- 105 Q---01------ 115 0---01----- 11°



with identities between 2’s and 1’s respectively, and the three maps between
1 and 2 are given as Dy.

Consider three different lines passing through 0 in the plane. This gives
the case of one of orientations (reflection functor). For other orientations, just
replacing the inclusion by its cokernel.

7.4. Let us consider

1 0 0 0 1 0 0 1 0 1 1 1

0o, 1o, 0o, 01, 01, 11, o1, 11, 11, 01, 11, 12

0 0 1 0 0 0 1 0 1 1 1 1
~N N~ N~ =~

The representation 12 is given by three different lines going through 0 in a
plane. The AR quiver

1 e 0 _ - 1
01~ 11 00
/0 \ /1 \ /0
0 0 1 1 1 0
01 11 12 01 11 10
0 \0 /1 \1 71 \o
01 _ [1 %o
1 R 1
7.5. Let us consider
[ ]
Q: )

It has 12 indecomposable modules

1 0 0 0 1 0 0 1 0 1 1 1

00, o1, 00, 10, 10, 11, 10, 11, 11, 1o, 11,

0 0 1 0 0 0 1 0 1 1 1 1
~~ ~~ ~ ~~

20
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The AR quiver

()

/\/\/

01%— 11—) 10‘> 21—> 11‘> 1

\/\/\

1

Exercises

7.6. Compute for the quiver

21



8 Tilting Modules

8.1. Morita Theory For a projective generator P € B-mod (any M €
B-mod is a quotient of P™). Denote A = Endg(P)°P. Then the adjoint

functor gives
P®a—

A-mod 7 B-mod

Homp (P,—)

an equivalence. Since the natural transform
id — Homp(P,P ®4 —)

is an isomorphism on any finitely generated projective module, and both sides
are right exact, thus it is an isomorphism; the natural transform

P ®4 Homp(P,—) — id

is an isomorphism on P, and both sides are right exact, thus it is an isomor-
phism.

8.2. Actually, if we denote @Q = Hompg (P, B). Then
Q Q®p — = HOHIB(P,B) RQp — = HOHIB(P,—).

SoQpP=Aand P4 Q= B.

8.3. General Tilting Module Now we want to do the same work on derived
category. Assume the algebra R is of finite homological dimension. Denote
D(R) the derived category of bounded complexes over R. We say a module
M € R-mod is a (general) tilting module if

Ext=}(T,T) = 0

and the minimal triangulated category containing T"is D(R). Then the adjoint
functor gives
TYL —
D(S) —/——— D(R)
RHompg(T,—)

where S = End(T)°P.

22



8.4. Tilting Module We say a module M € R-mod is a tilting module if
Ext=3(T,-) =0, Ext"(T,7)=0
and there is a short exact sequence
0—R—T1 — T, —0

with T7,T5 € add T the set of direct sums of summands of T'.
Two stronger conditions ensure that T is of projective dimension < 1 as
R-mod and also as mod-S.

8.5. Denote the T-torsion part and T-torsionfree part
T(T) = ker[Extg (T, —)],  F(T) = ker[Homg(T, -)].

Denote

X(T) = ker[T ®g —], Y(T) = ker[Torg (T, —)].
The Brenner and Butler theorem tells us for any M € R-mod, there is a
functorial exact sequence

0 — T ®s Homp(T, M) — M — Torg(T, Exty(T, M)) — 0

eT(T) EF(T)

and for any N € S-mod, there is a functorial exact sequence
0 — Ext (T, Torg(T, N)) — N — Hompg(T,T ®g N) — 0

eX(T) €Y(T)

8.6. Moreover, we conclude that

T(T) =im[T ®s —)], F(T) = im[Torg(T, —)].
X(T) = im[ExtR(T, )], Y(T) = im[Hompg(T, —)].
The functors
T®s— Tors(T,—)
VT) ——— 7(T), X(T) —— F()
Hompg(T,—) Exth(T,—)

are equivalences.

Homp(7(T),F(T)) =0, Homg (X (T),Y(T)) = 0.

23



Exercises

8.7. Let GenT be the category of modules can be written as a quotient of
T. Let T be a tilting module. Show that GenT = T (7).

8.8. Denote Hompg (M, N) = Hompg(M, N)/{M — I — N : from some injective I}.
Show the dual Auslander—Reiten formula

Homp (M, N) = DExtgr(t~'N, M).

Or
Extr(M, N) = DHompg(7"'N, M) = DHompg(N,7M).

8.9. Assume Ext=?(—,7M) = 0, then
Ext'(N,7M) = DHom(M, N).
Dually, if Ext=?(N, —) = 0, then

Ext'(N, M) = DHom(M,7N).
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9 Reflection Functors Again

9.1. Let @Q be a quiver. Let 7 be an vertex. Let us compute 75(:). The
following resolution is minimal

0— @ PG)— P>) — S(i) — 0.

arrow ¢ — j

Thus by a careful computation, we get

0— 786 — € I1()— Ii) — 0.

arrow ¢ — j

When i is a sink, S(i) = I(), the above sequence is an almost split sequence.
Dually,
0— P(i)— @ PG — 7 'S(i)—0 (%)

arrow j — ¢

When i is a source, S(i) = P(i), the above sequence is an almost split sequence.

9.2. Let ¢ be a sink. Let V' € Q-rep. We see Homg.rep(P(i), V) = V;, thus
Homa-op(r 8. V) =ker | € V3 — Vi,
arrow j — 1

Consider
T=r"'SG)® @ Py).
iFi
Then we see directly from the AR quiver that Endz(7)°P = S;Q. Moreover,
Hompg(T,V) = S;V.

We will show T is a tiling module. It is extension-free by Auslander—Reiten
formula

Ext'(r715(i), P(j)) = DHom(P(j), S(i)) = 0.

The sequence (x) shows the last condition of definition of tilting module.
Moreover, for V € S;Q-rep, one can check that

T®s,qV =29,V
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9.3. Assume ¢ is a sink, then the functorial exact sequence is
0— S StV —V-—V/S SV —0

Note that V/S; S;"V is a copy of S(i) = P(i) thus above sequence splits.

9.4. Then one can consider the derived version of reflection functor R Hom g (7"
RS;". Actually, it send S(i) to Ext*(T, S(i)) = Ext'(r15(i), S(i)) = S(i)[~1]
(from the () above).

For a complex in derived category of Q-rep, define

dimV* =) (-1)'dimV’ € Z".

Then
dimRS; (V*) = s;dim V*.
Similar result holds for T' ®15‘iQ - =LS;.

9.5. Consider the example.

\ /°\/\/O
7 ° \/\/\

O

° S.Q

Note that

. T T,— .
{ representations of } orseq( ;) { representations of }

. (—Q .
So@ in box Bt () @ in box
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. T —=57 .
{ representations of } i g { representations of }

%_
$o@Q out of box Home (T, )= Q out of box

are both equivalences.

Exercises

9.6. Analyse
e —e—3o0 Se, e —e+—o
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10 Hall-Ringel Algebras
10.1. Let q be a power of a prime number, and ¢ = q'/2 a square root. Assume

k =T the finite field. We are going to do counting over k-rep. This relates
the Lie algebra corresponding to the Dynkin diagrams.

10.2. Denote

B qn _ q—n _ o n . [n]'q
[n]q = a—q 1 [nllg = [g- - [nlg, [kL (k] [n — k]!,
Note that
AP = ], g TR ) = )y, TGk =[]
q

10.3. Denote the Hall algebra of ()
HQ= D z V]

VeQ-rep/=

the formal direct sum of isomorphic classes of Q-rep. It is equipped with the
Hall convolution

U]« [V] = Z#{W/ cw: WV}/V/V%;/U } W),

Denote the virtual Hall convolution
U] V] = ¢V [U] = [V].

It is not difficult to see (H(Q),*) or (H(Q), ) forms an associative algebra
graded by dim.

10.4. We are going to compute the case

[ g—
1

N e

Denote
6p=S1)=[1 0], 0 =S(2)=P(2)=[0 1].

§ Consider the degree dim = 20. The only module is [2 0]. Thus 6; x6; =
#P!-[2 0]. As a result,

01 =q' - #P -2 0] =¢*2];-[2 0.
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§ Similarly, for the degree dim = 02,
03 =¢2],-[0 2].

§ Consider the degree dim = 11. There are two candidates P(1) = [1 R 1]

and S(1)® S(2)=[1 1].

1—=1 {1 1]
S(2) €7 | unique | unique
S(1) €? | never | unique

Thus
91-92:q_1[1—>1]+q_1[1 1]7 9291:[1 1]
Note that (61,602) = —1, and (03,61) = 0.

§ Consider the degree dim = 21. There are two candidates S(1) @ P(1) =
[2—1] and S()*?* & S(2) =[2 1].

[2—1] 2 1]

? unique unique

? | unique, the kernel | P'-many choices

Thus
2 0]-0=q¢2-2=1]+q¢2-[2 1]

—
1
=
=
[
(=)
o

1 1]-6,= @[22 1]
In particular,
0102 =[2g-2—1]+ [2g-[2 1]
919291 = [2 — 1] + q[2]q . [2 1}
0207 = 2 [2 1]
So we get the Serre relation

9%92 - [2]q919291 + 929% =0.

§ Consider the degree dim = 12. There are two candidates S(2) @ P(1) =
[1—2] and S(1) ® S(2)* =[1 2].

[1—2] 1 2]
S(2) C? | Pl-many choices * | Pl-many choices
S(1) €7 never unique

*: the quotient is [1 1] if it coincides with

image, and [1 — 1] otherwise.
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Thus

In particular,

0,105 =(q+q¢ 12+ [2g-[1 2|
0,010, = 152 +q[2,-[1 2]
030, = 2, -1 2]

So we get the Serre relation

9%92 — [2],1919291 + 929% =0.

10.5. Assume the underlying graph of @ is a simply-laced Dynkin diagram.
The computation is local thus Serre relation also holds. Thus we get the
Ringel map

Us(@)*],—, — H(Q)

where Uy(g)* is the negative part of quantum group of the corresponding Lie
algebra. This is an isomorphism by PBW basis theorem for U,(g)" and the
classification of representations of Q.

Exercises
10.6. Show that for the quiver ¢ — o

[m 0]%[0 n]=[m n], [m 0]-[0 n]=¢™"m n.
10.7. Show that for the quiver ¢ — o

[min 0].

m O« 0] =™ [’”*ﬂ

min 0, [m O} 0] =¢*™ [mwﬂ

In particular,
07 =" Vnlly-[n 0]
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