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1. QUANTUM PRODUCT

1.1. The moduli space of stable maps.

1.1.1. Stable maps. A quasi-stable curve with n-marked point is

(C, p1, . . . , pn)

where C is a projective, connected, reduced, (at worst) nodal curve of arithmetic
genus 0, p1, . . . , pn ∈ C are distinct regular points on C. We call

{special points} = {marked points} ∪ {nodal points}.

For a variety X, β ∈ Eff(X), we define the moduli space of stable maps

Mn(X,β) =

(f, C, p1, . . . , pn) :
(C, p1, . . . , pn) is quasi-stable
f : C→ X with f∗[C] = β,
and the stability condition

 /re-parametrization.

Here the stability condition is

If f is constant over an irreducible component of C,
then there must be at least 3 special points on it.

Equivalently, the automorphism group Aut(f, C, p1, . . . , pn) is finite. We denote

Mn(X) =
⋃
β

Mn(X,β), Mn = Mn(pt).

1.1.2. Compactification. It turns out Mn(X,β) is a compactification of{
(f,P1, p1, . . . , pn) :

f : P1 → X with f∗[P1] = β
p1, . . . , pn ∈ P1 distinct

}
/re-parametrization.

When n = 3, as any three points can be moved to (0, 1,∞) by a re-parametrization
Aut(P1), the moduli space M3(X) is a compactification of Mor(P1, X).
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1.1.3. Example. We have
M3 = pt, M4 = P1.

1.1.4. Example. We have

M3(P1, 1) = pt, M3(X, 0) = X.

1.1.5. Expected dimension. At the point (f, C, p1, . . . , pn), the tangenet space is the
difference of the following

(deforming f) = tangent fields of X along C

= H0(C, f∗TX).

(infinitesimal automorphisms) = (infinitesimal reparametrization)

= tangent fields of C vanishing at p1, . . . , pn

= H0(C,TC(−p1 − · · ·− pn))

= Ext0(ωC(p1 + · · ·+ pn),OC).

By Riemann–Roch
χ(C, f∗TX) = dimX+ 〈β, c1(TX)〉
χ(C,TC(−p1 − · · ·− pn)) = −n+ 3.

So the expected dimension of Mn(X,β) is

dimX+ 〈β, c1(TX)〉+ n− 3.

1.2. Gromov–Witten invariants.

1.2.1. Morphisms. We have a morphism called evaluation

ev : Mn(X,β) −→ X× · · · × X : (f, C, p1, . . . , pn) 7−→ (f(p1), . . . , f(pn)).

We denote evi the i-th component. We have a forgetful morphism ft

fti : Mn+1(X,β) −→Mn(X,β)

by forgetting the i-th marked point and collapsing branches if necessary to get a
stable map. Note that this map is not defined for β = 0 and n = 2, as M2(X, 0) =
∅. Similarly for f : X→ Y, we have

f∗ : Mn(X,β) −→Mn(Y, f∗β).
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In particular, we have

ftX : Mn(X,β) −→Mn.

1.2.2. Gromov–Witten invariants. For γ1, γ2, γ3 ∈ H∗(X), we define

〈γ1, γ2, γ3〉β :=

∫
Mn(X,β)

ev∗(γ1 � γ2 � γ3).

Note that 〈γ1, γ2, γ3〉β = 0 unless

(degγ1 + degγ2 + degγ3) = dimX+ 〈β, c1(TX)〉.

Here degγ = k if γ ∈ H2k(X).

1.2.3. Meaning. Assume γi = [Zi] for subvariety Zi ⊂ X. Then the meaning of
Gromov–Witten invariant can be understood as

〈γ1, γ2, γ3〉β = #

{
P1 f→ X :

f∗[P1] = β, f(0) ∈ Z1,
f(1) ∈ Z2, f(∞) ∈ Z3

}
.

Note that now

reparametrization = Aut(P1, 0, 1,∞) = trivial group.

1.2.4. Novikov Ring. Denote Novikov ring

Q[[Eff(X)]] = Q[[qβ]]β∈Eff(X)

/
〈q0 = 1, qβ1qβ2 = qβ1+β2〉.

We will equip the degree

degqβ = 〈β, c1(T)〉.

1.3. Quantum cohomology.
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1.3.1. Quantum cohomology. We define

QH∗(X) = H∗(X,Q)[[Eff(X)]]

with the quantum product ∗ uniquely determined by

〈γ1 ∗ γ2, γ3〉 =
∑

β∈Eff(X)

qβ〈γ1, γ2, γ3〉β,

where 〈 , 〉 is the Poincaré pairing. As 〈γ1, γ2, γ3〉0 = 〈γ1γ2, γ3〉, quantum prod-
uct is a q-deformation of classical product

γ1 ∗ γ2 = γ1γ2 + (quantum correction)

with

(quantum correction) ∈
∑

β∈Eff(X)\{0}

qβH∗(X)

which tends to 0 under the limit limq→0 : H∗(X,Q)[[Eff(X)]]→ H∗(X,Q).

1.3.2. Commutativity. Note that this expression is symmetric under any permuta-
tion of γ1, γ2, γ3, so quantum product is commutative

γ1 ∗ γ2 = γ2 ∗ γ1

and satisfies the Frobenius property

〈γ1 ∗ γ2, γ3〉 = 〈γ, γ2 ∗ γ3〉.

1.3.3. Associativity. Let us consider

ftX : M4(X) −→M4 = P1.

For the nodal curve C on M4, we have

ft−1X ({C}) =
⋃

β1+β2=β

M3(X,β1)×XM3(X,β2).

Here

M3(X,β1)×XM3(X,β2) //

��

((

fibre product

M3(X,β1)

ev3

��

M4(X,β)

M3(X,β2)
ev3 // X.

The map is given by gluing the last marked points.



6 RUI XIONG

Let us compute

∫
M4(X,β)

ev∗(γ1 � γ2 � γ3 � γ4) ft∗([pt])

=
∑

β1+β2=β

∫
M3(X,β1)×XM3(X,β2)

(ev� ev)∗(γ1 � γ2 � 1� γ3 � γ4 � 1)

=
∑

β1+β2=β

∫
M3(X,β1)×M3(X,β2)

(ev� ev)∗(γ1 � γ2 � 1� γ3 � γ4 � 1)(ev3� ev3)
∗(∆X)

=
∑

β1+β2=β

∑
w

∫
M3(X,β1)×M3(X,β2)

(ev� ev)∗(γ1 � γ2 � σw � γ3 � γ4 � σ
w)

=
∑

β1+β2=β

∑
w

〈γ1, γ2, σw〉β1〈γ3, γ4, σw〉β2 ,

where {σw} ⊂ H∗(X) is a basis and {σw} is its dual basis under Poincaré duality.
Note that

∆X =
∑
w

σw ⊗ σw ∈= H∗(X)⊗H∗(X) = H∗(X× X).
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As a result, we have∑
β∈Eff(X)

qβ
∫
M4(X,β)

ev∗(γ1 � γ2 � γ3 � γ4) ft∗([pt])

=
∑
β1+β2

∑
w

qβ1〈γ1, γ2, σw〉β1qβ2〈γ3, γ4, σw〉β2

=
∑
w

〈γ1 ∗ γ2, σw〉〈γ3 ∗ γ4, σw〉

= 〈γ1 ∗ γ2, γ3 ∗ γ4〉 = 〈(γ1 ∗ γ2) ∗ γ3, γ4〉.
Note that this is invariant under any permutation of γ1, γ2, γ3, γ4. In particular,
we have associativity

(γ1 ∗ γ2) ∗ γ3 = (γ2 ∗ γ3) ∗ γ1 = γ1 ∗ (γ2 ∗ γ3).

1.3.4. Remark. When γi = [Zi] for subvariety Zi ⊂ X. This also tells

〈γ1 ∗ γ2, γ3 ∗ γ4〉 =
∑
β

qβ#
{
P1 f→ X : f∗[P1] = β, f(ci) ∈ Zi

}
for any given four points c1, . . . , c4 ∈ P1.

1.3.5. Identity. Let β > 0. Let us consider

ft3 : M3(X,β) −→M2(X,β).

Then ∫
M3(X,β)

ev∗(γ1 � γ2 � 1)

=

∫
M3(X,β)

ft∗3(ev∗(γ1 � γ2))

=

∫
M2(X,β)

ev∗(γ1 � γ2) ft3∗(1) = 0

Here ft3∗(1) = 0 by degree reason. When β = 0,∫
M3(X,0)

ev∗(γ1 � γ2 � 1) =
∫
X

γ1γ2 = 〈γ1, γ2〉.

This proves
〈γ1 ∗ 1, γ2〉 = 〈γ1, γ2〉.

So 1 ∈ H∗(X) ⊂ QH∗(X) is the identity

γ1 ∗ 1 = γ1.
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2. PROPERTIES AND EXAMPLES

2.1. Divisor equation.

2.1.1. Divisor. Let λ be a divisor. When β > 0,∫
M3(X,β)

ev∗(γ1 � γ2 � λ) =
∫
M3(X,β)

ft∗3(ev∗(γ1 � γ2)) ev∗3(λ)

=

∫
M2(X,β)

ev∗(γ1 � γ2) ft3∗(ev∗3(λ)).

By degree reason, ft3∗(ev∗3(λ)) is a number. So it equals to the intersecting number
of the generic fibre and ev3 ∗(λ). For a generic stable map (f,P1, p1, p2), the fibre
along ft3 is P1 itself, and ev3 is identified with f. So the intersecting number is
〈β, λ〉. We conclude that∫

M3(X,β)

ev∗(γ1 � γ2 � λ) = 〈λ, β〉
∫
M2(X,β)

ev∗(γ1 � γ2).

In other word,

〈γ1 ∗ λ, γ2〉 = 〈γ1λ, γ2〉+
∑

β∈Eff(X)\{0}

〈λ, β〉qβ
∫
M2(X,β)

ev∗(γ1 � γ2).

2.2. Remark. This can be understood as follows. Assume λ = [D] for a codimen-
sion 1 subvariety D ⊂ X.

〈γ1, γ2, λ〉β = #

{
P1 f→ X :

f∗[P1] = β, f(0) ∈ Z1,
f(1) ∈ D, f(∞) ∈ Z2

}
.

Note D intersects any P1 → X by 〈β, λ〉 points. Thus

〈γ1, γ2, λ〉β = 〈β, λ〉#
{
P1 f→ X :

f∗[P1] = β,
f(0) ∈ Z1, f(∞) ∈ Z2

}
/C×.

Note that now
reparametrization = Aut(P1, 0,∞) = C×.

2.3. Product.

2.3.1. Product. Let X and Y be two varieties. We have a birational

M3(X× Y, (β,β ′)) −→M3(X,β)×M3(Y, β
′)

induced by two projections. Note that, this is birational only for n = 3 in which
case M3(X) is a compactification of Mor(P1, X). We can conclude

QH∗(X× Y) −→ QH∗(X)⊗QH∗(Y)

is an algebra isomorphism.
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2.3.2. Corollory. When β1, β2 > 0∫
M2(X×Y,(β1,β2))

ev∗
(
(γ1 ⊗ γ ′1)� (γ2 ⊗ γ ′2)

)
= 0.

This can be proved using divisor equation. For any ample divisor λ ∈ H2(X),

〈(γ1 ⊗ γ ′1) ∗ (λ⊗ 1), γ2 ⊗ γ ′2〉

= 〈γ1λ, γ ′1〉+
∑
β1,β2

〈λ, β1〉qβ1qβ2
∫
M2

ev∗((γ1 ⊗ γ ′1)� (γ2 ⊗ γ ′2)).

Note that 〈λ, β1〉 > 0. On the other hand,

〈(γ1 ⊗ γ ′1) ∗ (D⊗ 1), γ2 ⊗ γ ′2〉 = 〈γ1 ∗ λ, γ2〉〈γ2, γ ′2〉

having no qβ2 -term.

2.3.3. Remark. Let us give a direct proof of this fact. When β1, β2 > 0, we have
the following diagram

M2(X× Y, (β,β ′))
(∗) //

ev

��

M2(X,β)×M2(Y, β)

ev � ev

��
X× Y × X× Y // X× X× Y × Y

Note that

dim left-hand side of (∗) − dim right-hand side of (∗) = 1.

By degree reason, the Gromov–Witten invariant vanishes.

2.4. Projective spaces.

2.4.1. Example. We have
Pn = (Cn+1 \ {0})/C×.

We know

H2(Pn) = Z ·H, H = [a hyperplane] = c1(O(1))

H2(Pn) = Z · `, ` = [a straight line].

Recall that
H∗(Pn) = Z[H]/〈Hn〉, 〈Ha, Hb〉 = δa+b=n.

Since the tangent bundle TX can be put into the following short exact sequence

0 −→ OPn −→ O(1)N+1 −→ TX −→ 0,

we have c1(TX) = (n+ 1)H. As a result, q := q` has degree n+ 1.
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2.4.2. Approach A. Let us compute when a+ b = n+ 1

Ha ∗Hb = (??)q.

That is,
〈Ha ∗Hb, Hn〉 = (??).

Note that Hk is represented by a codimension k-plane, and in particular, Hn is
represented by a point. By the geometric meaning,

(??) = #

{
straight lines going through a point P

a (n− a)-plane A and a (n− b)-plane B

}
Note that the affine span of P and A intersects a unique point Q with B. Then PQ
is the straight line going through P,A and B. So (??) = 1. Thus when a+b = n+1,
we have

Ha ∗Hb = q.

By degree reason, we can conclude that, for 0 ≤ a, b ≤ n,

Ha ∗Hb =

{
Ha+b, a+ b ≤ n
qHa+b−n−1, a+ b > n.

So we have the following presentation of quantum cohomology

QH∗(Pn) = Q[H,q]/〈Hn+1 = q〉.

2.4.3. Approach B. There is anther approach of doing this. Let us compute

H ∗ · · · ∗H︸ ︷︷ ︸
n+1

= (??)q.

Recall that

Mordeg=1(P1,PN) =
{
P1 f→ PN : f∗[P1] = `

}
=

{
(s0, . . . , sn) :

si ∈ H0(P1,O(1))
s0 · · · sn vanishes nowhere

}
/C×.

Actually, for any f : P1 → Pn of degree 1, the corresponding (s0, . . . , sn) is given
by

si = f
∗(xi), the i-th coordinate xi ∈ H0(P1,O(1)) = Cn+1.
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Conversely, f is defined by

f(x) = [s0(x) : · · · : sn(x)] ∈ Pn, x ∈ P1.
LetHi = {xi = 0} ⊂ Pn be the coordinate hyperplane. Let c0, . . . , cn ∈ P1 be given
points. Then{

P1 f→ PN :
f∗[P1] = `
f(ci) ∈ Hi

}
=

(s0, . . . , sn) :
si ∈ H0(P1,O(1))
s0 · · · sn vanishes nowhere
si(ci) = 0

 /C×.
Note that

si(ci) = 0 ⇐⇒ si ∈ HomP1(O(ci),O(1)) ∼= C.
For a given generic x ∈ P1, we see that{

P1 f→ Pn :
f∗[P1] = `
f(ci) ∈ Hi

}
evx−→ PN

is an isomorphism. Thus

#

{
P1 f→ Pn :

f∗[P1] = `, f(ci) ∈ Hi
f(x) = a given point

}
= 1.

This proves
〈H ∗ · · · ∗H, [pt]〉 = q.

That is,
H ∗ · · · ∗H︸ ︷︷ ︸

n+1

= q.

2.5. Full flag variety in C3.

2.5.1. Example. Let us consider the full flag variety

X = F`2 =
{
0 ⊂ V1 ⊂ V2 ⊂ C3

}
.

We have a tautological flag bundle

0 ⊂ V1 ⊂ V2 ⊂ O3X.

Let us denote

x1 = −c1(V1), x2 = −c1(V2/V1), x3 = −c1(O
3
X/V2).



12 RUI XIONG

The usual cohomology is given by

H∗(F`2) = Z[x1, x2, x3]
/〈

x1 + x2 + x3 = 0
x1x2 + x1x3 + x1x2 = 0
x1x2x3 = 0

〉
.

We have the following dual basis

1↔ x21x2, x1 ↔ x1x2, x1 + x2 ↔ x21.

Let us consider

X1 = P2 = {0 ⊂ V1 ⊂ C3}, X2 = (P2)∨ = {0 ⊂ V2 ⊂ C3}.
We have forgetful map π1 : X→ X1 and π2 : X→ X2. Denote

β1 = fibre of π1, q1 = q
β1 , β2 = fibre of π2, q2 = q

β2 .

The intersection form is

〈 , 〉 x1 x2 x3

β1 1 −1 0

β2 0 1 −1

Since
c1(TX) = (x1 − x2) + (x2 − x3) + (x1 − x3) = 2x1 − 2x3.

We have
degq1 = degq2 = 2.

By degree reason,

λ1 ∗ λ2 = λ1λ2 + (a number)q1 + (a number)q2.

λ1 ∗ λ2 ∗ λ3 = λ1λ2λ3 + (a divisor)q1 + (a divisor)q2.

2.5.2. Relation A. We can get the quadratic relation as follows. For two divisors
λ1, λ2, by using the divisor equation twice, we have

〈λ1 ∗ λ2, γ〉 = 〈λ1λ2, γ〉+
∑

β∈Eff(X)\{0}

qβ〈λ1, β〉
∫
M2(X,β)

ev∗(λ1 � γ)

= 〈λ1λ2, γ〉+
∑

β∈Eff(X)\{0}

qβ〈λ1, β〉〈λ2, β〉
∫
M1(X,β)

ev∗(γ).

The key observation is, we can identify

M1(X,β1)
ev

ft1
��

X

π1

��
M0(X,β1) X1

M1(X,β2)
ev

ft2
��

X

π2

��
M0(X,β2) X2
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By taking γ = [pt], we get

λ1 ∗ λ2 = λ1λ+ 〈λ1, β1〉〈λ2, β1〉q1 + 〈λ1, β2〉〈λ2, β2〉q2.
We can now compute

∗ x1 x2 x3

x1 x21 + q1 x1x2 − q1 x1x3

x2 x1x2 − q1 x22 + q1 + q2 x2x3 − q2

x3 x1x3 x2x3 − q2 x23 + q2

So we can conclude that

x1x2 + x2x3 + x3x1 + q1 + q2 = 0.

2.5.3. Relation B. We further have

M2(X,β1) = X×X1 X, M2(X,β2) = X×X2 X.
We have

M2(X,β1)
ft2 //

ev1

''

ft1

��

ev2

##

M1(X,β1)

ev

ft

��

X×X1 X //

��

X

π1

��
X

π1 // X1

M1(X,β1)
ft //

ev

M0(X,β1)

It is well-known that the composition

[H∗(X)
pull−→ H∗(X×Xi X)

push−→ H∗−2(X)]

= [H∗(X)
push−→ H∗−2(Xi)

pull−→ H∗(X)]

= ∂i the BGG Demazure operator.

The BGG Demazure operator acts as

∂1f =
f− f|x1↔x2
x1 − x2

, ∂2f =
f− f|x2↔x3
x2 − x3

.

For a divisor λ, by divisor relation,

λ ∗ γ = λγ+ q1〈λ, β1〉∂1(γ) + q2〈λ, β2〉∂2(γ) + (other quantum terms).
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But by degree reason, there will be no other quantum terms. As a result,

x1 ∗ (x2 ∗ x3) = x2 ∗ (x1 ∗ x3) = x2 ∗ (x1x3)
= x1x2x3 + q1〈x2, β1〉∂1(x1x3) + q2〈x2, β2〉∂2(x1x3)
= 0− q1x3 − q2x1.

This proves
x1 ∗ x2 ∗ x3 + q1x3 + q2x1 = 0.

In summary, the relations are given by the coefficients of characteristic polynomial
of x1 q1

−1 x2 q2

−1 x3

 .

2.6. Grassmannian in C4.

2.6.1. Example. Let us consider

X = Gr(2, 4) = {V ⊂ C4 : dimV = 2}.

We have a tautological exact sequence

0 −→ V −→ O4X −→ Q −→ 0.

Let us denote

D = e1 = h1 = −c1(V) = c1(Q), e2 = c2(V), h2 = c2(Q).

The relation is

(1− e1y+ e2y
2)(1+ h1y+ h2y

2) = 1 (as a polynomial in y).
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We have TX = Hom(V,Q), so c1(TX) = nD. Let ` be the primitive generator of
Eff(X), we denote q = q`. We have degq = n. Now let us consider

F`4 = {0 ⊂ V1 ⊂ V2 ⊂ V3 ⊂ C4} M1(X, `)

ft

%%

ev

uu
Gr(2, 4) M0(X, `) {0 ⊂ V1 ⊂ V3 ⊂ C4} = Y

We can identify
Y = M0(X, `), F`4 = M1(X, `).

2.6.2. Relation. By degree reason, we have

e2 ∗ h2 = e2h2 + (a number)q.

Note that

the number =
∫
M3(X,`)

ev∗(e2 � h2 � [pt]).

We can identify
M3(X, `) = F`4×Y F`4×Y F`4 .

We have

H∗(M3(X, `)) = H
∗(F`4×Y F`4×Y F`4)

= H∗(F`4)⊗H∗(Y) H∗(F`4)⊗H∗(Y) H∗(F`4)
H∗(Y) = invariant algebra of H∗(F`4) under x2 ↔ x3.

Let us denote

xi = xi ⊗ 1⊗ 1, yi = 1⊗ xi ⊗ 1, zi = 1⊗ 1⊗ xi.
Note that

x1 = y1 = z1, x4 = y4 = z4.

We can represent

e2 = x1x2, h2 = x
2
1 + x1x2 + x

2
2, [pt] = x21x

2
2.

As a result,
ev∗(· · · ) = (x1x2)(x

2
1 + x1y2 + y

2
2)(x

2
1z
2
2).

The pushforward is given by

∂x2∂
y
2∂
z
2, ∂f2 =

f− f|x2↔x3
x2 − x3

, etc.

So

ft∗(ev∗(· · · )) = (x1)(x1 + y2 + y3)(x
2
1(z2 + z3))

= (x1)(x1 + x2 + x3)(x
2
1(x2 + x3)) = [pt].
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As a result,
e2 ∗ h2 = q.

So the relation is

(1− e1y+ e2y
2)(1+ h1y+ h2y

2) = 1+ q.
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3. FUNDAMENTAL SOLUTION

The purpose of this section is to establish the theory of fundamental solution
of quantum differential equations.

3.1. Psi class.

3.1.1. Universal curve. We could view the forgetful morphism

ftn+1 : Mn+1(X,β) −→Mn(X,β)

the universal curve. That is, the fibre of a stable map (f, C, p1, . . . , pn) ∈Mn(X,β)
is C itself. We also have universal sections σi (1 ≤ i ≤ n)

σi : Mn(X,β) −→Mn+1(X,β)

by attaching a
P1 3 pn+1, (new pi), (attaching point)

on the i-th marked point.

3.1.2. Universal cotangent line. We define the universal cotangent line to be

Li = σ∗i (relative dualizing sheaf of ftn+1)

a line bundle over Mn(X,β). In particular, at each point (f, C, p1, . . . , pn) ∈Mn(X,β),
the fibre of Li is the cotangent line at pi ∈ C. The psi-class is defined to be

ψi = c1(Li) ∈ H2(Mn(X,β),Q).

3.1.3. Local computation. The following computation is very important in the com-
putation of psi-classes. Consider the family of curves with 1marked point

(1, h) ∈ Ch = {(x, y) : xy = h} ⊂ C2, h ∈ C.

Then we have

υ : C2 −→ C, (x, y) 7−→ xy; (universal family)

σ : C −→ C2, h 7−→ (1, h). (universal section)

We denote L the universal cotangent line. Note that the 2-nd projection defines a
morphism L∗ −→ TC, i.e.

tangent line of Ch at (1, h)
pr
2−→ tangent line of C at h.

Note that this morphism has a zero at h = 0. So we have

L⊗ TC ' O({0}), i.e. L ' ΩC({0}).

The principle is

ψi − ft∗ψi =

[
locus of curves collapsing on

the branch of the i-th marked point

]
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3.1.4. Example. Let C = (f,P1, p1, . . . , pn) be a generic stable map on Mn(X,β).
We know P1 ' ft−1n+1(C). Let us compute the restriction of Li to P1. The first guess
is

Li|P1 “=” ΩP1 = O(−2).

But this is not true. At the point pi ∈ P1, the corresponding curve is σi(C) ∈
ft−1n+1(C), whose i-th marked point is not pi. From the local computation above,
we actually have

Li|P1 = ΩP1(p1 + · · ·+ pn) = O(n− 2).

3.1.5. Example. Recall the forgetful map

ftn+1 : Mn+1(X,β) −→Mn(X,β).

We shall compare psi classes for different number of marked points. The first
guess is

ft∗n+1ψi “=” ψi.

But this is not true. When forgetting the (n + 1)-th marked point, we might need
collapsion to get a stable map. The local computation shows

ψi − ft∗n+1ψi =
[
image of σi : Mn(X,β)→Mn+1(X,β)

]
3.1.6. Example. Consider the forgetful map

ftX : M3(X,β) −→M3.

We shall compare psi classes between them. The first guess is

ft∗Xψi “=” ψi = 0.

But this is not true. When forgetting the underlying space X, we might need
collapsion to get a stable map. The local computation shows

ψ3 = ψ3 − ft∗Xψ3 =
∑

β=β1+β2

[
M3(X,β1) ×

∆X
M2(X,β2)

]
.
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Here

M3(X,β1) ×
∆X

M2(X,β2) //

��

fibre product

( �

glue

))
M3(X,β1)

ev3

��

M3(X,β1 + β2)

M2(X,β2) ev2
// X

3.2. Fundamental solution.

3.2.1. GW invariant twisted by psi class. For γ1, γ2, γ3 ∈ H∗(X), let us consider a
gravitational correlator

〈γ1, γ2, τaγ3〉β :=

∫
M3(X,β)

ev∗(γ1 � γ2 � γ3)ψ
a
3 .

Let us pick a basis {σw} ⊂ H∗(X) with dual basis {σw}.

3.2.2. Appraoch A. Let us apply Example 3.1.6. When a ≥ 1,∫
M3(X,β)

ev∗(γ1 � γ2 � γ3)ψ
a
3

=
∑

β=β1+β2

∫
M3(X,β)

[M3(X,β1)×∆X M2(X,β2)] · ev∗(γ1 � γ2 � γ3)ψ
a−1
3

=
∑

β=β1+β2

∫
M3(X,β1)×∆XM2(X,β2)

ev∗(γ1 � γ2 � γ3)(1�ψ2)
a−1

=
∑

β=β1+β2

∫
M3(X,β1)×M2(X,β2)

ev∗(γ1 � γ2 � ∆X � γ3)(1�ψ2)
a−1

=
∑

β=β1+β2

∑
w

∫
M3(X)×M2(X)

ev∗(γ1 � γ2 � σw � σw � γ3)ψ
a−1
3

=
∑

β=β1+β2

∑
w

∫
M3(X,β1)

ev∗(γ1 � γ2 � σw)
∫
M2(X,β2)

ev∗(σw � γ3)ψ
a−1
2

=
∑

β=β1+β2

∑
w

〈γ1, γ2, σw〉β1
∫
M2(X,β2)

ev∗(σw � γ3)ψ
a−1
2
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Thus ∑
β∈Eff(X)

qβ
∫
M3(X,β)

ev∗(γ1 � γ2 � γ3)ψ
a
3

=
∑
w

qβ1〈γ1, γ2, σw〉β1
∑
β2

qβ2
∫
M2(X,β2)

ev∗(σw � γ3)ψ
a−1
2

=
∑
β

qβ
∫
M2(X,β)

ev∗(γ1 ∗ γ2 � γ3)ψa−12

3.2.3. Approach B. Let us apply Example 3.1.5. Let us denote

D =
[
image of σ2 : M2(X,β)→M3(X,β)

]
.

Note that σ∗2L2 is trivial, i.e. D ·ψ2 = 0. When a ≥ 1,

ψa2 = (ft∗3ψ2 +D)ψa−12 = ft∗3ψ2 ·ψa−12 = · · · = ft∗3ψ
a
2 +D · ft∗3ψa−12 .

Let us assume γ2 = λ is a divisor. When β > 0,∫
M3(X,β)

ev∗(γ1 � γ2 � γ3)ψ
a
3

=

∫
M3(X,β)

ev∗(γ1 � γ3 � λ)ψ
a
2

=

∫
M3(X,β)

ev∗(γ1 � γ3 � λ)
(

ft∗3ψ
a
2 +D · ft∗3ψa−12

)
=

∫
M3(X,β)

ev∗(γ1 � γ3 � λ) ft∗3ψ
a
2 +

∫
M3(X,β)

ev∗(γ1 � γ3 � λ)D · ft∗3ψa−12

=

∫
M3(X,β)

ft∗3
(

ev(γ1 � γ3)ψ
a
2

)
ev∗3(λ) +

∫
M2(X,β)

ev∗(γ1 � γ3)σ
∗
2(ev∗3 λ)ψ

a−1
2

= 〈λ, β〉
∫
M2(X,β)

ev∗(γ1 � γ3)ψ
a
2 +

∫
M2(X,β)

ev∗(γ1 � γ3 · λ)ψa−12

=

∫
M2(X,β)

〈λ, β〉 ev∗(γ1 � γ3)ψ
a
2 + ev∗(γ1 � γ3 · λ)ψa−12
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Here we use the facts

ft3∗ ev3(λ) = 〈λ, β〉, ev3 ◦σ3 = ev2, ft3 σ2 = id .

3.2.4. Summary. By equalizing the results by two approaches, we get (a ≥ 1)∑
β∈Eff(X)

qβ
∫
M3(X,β)

ev∗(γ1 � λ� γ3)ψ
a
3

=
∑

β∈Eff(X)

qβ
∫
M2(X,β)

ev∗(γ1 ∗ λ� γ3)ψa−12

=
∑

β∈Eff(X)\{0}

qβ
∫
M2(X,β)

〈λ, β〉 ev∗(γ1 � γ3)ψ
a
2 + ev∗(γ1 � γ3 · λ)ψa−12 .

When β = 0, M2(X,β) = ∅, so the integral is understood as 0. Recall∑
β∈Eff(X)

qβ
∫
M3(X,β)

ev∗(γ1 � λ� γ3)

= 〈γ1, λ · γ3〉+
∑

β∈Eff(X)\0

qβ〈λ, β〉
∫
M2(X,β)

ev∗(γ1 � γ3)

= 〈γ1 ∗ λ, γ3〉

For any polynomial (or a power series) T(ψ), we denote T↓(ψ) = T(ψ)−T(0)
ψ

. We
have∑
β∈Eff(X)

qβ
∫
M3(X,β)

ev∗(γ1 � λ� γ3)T(ψ3)

= 〈γ1 ∗ λ, γ3〉T(0) +
∑

β∈Eff(X)

qβ
∫
M2(X,β)

ev∗(γ1 ∗ λ� γ3)T↓(ψ2)

= 〈γ1, λ · γ3〉T(0) +
∑

β∈Eff(X)\0

qβ
∫
M2(X,β)

〈λ, β〉 ev∗(γ1 � γ3)T(ψ2) + ev∗(γ1 � γ3 · λ)T↓(ψ2).
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3.2.5. Notations. Let us introduce more notations
• Let us take a formal variable z. Now let us consider

T(ψ) =
1

z−ψ
=

1/z

1−ψ/z
=
1

z
+
ψ

z2
+
ψ2

z3
+ · · · .

Then

T↓(ψ) = 1

ψ

(
1

z−ψ
−
1

z

)
=

1

z(z−ψ)
=
1

z
T(ψ).

• For any divisor λ denote ∂λ the differential operator on QH∗(X) with

∂λq
β = 〈λ, β〉qβ.

Here, a differential operator is anH∗(X)-linear operators with Leibniz rule.
• Let us denote p lnq the unique function with

∂λ(p lnq) = λ.

It can be constructed by p lnq =
∑
pi lnqβi for {βi} ⊂ Eff(X) ⊂ H2(X) a

basis with {pi} ⊂ H2(X) its dual basis. In particular,

∂λ(e
p lnq/z) =

1

z
ep lnq/zλ.

3.2.6. Fundamental solution. Let us denote a functional S as follows. For γ, γ ′ ∈
H∗(X),

S(γ, γ ′) = 〈γ, ep lnq/zγ ′〉+
∑

β∈Eff(X)\{0}

qβ
∫
M2(X,β)

ev∗(γ� ep lnq/zγ ′)
1

z−ψ2
.

Then we can write down the equation

1

z
S(γ ∗ λ, γ ′) = ∂λS(γ, γ ′).

In particular, let us denote an operator S such that

〈γ, S(γ ′)〉 = S(γ, γ ′) i.e. S(γ ′) =
∑
w

σw · S(σw, γ ′).

In particular,

S(γ ∗ λ, γ ′) = 〈γ ∗ λ, S(γ ′)〉 = 〈γ, λ ∗ S(γ ′)〉
∂λS(γ, γ

′) = ∂λ〈γ, S(γ ′)〉 = 〈γ, ∂λS(γ ′)〉.

Thus for any γ ′ ∈ H∗(X), we have

∂λS(γ
′) −

1

z
λ ∗ S(γ ′) = 0.

In particular, S(γ ′) solves the quantum differential equation (discussed later). We
call the operator S the fundamental solution.
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3.2.7. Remark. Since

lim
z→∞S(γ ′) = γ ′

the operator S is nondegenerate.

3.3. J-function.

3.3.1. J-function. Let us define J to be the unique class such that

〈J, γ ′〉 = S(1, γ ′) = 〈1, S(γ ′)〉, i.e. J =
∑
w

σw · S(1, σw).

If we think S as a matrix, then each column of S is a solution of quantum dif-
ferential equation. The J-function is by definition the row of S corresponding to
1 ∈ H∗(X).

3.3.2. Simplification. By definition

J =
∑
w

σw · S(1, σw)

=
∑
w

σw

〈1, ep lnq/zσw〉+
∑

β∈Eff(X)\{0}

qβ
∫
M2(X,β)

ev∗(1� ep lnq/zσw)
1

z−ψ2

 .
More general, for β > 0, let us denote

D = [image of s1 : M1(X,β)→M2(X,β)].

Similar as what we did in Approach B 3.2.3, we have∫
M2(X,β)

ev∗(1� γ)ψa2

=

∫
M2(X,β)

ev∗(γ� 1)ψa1

=

∫
M2(X,β)

ev∗(γ� 1)(ft∗2ψ
a
1 +D · ft∗2ψa−11 )

=

∫
M2(X,β)

ft∗2(ev∗(γ)ψa1 ) +

∫
M1(X,β)

ev∗(γ)ψa−11

= 0+

∫
M1(X,β)

ev∗(γ)ψa−11 .
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Let us denote ψ = ψ1 ∈ H2(M1(X,β)). So

J =
∑
w

σw〈1, ep lnq/zσw〉+
∑

β∈Eff(X)\{0}

qβ
∑
w

σw

∫
M1(X,β)

ev∗(ep lnqσw)
1

z(z−ψ)

= ep lnq/z + ep lnq/z
∑

β∈Eff(X)\{0}

qβ ev∗
1

z(z−ψ)

= ep lnq/z

1+ ∑
β∈Eff(X)\{0}

qβ ev∗
1

z(z−ψ)

 .
3.4. Relations. Let D = f(z∂λ, q) be a differential operator with f a noncommu-
tative polynomial. If

DJ = 0

then limz→0 f(λ, q) = 0 in QH∗(X).

Proof. Note that
z∂λS(γ

′) = λ ∗ S(γ ′).
When f takes form of∑

(a function in q) · (differential operators),

we have
DS(γ ′) = f(λ∗, q)S(γ ′).

Thus

0 = 〈DJ, γ ′〉 = D〈J, S(γ ′)〉 = D〈1, S(γ ′)〉
= 〈1,DS(γ ′)〉 = 〈1, f(λ∗, q)S(γ ′)〉 = 〈f(λ∗, q), S(γ ′)〉.

Since S(γ ′) is non-degenerate, f(λ, q) = 0 in QH∗(X).
The general case follows from the fact that

[z∂λ,multiplcation by qβ] = z ·multiplication by ∂λq
β,

which is killed by limz→0. �
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4. QUASI MAPS

4.1. Normal bundle in terms of Psi class.

4.1.1. Local computation. Recall the family of curves

Ch = {(x, y) : xy = h} ⊂ C2, h ∈ C.

The ideal for C0 = (x-axis) ∪ (y-axis) is

m = 〈xy〉 ⊂ R := C[x, y].

So the normal bundle of C0 is

m/m2 = xyR/m = OC0(x)⊗ OC0(y).

Thus we can naturally identify the normal bundle of the singleton C0 ∈ {Ch} with

(tangent line of 0 along x-axis)⊗ (tangent line of 0 along y-axis).

Say, by the following diagram

C

��

× C

��

// C2

��
{x-axis} × {y-axis} // {Ch} ' C.

The principle is

smoothing of the nodal point = tensor product of two tangent directions

4.1.2. Example. Let us consider the morphism

Mn+1(X,β1)×XMm+1(X,β2) −→Mm+n(X,β1 + β2)

by gluing the first marked points. Then the normal bundle of this morphism is
the restriction of (L1 � L1)∗.
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4.1.3. Example. Let us consider the morphism

Mn+1(X,β1)×Mm+1(Y, β2) −→Mm+n(X× Y, (β1, β2))

by gluing the first marked points. Then the normal bundle is the restriction of
(L1 � L1)∗.

4.1.4. Example. Let us consider

Mn(X,β)× P1 −→Mn−1(X× P1, (β, 1))

by sending (C, x) to the curve obtained by first putting C vertically at the point
x ∈ P1 and then gluing a P1 horizontally at the first marked point. Then the
normal bundle is L∗1 � TP1 .

4.2. Quasi-maps.

4.2.1. Remark. Let L and V be two vector bundles. For a sheaf morphism s : L→
V, we have (by Nakayama lemma)

s is surjective ⇐⇒ s is fibrewise surjective.

While we only have

s is injective⇐ s is fibrewise injective.

Actually, when L is a line bundle,

s is injective ⇐⇒ s is nonzero (on each connected component).

4.2.2. Quasi maps for projective space. Recall that

Mor(C,PN) =
⋃

L∈Pic(C)

Surj(ON+1
C → L)/C∗.

By taking dual,

Surj(ON+1
C → L)/C∗ ↪→ Inj(L∨ → ON+1

C )/C∗ = P(H0(C,L)N+1).

We define quasi-map by

QM(C,PN) =
⋃
L

P(H0(C,L)N+1).

When C = P1, we define

QM(PN) =
⋃
d≥0

QM(PN, d) =
⋃
d≥0

P(C[x]N+1
deg≤d).

It is a compactification of the space of P1 → PN of degree d.
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4.2.3. Quasi maps for general X. Assume we can embed

X −→ PN1 × · · · × PNm

using primitive nef divisors D1, . . . , Dm. For β ∈ Eff(X), denote

β1 = 〈D1, β〉, . . . , βm = 〈Dm, β〉.
We can view

Mordeg=β(P1, X) ⊂ Mordeg=β(P1,PN1 × · · ·PNm)
= Mordeg=β1(P1,PN1)× · · · ×Mordeg=βm(P1,PNm)

⊂ QM(PN1 , β1)× · · · ×QM(PNm , βm).

We define

QM(X,β) = closure of Mordeg=β(P1, X) in QM(PN1 , β1)× · · · ×QM(PNm , βm)

and QM(X) =
⋃
β∈Eff(X) QM(X,β).

4.2.4. Remark. We can think as follows. For sections s0, . . . , sN ∈ H0(C,L), we
define a rational map

C −→ PN, x 7→ [s0(x) : · · · : sN(x)].
This defines a morphism when s0, . . . , sN has no common zeros. In general, the
closure of C defines a morphism C→ PN but with class

L(−common zeros).

We call those common zeros by marked points (with multiplicity). So we have

QM(Pn, d) =
⊔

0≤d ′≤d

Mordeg=d ′(P1,Pn)× Symd−d
′
C.

A quasi map can be uniquely recorded as a morphism C→ PN and marked zeros.
Generally, a quasi map over X can be uniquely recorded as a morphism P1 → X
with colored marked point. That is,

QM(X,β) =
⊔

0≤β ′≤β

Mordeg=β(C,Pn)×
m∏
i=1

Sym〈β−β
′,Di〉 P1.
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4.2.5. Fixed locus. There is C×-action on QM(X) induced from P1. Firstly, let us
look at

QM(PN, d) = P(C[x]N+1
deg≤d).

We have
QM(PN, d)C

×
=

⋃
0≤d ′≤d

xd
′
P(CN+1) =

⋃
0≤d ′≤d

PN.

That is, it is set of constant quasi-map with dmarked point at 0 and d−d ′ marked
point at∞. More generally, we have

QM(X,β)C
×
=

⋃
0≤β ′≤β

xβ
′
· X.

4.2.6. Pseudo evaluation. Recall we have a morphism

ευ∗ : Pic(X)→ Pic(QM(X,β))

such that the restricting to any fixed component

Pic(QM(X,β)) −→ Pic(xβ
′
X) ' Pic(X)

is identity. For any polynomial f(x1, . . . , xm), we want to compute∫
QM(X,β)

f(ευ∗D1, . . . , ευ
∗Dm).

4.3. Graph Space.

4.3.1. Graph Space. Let us consider the graph space

G0(X,β) = M0(P1 × X, (1, β)).

Note that G0(X) admits a C× action, so we can compute pushforward via local-
ization. We view the projection

P1 × X→ P1

as a fibre bundle. Every stable map in G0(X,β) is a union of a section and vertical
curves.

4.3.2. Fixed component. For any x ∈ X, we denote [x] the graph of constant map

[x] =
[
P1 → P1 × {x} ⊂ P1 × X

]
.

Assume β > 0. Let β1, β2 > 0. We have a morphism

iβ1,β2 : M1(X,β1)×XM1(X,β2) −→ G0(X,β1 + β2)

by putting two stable maps with same marked point on X horizontally at 0 and∞
respectively, and gluing them by [x]. We also have

iβ,0 : M1(X,β) −→ G0(X,β)
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by putting a stable map at 0. We similarly define i0,β. Then

G0(X,β)
C× =

⋃
β1+β2=β

(
image of iβ1,β2

)
.

4.3.3. Dimension estimation. Let us estimate the dimension. We have

dimG0(X,β) = dimX+ 1+ 〈c1(TX), β〉+ 〈c1(TP1), 1〉+ 0− 3
= dimX+ 〈c1(TX), β〉.

For β1, β2 > 0with β1 + β2 = β,

dimM1(X,β1)×XM1(X,β2) = dimX+ 〈c1(TX), β〉+ 1− 3+ 1− 3
= dimX+ 〈c1(TX), β〉− 4.

On the other hand,

dimM1(X,β) = dimX+ 〈c1(TX), β〉+ 1− 3
= dimX+ 〈c1(TX), β〉− 2.

4.3.4. Normal bundle. Denote ξ the natural representation of C×. For β1, β2 > 0,
the normal bundle along iβ1,β2 .

(smoothing the gluing point at 0) = (L−1 ⊗ ξ)� O.

(moving the vertical curve at 0) = ξ� O = ξ.

Similarly for the gluing point at∞
(smoothing the gluing point at∞) = O� (L−1 ⊗ ξ−1).
(moving the vertical curve at∞) = O� ξ−1 = ξ−1.

Thus the Euler class

Eu(Nm(iβ1,β2)) = restriction of z(z−ψ)⊗ (−z(−z−ψ)).

When β2 = 0, we do not need to smooth and move∞, so

Eu(Nm(iβ,0)) = restriction of z(z−ψ)⊗ 1.

Similarly, when β1 = 0,

Eu(Nm(i0,β)) = restriction of 1⊗ (−z(−z−ψ)).
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4.4. Comparison.

4.4.1. Comparison. Note that both G(X,β) and QM(X,β) are compatification of
Mordeg=β(P1, X). We actually have a birational morphism

µ : G(X,β) −→ QM(X,β)

by changing the vertical curves by marked points.

4.4.2. Localization. Let
φ = f(D1, . . . , Dm).

As µ is birational,∫
QM(X,β)

f(ευ∗D1, . . . , ευ
∗Dm)

=

∫
G(X,β)

µ∗f(ευ∗D1, . . . , ευ
∗Dm)

=
∑

β1+β2=β

∫
i∗β1,β2µ

∗f(ευ∗D1, . . . , ευ
∗Dm)

Eu(Nm(iβ1,β2))
.
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When β1, β2 > 0, we have the following diagram

G(X,β)
µ // QM(X,β)

image of iβ1,β2
//

OO

xβ1X

OO

M1(X,β!)×XM1(X,β2)
ev �1=1�ev // X

Thus ∫
M1(X,β1)×XM1(X,β2)

i∗β1,β2µ
∗f(ευ∗D1, . . . , ευ

∗Dm)

Eu(Nm(iβ1,β2))

=

∫
M1(X,β1)×XM1(X,β2)

(ev�1)∗
(
f(D1, . . . , Dm)

)
z(z−ψ)⊗ (−z)(−z−ψ)

=

∫
M1(X,β1)×M1(X,β2)

(ev�1)∗(φ)
z(z−ψ)⊗ (−z)(−z−ψ)

(ev� ev)∗(∆X)

=

∫
M1(X,β1)×M1(X,β2)

(ev�1)∗(φ)
z(z−ψ)⊗ (−z)(−z−ψ)

∑
w

(ev� ev)∗(σw � σw)

=
∑
w

∫
M1(X,β1)

ev∗(φ · σw)
z(z−ψ)

∫
M1(X,β2)

ev∗(σw)

z(z−ψ)

=
∑
w

〈
ev∗

(
1

z(z−ψ)

)
, φ · σw

〉〈
ev∗

(
1

−z(−z−ψ)

)
, σw

〉
Similarly, when β ′ = β,

image of iβ,0 // xβX

M1(X,β)
ev2 // X.

We have ∫
M1(X,β)

i∗β,0µ
∗f(ευ∗D1, . . . , ευ

∗Dm)

Eu(Nm(iβ1,β2))

=

∫
M1(X,β)

ev∗(φ)

z(z−ψ)
=

〈
ev∗

(
1

z(z−ψ)

)
, φ

〉
=
∑
w

〈
ev∗

(
1

z(z−ψ)

)
, φσw

〉
〈1, σw〉
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Similarly, ∫
M1(X,β)

i∗0,βµ
∗f(ευ∗D1, . . . , ευ

∗Dm)

Eu(Nm(iβ1,β2))

=

∫
M1(X,β)

ev∗(φ)

−z(−z−ψ)
=

〈
ev∗

(
1

−z(−z−ψ)

)
, φ

〉
=
∑
w

〈1,φ · σw〉
〈

ev∗

(
1

−z(−z−ψ)

)
, σw

〉
.

4.4.3. J-function again. Let us denote

J̃(z) = 1+
∑

β∈Eff(X)\{0}

qβ ev∗

(
1

z(z−ψ)

)
.

Recall that
J = ep lnq/zJ̃.

Then above computation shows∑
q∈Eff(X)

qβ
∫
QM(X,β)

f(ευ∗D1, . . . , ευ
∗Dm)

=
∑
w

〈J̃(z), φ · σw〉〈J̃(−z), σw〉 = 〈J̃(z)J̃(−z), φ〉.
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5. PROPERTIES

5.1. Quantum connection.

5.1.1. Remark. Recall that a connection of a vector bundle V over a real manifold
M is an R-bilinear morphism

∇ : V −→ ΩM ⊗OM V.

with the Leibniz rule

∇(fs) = df⊗ s+ f · ∇s.

For a local vector field X ∈ TM, we deonte ∇Xs = 〈X,∇s〉, with the pairing in-
duced by the natural pairing 〈 , 〉 : TM ⊗ΩM ⊗ V −→ V. Then∇Xs satisfies

• ∇fX+Ys = f∇Xs+∇Ys; (linearity)
• ∇X(fs+ t) = (Xf)s+ f∇Xs+∇Xt; (Leibinize rule)

To define a connection locally, it suffices to define ∇X for those X forming a basis
of TM over OM (called a frame) and check the second condition.

5.1.2. Quantum connection. Let us consider

the trivial vector bundle V overM = H2(X) with fibre H∗(X).

Note that we can view qβ as a function over H2(X) for β ∈ Eff(X) ⊂ H2(X,Z).
Thus

H0(M,V) = H∗(X)⊗C O(M) = QH∗(X)⊗C(q) O(M).

The quantum connection is defined to be (z is a formal variable)

∇λ = ∂λ −
1

z
λ∗,

where

• ∂λ is the differential operator overM such that ∂λqβ = 〈λ, β〉qβ;
• λ∗ is the O-linear map of quantum product with divisor λ ∈ H2(X) fibre-

wise.

This is a connection:

∇λ(fs+ t) = ∂λ(fs+ t) −
1

z
λ ∗ (fs+ t)

= (∂λf) + f(∂λs) + ∂λt−
1

z
fλ ∗ s− 1

z
λ ∗ t

= (∂λf) + f∇λs+∇λt.

Here we use the fact that the quantum product is C(q)-linear.
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5.1.3. Remark. For a connection ∇ of a vector bundle V overM, we can extend

0 −→ V
∇−→ ΩM ⊗OM V

∇−→ Ω2M ⊗OM V
∇−→ · · ·

by

∇(ω∧ s) = dω⊗ s+ (−1)degαω∧∇s.
The map ∇2 : V → Ω2M ⊗OM V is OM-linear, called the curvature. A connection
is flat if ∇2 = 0, equivalently, the above chain is a complex. In terms of ∇Xs, it is
equivalent to say

〈X∧ Y,∇2s〉 = ∇X∇Ys−∇Y∇Xs−∇[X,Y]s = 0.

If we define ∇X for a frame forming a basis of TM, then it suffice to check for
all pairing of vector fields from the frame. For a flat connection ∇, the following
differential equation has a local solution

∇(f) = 0, f ∈ H0(M,V)

for any given initial value of f at a point x ∈M.

5.1.4. Flatness. The quantum connection is flat.

∇λ∇µs−∇µ∇λs−∇[λ,µ]s

= ∇λ∇µs−∇µ∇λs
= (∂λ −

1
z
λ∗)(∂µ − 1

z
µ∗)s− (∂µ − 1

z
µ∗)(∂λ − 1

z
λ∗)s

=
(
∂λ∂µs−

1
z
µ ∗ ∂λs− 1

z
λ ∗ ∂µs+ 1

z2
λ ∗ µ ∗ s

)
−
(
∂µ∂λs−

1
z
λ ∗ ∂µs− 1

z
µ ∗ ∂λs+ 1

z2
µ ∗ λ ∗ s

)
=
1

z2
(λ ∗ µ ∗ s− µ ∗ λ ∗ s) = 0.

Here we use the associativity and commutativity of the quantum product.

5.1.5. Remark. As we mentioned, S(γ ′) solves the quantum differential equation,

∇λ(f) = 0, i.e. ∂λf =
1

z
λ ∗ γ.

It is actually the fundamental solution.

5.1.6. Remark. Note that if we replace quantum product by usual product, then
the fundamental solution is easy seen to be

S(γ ′) = ep lnq/zγ ′.

5.2. Applications.
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5.2.1. Remark. Let F be a component of XT . Then the push forward

i∗ : H
∗
T (F) −→ H∗T (X)

is an isomorphism after localization. The inverse is given by

H∗T (X) −→ H∗T (F), γ 7−→ γ|F

Eu(NmF X)
.

5.2.2. Embedding. We have an embedding

iβ,0 : M1(X,β) −→ G0(X,β).

For two varieties X and Y, we have

G0(X× Y, (βX, βY))
birational// G0(X,βX)×G0(Y, βY)

M1(X× Y, (βX, βY))

iX×Y

OO

ev

��

Π // M1(X,βX)×M1(Y, βY)

iX×iY

OO

ev

��
X× Y // X× Y.

This implies

Π∗

(
1

z(z−ψ)
�

1

z(z−ψ)

)
=

1

z(z−ψ)
.

This shows the J-function of the product is the product of J-functions.

5.2.3. J-function of projective space. Recall we have

G(PN, d) birational // QM(PN, d)

M1(X, d)

OO

ev // PN

i

OO

As a result,

ev∗

(
1

z(z−ψ)

)
=

1

Eu(i)
.

Recall
QM(PN, d) = P(H0(C[x]deg≤d)

N+1).

Note that PN ⊂ QM(PN, d) is induced by

CN+1 ' (Cxd)N+1 ⊂ (C[x]deg≤d)
N+1.

So it is defined by

coefficients of x0, . . . , xd−1 of every N+ 1 component = 0.
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So

Eu(i) =

d∏
k=1

(H+ kz).

As a result, we have

J̃ = 1+
∑
d>1

qd∏d
k=1(H+ kz)

.

That is,

J = qH/z

(
1+
∑
d>1

qd∏d
k=1(H+ kz)N+1

)
.

5.2.4. Remark. Let us compute

∂HJ =
H

z
qH/z +

∑
d>1

(
d+ H

z

)
qd+H/z∏d

k=1(H+ kz)N+1
.

Similarly,

(z∂H)
N+1J = HN+1qH/z +

∑
d>1

(H+ dz)N+1qd+H/z∏d
k=1(H+ kz)N+1

=
∑
d>1

qd+H/z∏d−1
k=1(H+ kz)N+1

= qJ.

So we have
HN+1 = q (quantum product).

5.3. Unitary property.

5.3.1. A twisted fundamental solution. Let us denote

M(γ, γ ′) = 〈γ, γ ′〉+
∑

β∈Eff(X)\{0}

qβ
∫
M2(X,β)

ev∗(γ� γ ′)
1

z−ψ2
.

Let us denote the operatorM by

〈M(γ), γ ′〉 = M(γ, γ ′).

5.3.2. Equation forM. Then

∂λ〈M(γ), γ ′〉 = 1

z
〈M(λ ∗ γ),M(γ ′)〉− 1

z
〈λM(γ), γ ′〉.

Thus
∂λM(γ) =

1

z
M(λ ∗ γ) − 1

z
λM(γ).

For general f, i.e. possibly involving quantum parameters,

∂λM(f) =
1

z
M(λ ∗ f) − 1

z
λM(f) +M(∂λf).
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5.3.3. Summary. We have the following commutative diagram

HT(X)
M(−,z) //

∂λ+
1
z
λ∗
��

HT(X)(q)

∂λ+
1
z
λ

��
HT(X)

M(−,z) // HT(X)(q)

5.3.4. Equation for inverse. By substituting f byM−1(f), we get

∂λf =
1

z
M(λ ∗M−1(f)) −

1

z
λf+M(∂λM

−1(f)).

ApplyingM−1, we get

M−1(∂λf) =
1

z
λ ∗M−1(f) −

1

z
M−1(λf) + ∂λM

−1(f).

That is,

∂λM
−1(f) = −

1

z
λ ∗M−1(f) +

1

z
M−1(λf) +M−1(∂λf).

5.3.5. Equation for adjoint. On the other hand, denote the operatorM ′ by

〈γ,M ′(γ ′)〉 =M(γ, γ ′).

Then

∂λ〈γ,M ′(γ ′)〉 =
1

z
〈γ, λ ∗M ′(γ ′)〉− 1

z
〈γ,M ′(λγ ′)〉.

Thus

∂λM
′(γ ′) =

1

z
λ ∗M ′(γ ′) − 1

z
M ′(λγ ′).

For general f, i.e. possibly involving quantum parameters,

∂λM
′(f) =

1

z
λ ∗M ′(f) − 1

z
M ′(λf) +M ′(∂λf).

5.3.6. Conclusion. Let us denote M(γ) =M(γ, z) to empathise the dependence of
z. By comparing the differential equation, we have

M ′(γ, z) =M−1(γ,−z).

As a result, we have
〈M(γ, z),M(γ ′,−z)〉 = 〈γ, γ ′〉.

In the rest of this section, we are going to give a geometric proof of this identity.

5.4. Gromov–Witten invariant over graph space.
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5.4.1. A pairing. Let us denote similarly

G2(X,β) = M2(P1 × X, (1, β)).

We define for γ1, γ2 ∈ H∗(X)

G(γ1, γ2) = 〈γ1, γ2〉+
∑
β>0

qβ
∫
G2(X,β)

ev∗(i0∗γ1 � i∞∗γ2)
where i0 : X → P1 × X and i∞ : X → P1 × X the inclusion of the fibre at 0 and∞
respectively.

5.4.2. Remark. Note that by 2.3.2, we have G(γ1, γ2) = 〈γ1, γ2〉.

5.4.3. Components. Let us use localization to compute this pairing. Let us denote
for β1, β2 > 0

iβ1,β2 : M2(X,β1)×XM2(X,β2) −→ G0(X,β1 + β2)

by gluing the second marked points. Similarly we define iβ,0 and i0,β. Then

G2(X,β)
C× = (· · · ) ∪

⋃
β1+β2=β

(
image of iβ1,β2

)
.

Here (· · · ) is the component does not contribute the pushforward.

5.4.4. Dimension estimation. Let us estimate the dimension. We have

dimG2(X,β) = dimX+ 1+ 〈c1(TX), β〉+ 〈c1(TP1), 1〉+ 2− 3
= dimX+ 〈c1(TX), β〉+ 2.

For β1, β2 > 0with β1 + β2 = β,

dimM2(X,β1)×XM2(X,β2) = dimX+ 〈c1(TX), β〉+ 2− 3+ 2− 3
= dimX+ 〈c1(TX), β〉− 2.

On the other hand,

dimM2(X,β) = dimX+ 〈c1(TX), β〉+ 2− 3
= dimX+ 〈c1(TX), β〉− 1.

5.4.5. Normal bundle. Similarly, when β1, β2 > 0,

Eu(Nm(iβ1,β2)) = restriction of z(z−ψ)⊗ (−z(−z−ψ)).

When β2 = 0, we do not need to smooth the marked point on∞, so

Eu(Nm(iβ,0)) = restriction of z(z−ψ)⊗ (−z).

Similarly, when β1 = 0,

Eu(Nm(i0,β)) = restriction of z⊗ (−z(−z−ψ)).
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5.4.6. Localization. When β > 0, using localization, we have

∫
G2(X,β)

ev∗(i0∗γ1 � i∞∗γ2) = ∑
β1+β2=β

∫
i∗β1,β2 (ev∗(i0∗γ1 � i∞∗γ2)

Eu(Nm(iβ1,β2))
.

When β1, β2 > 0, we have

∫
M2(X,β1)×XM2(X,β2)

i∗β1,β2 (ev∗(i0∗γ1 � i∞∗γ2)
Eu(Nm(iβ1,β2))

=

∫
M2(X,β1)×XM2(X,β2)

(ev1� ev1)
∗(i∗0i0∗γ1 � i

∗∞i∞∗γ2)
z(z−ψ2)⊗ (−z(−z−ψ2))

=

∫
M2(X,β1)×M2(X,β2)

(ev1� ev1)
∗(i∗0i0∗γ1 � i

∗∞i∞∗γ2)
z(z−ψ2)⊗ (−z(−z−ψ2))

(ev2� ev2)
∗(∆X)

=

∫
M2(X,β1)×M2(X,β2)

(ev1� ev1)
∗(zγ1 � (−z)γ2)

z(z−ψ2)⊗ (−z(−z−ψ2))

∑
w

(ev2� ev2)
∗(σw � σw)

=
∑
w

∫
M2(X,β1)

ev∗(γ1 � σw)
z−ψ2

∫
M2(X,β2)

ev∗(γ2 � σw)
−z−ψ2

.
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Here {σw} ⊂ H∗(X) is a basis and {σw} ⊂ H∗(X) is its dual basis. Similarly, when
β2, we have∫

M1(X,β)

i∗β,0 (ev∗(i0∗γ1 � i∞∗γ2)
Eu(Nm(i0,β))

=

∫
M2(X,β2)

ev∗(γ1 � γ2)
−z−ψ2

=
∑
w

∫
M2(X,β1)

ev∗(γ1 � σw)
z−ψ2

〈γ2, σw〉,∫
M1(X,β)

i∗0,β (ev∗(i0∗γ1 � i∞∗γ2)
Eu(Nm(i0,β))

=
∑
w

〈γ1, σw〉
∫
M2(X,β2)

ev∗(γ2 � σw)
−z−ψ2

.

5.4.7. Conclusion. As a result,

〈γ1, γ2〉 = G(γ1, γ2) =
∑
w

M(γ1, σw)M(γ2, σ
w)|z7→−z

=
∑
w

〈M(γ1, z), σw〉〈M(γ2,−z), σ
w〉

= 〈M(γ1, z),M(γ2,−z)〉.
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6. SHIFT OPERATORS

6.1. Shift operator.

6.1.1. Setup. Assume T acts on X. We are going to define a family of operators for
any k ∈ 1PS(T). Let T = T ×C×. We denote z the canonical generator in H2C×(pt).

6.1.2. Twisted action. For any k ∈ 1PS(T), we have a twisted T-action by

ρk(t, u) · x = t · k(u) · x.

We have
H∗T(X, ρ0)

∼ // H∗T(X, ρk)

H∗T(pt)
∼

λ 7→λ+〈k,λ〉z //

OO

H∗T(pt)

OO

Let us denote the isomorphism by γ 7→ γ[k].

6.1.3. Bundle. Let us denote

Ek =
(
C2 \ {0}

)
×
C×
X,

with the action induced by k. Then T acts on Ek. We have a projection

π : Ek → (
C2 \ {0}

)
/C× = P1

with
π−1(0) ' (X, ρ0) =: X0, π−1(∞) ' (X, ρk) =: X∞.

6.1.4. Section class. Let us denote

Eff(Ek)sec = preimage of [P1 id→ P1] ∈ Eff(P1) under π∗ : Eff(Ek)→ Eff(P1).

6.1.5. Shift operator. Let us define

ι0 : X0 → Ek, ι∞ : X∞ → Ek.

Let us define the shifted operator

S̃k : H∗T(X, ρ0) −→ H∗T(X, ρk)

by

〈S̃k(γ), γ ′[k]〉 =
∑

β̃∈Eff(Ek)sec

qβ̃
∫
M2(Ek,β̃)

ev∗(ι0∗γ,�ι∞∗γ ′[k]).
Let us use localization to compute S̃k.
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6.1.6. Example. When k = 0, then

Ek = P1 × X.

Applying the same trick to C× fixed locus as in the previous section, we get

〈S̃k(γ), γ ′〉 = 〈M(γ, z),M(γ ′,−z)〉 = 〈γ, γ ′〉.

Thus S̃0 = id. In general, we have to consider the T -fixed locus.

6.1.7. Fixed locus. Let F ∈ π0(XT ) be a connected component of XT . We denote
σF ∈ Eff(Ek) to be the class of σx for any x ∈ F. For β1, β2 > 0, let us denote

M2(X0, β1)×FM2(X∞, β2) = (ev2� ev2)
−1(∆F)

the space of stable maps with the second marked points the same in F. For (C1, C2)
in this space with ev2(C1) = ev2(C2) = x ∈ F, by gluing σx ⊂ Ek, we have a T-
invariant stable maps over Ek. This defines

iβ1,β2 : M2(X0, β1)×FM2(X∞, β2) −→M2(Ek, i0∗β1 + i∞∗β2 + σF).
It induces

M2(X0, β1)
T ×FM2(X∞, β2)T −→M2(Ek, i0∗β1 + i∞∗β2 + σF)T.

We similarly denote

iβ1,0, i0,β2 : M2(X0, β) ∩ ev−1
2 (F) −→M2(Ek, β1 + σF).

We have the following decomposition

M2(Ek, β̃)
T = (· · · ) ∪

⋃
i0∗β1+i∞∗β2+σF=β̃

image of iβ1,β2 .

Here (· · · ) are those components not in ev−1(X0×X∞), which does not contribute
the integral.
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6.1.8. Computation. Let us compute the normal bundle of

M2(X0, β1)×FM2(X∞, β2).
It contains the fixed component. Denote ξ the natural representation of C×.

(smoothing the gluing point at 0) = (L−1
2 ⊗ ξ)� O.

(moving the gluing point at 0) = ξ� O = ξ.

Similarly for the gluing point at∞
(smoothing the gluing point at∞) = O� (L−1

2 ⊗ ξ
−1).

(moving the gluing point at∞) = O� ξ−1 = ξ−1.

Thus the Euler class

Eu(Nm(iβ1,β2)) = z(z−ψ2)⊗ (−z(−z−ψ2)).

When β1 = 0, the computation will be different. Now 0 is a marked point, so we
do not need to smooth it. The Euler class

Eu(Nm(i0,β2)) = z⊗ (−z(−z−ψ2)).

Similarly for β2 = 0,

Eu(Nm(iβ1,0)) = z(z−ψ)⊗ (−z).

6.1.9. Lemma. The normal bundle of F× P1 is

NmF×P1 Ek =
⊕

λ∈char(T)

(NmF X)λ � OP1(−〈λ, k〉),

where (NmF X)λ = HomT (Cλ,NmF X). Actually, it is characterized by (as C×-
equivariant bundles)

NmF×P1 Ek|F×0 = NmF X0 = NmF X =
⊕

λ∈char(T)

(NmF X)λ

NmF×P1 Ek|F×∞ = NmF X∞ = (NmF X)[k] =
⊕

λ∈char(T)

(NmF X)λ(〈λ, k〉z).

6.1.10. Moving the horizontal cruve. Now let us compute the part of moving the
horizontal curve. We have

(moving the horizontal curve)

= (moving to be non-constant inside F)⊕ (moving out of F)

Note that

(moving to be non-constant inside F) = Mor(P1, H0(F,TF))/constant = 0.
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Note that

(moving out of F) =
⊕

λ∈char(T)

ev∗(NmF X)λ · χ
(
P1,OP(−〈λ, k〉)

)
where ev = ev2�1 = 1�ev2. Here (NmF X)λ has trivial C×-action, so ev∗ induced
by two maps do not differ. By localization theorem, we have

χ(P1,OP1(i)) =
1− ξ−i−1

1− ξ−1
=
∑
c≤0

ξc −
∑
c<−i

ξc.

So

(moving the horizontal curve) =
⊕

λ∈char(T)

ev∗(NmF X)λ ·

∑
c≤0

ξc −
∑

c<〈λ,k〉

ξc

 .
Note that its Euler class is∏

λ∈char(T)

∏
x∈
√

(NmF X)λ

∏
c≤0(ev∗ x+ λ+ cz)∏

c<〈λ,k〉(ev∗ x+ λ+ cz)
= (ev2�1)

∗(· · · ),

= (ev2�1)
∗

 ∏
λ∈char(T)

∏
x∈
√

(NmF X)λ

∏
c≤0(x+ λ+ cz)∏

c<〈λ,k〉(x+ λ+ cz)

 =: (ev2�1)
∗(· · · )

where
√
(NmF X)λ means the Chern roots of the bundle.

6.1.11. Computation. Now, let us evaluate∫
M2(Ek,β̃)

ev∗(ι0∗γ,�ι∞∗γ ′[k])
=
∑

β1,β2,F

∫
M2(X0,β1)×FM2(X∞,β2)

(ev1� ev1)
∗(ι∗0ι0∗γ� ι∗∞ι∞∗γ ′[k])

Nm(· · · )

=
∑

β1,β2,F

∫
M2(X0,β1)×M2(X∞,β2)

(ι∗0ι0∗γ� ι∗∞ι∞∗γ ′[k])
Nm(· · · )

(ev2� ev2)
∗(∆F)

=
∑

β1,β2,F

∑
w

∫
M2(X0,β1)

z ev∗(γ� iF∗σFw)
z(z−ψ1)

· ev∗2
1

(· · · )

∫
M2(X∞,β2)

−z ev∗(γ ′[k]� iF∗σwF )
−z(−z−ψ1)

=
∑

β1,β2,F

∑
u,w

∫
M2(X0,β1)

z ev∗(γ� iF∗σFw)
z(z−ψ2)

∫
M2(X∞,β2)

−z ev∗(γ ′[k]� iF∗σuF )
−z(−z−ψ2)

∫
F

σwF σ
F
u

(· · · )

Here we omit the summand of β1, β2 = 0. Here we assume

[∆F] =
∑
w

σFw � σwF ∈ H∗(F) ⊂ H∗T (X).
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We find

〈S̃k(γ), γ ′[k]〉 =
∑
F

qσF
∑
w,u

〈M(γ, z), iF∗σ
F
w〉〈M(γ ′,−z), iF∗σ

u
F 〉[k]

∫
F

σwF σ
F
u

(· · · )

=
∑
u

〈
M(γ, z),

∑
F

qσF
∑
w

iF∗σ
F
w

∫
F

σwF σ
F
u

(· · · )

〉
〈M(γ ′,−z), iF∗σ

u
F 〉[k]

=
∑
u

〈
M(γ, z),

∑
F

qσF
iF∗σ

F
u

(· · · )

〉
〈M(γ ′,−z), σuF 〉[k].

We have

〈(S̃k(γ))[−k], γ ′〉 =
∑
u

〈
M(γ, z),

∑
F

qσF
iF∗σ

F
u

(· · · )

〉
[−k]〈M(γ ′,−z), σuF 〉

=
∑
u

〈
M(γ, z)[−k],

∑
F

qσF
iF∗σ

F
u

(· · · )
[−k]

〉
〈M(γ ′,−z), σuF 〉

Let us compute

iF∗σ
F
u

(· · · )
[−k] =

iF∗σ
F
u

Eu(NmF X)

∏
λ∈char(T)

∏
x∈
√

(NmF X)λ

∏
c≤0(x+ λ+ cz)∏

c≤−〈λ,k〉(x+ λ+ cz)
.

Let us denote

∆F =
∏

λ∈char(T)

∏
x∈
√

(NmF X)λ

∏
c≤0(x+ λ+ cz)∏

c≤−〈λ,k〉(x+ λ+ cz)
.

Note that {iF∗σuF } is dual to
{

iF∗σ
F
u

Eu(NmF X)

}
, so

〈(S̃k(γ))[−k], γ ′〉 =

〈∑
F

qσF∆FM(γ, z)[−k],M(γ ′,−z)

〉
.

By 5.3.6,

(S̃k(γ))[−k] =M−1

(∑
F

qσF∆F ·M(γ, z)[−k], z

)
.

6.1.12. Summary. Let us denote Sk by

Sk(γ) = (S̃kγ)[−k].
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We have the following commutative diagram

HT(X)
M(−,z) //

Sk
��

HT(X)(q)

γ 7→⊕
F q

σF∆F(γ[−k])

��
HT(X)(q)

M(−,z) // HT(X)(q)

6.1.13. Corollary. We have

Sk ◦ S` = q(··· )Sk+`.

SinceM is non-degenerate, this reduces to the following easy identity

∆`F · ∆kF [−`] = ∆k+`F .

6.1.14. Seidel element. Define

Sk = lim
z→0 Sk(1) ∈ QH∗T (X).

Note that [
z∂λ + λ,

∑
F

qσF∆F
]
= z
∑
F

(∂λq
σF)∆F = o(z).

So [
Sk, z∇λ + λ ∗

]
= o(z).

Then by taking z → 0, we see limz→0 Sk commutes with the quantum product
with a divisor. When H∗T (X) is generated by divisor (after localization), it is given
by the quantum product with Sk.

6.1.15. Remark. When z = 1, we can write ∆F in terms of Gauss Gamma function

Γ(s) =

∫∞
0

tse−t
dt

t
.

Recall that

Γ(s+ 1) = sΓ(s).

So when a, b ∈ Z

Γ(s+ a+ 1)

Γ(s+ b+ 1)
=

(s+ a)Γ(s+ a)

(s+ b)Γ(s+ b)
= · · ·

=
(s+ a) · · · (s+ c)Γ(s+ c)
(s+ b) · · · (s+ c)Γ(s+ c)

=

∏
c≤a(s+ c)∏
c≤b(s+ c)

.
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As a result,

∆F|z=1 =
∏

λ∈char(T)

∏
x∈
√

(NmF X)λ

Γ(x+ λ+ 1)

Γ(x+ λ− 〈λ, k〉+ 1)

=

∏
x∈
√

NmF(X,ρk)
Γ(x+ 1)∏

x∈
√

NmF(X,ρ0)
Γ(x+ 1)

[−k]

=:
Γ
(
1+ NmF(X, ρk)

)
Γ
(
1+ NmF(X, ρ0)

) [−k].
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