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1. QUANTUM PRODUCT

1.1. The moduli space of stable maps.

1.1.1. Stable maps. A quasi-stable curve with n-marked point is

(C>P1»-~>Pn)

where C is a projective, connected, reduced, (at worst) nodal curve of arithmetic
genus O, p1,...,pn € C are distinct regular points on C. We call

{special points} = {marked points} U {nodal points}.
For a variety X, 3 € Eff(X), we define the moduli space of stable maps

o (C,P1y.--,Pn) is quasi-stable
Ma(X,B) =< (f,C,p1y...ypn): f:C— Xwith f,[C] =B, /re-parametrization.
and the stability condition

Here the stability condition is

If f is constant over an irreducible component of C,
then there must be at least 3 special points on it.

Equivalently, the automorphism group Aut(f, C,p1,...,pn) is finite. We denote

MH(X) :UMH(X»B)) ﬁn :Mn(pt)-
B

1.1.2. Compactification. It turns out M, (X, B) is a compactification of

f: P! = X with f,[P'] =B
Piy...,Pn € P! distinct

K\ K\ fy\ﬁx

Whenn = 3, as any three points can be moved to (0, 1, c0) by a re-parametrization
Aut(P"), the moduli space M3 (X) is a compactification of Mor(P', X).

{(fﬂp>1 yPlyeosPn): }/re-parametrization.
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1.1.3. Example. We have
M3 = pt, ﬁz; =P'.
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1.1.4. Example. We have
M?)(]P])]) = pt, M.’)(X)O) =X

ol

1.1.5. Expected dimension. At the point (f, C,p1,...,pn), the tangenet space is the
difference of the following

(deforming f) = tangent fields of X along C
=HO(C, f*Tx).
(infinitesimal automorphisms) = (infinitesimal reparametrization)
= tangent fields of C vanishing at p1,...,pn
=H(C,Tc(—p1—---—pn))
=Ext®(wc(pr + - +pn), Oc).
By Riemann—Roch
X(C, " Tx) = dim X + (B, ¢1(Tx))
x(C,Tc(=p1 = —pa)) =-—n+3.
So the expected dimension of My, (X, B) is

dim X+ (B,c1(Tx)) +n—3.
1.2. Gromov—Witten invariants.

1.2.1. Morphisms. We have a morphism called evaluation
ev: Ma(X,B) — X x -+ x X (f, CyP1yeeeyPr) — (F(P1)yeevs flpn)).
We denote ev; the i-th component. We have a forgetful morphism ft
ft : M1 (X, B) — Mn (X, B)

by forgetting the i-th marked point and collapsing branches if necessary to get a
stable map. Note that this map is not defined for § = 0 and n = 2, as M,(X,0) =
@. Similarly for f : X — Y, we have

T :ﬁn(xv B)— Mn(y) fiB).
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In particular, we have
ftx : MH(X, B) — Mn.

}{wndeMz
S ) S ) / \
\ K K

1.2.2. Gromov-Witten invariants. For y1,v2,v3 € H*(X), we define

(Y1,v2,v3)p izj ev'(yr Myz2 Mys).
Mn (X,B)
Note that (y1,v2,v3)s = 0 unless
(degy1 +degyz +degys) = dim X + (B, c1(Tx)).
Here degy = kif y € H2¥(X).

1.2.3. Meaning. Assume vy; = [Z;] for subvariety Z; C X. Then the meaning of
Gromov-Witten invariant can be understood as

_ 1 f . f*HP]} :B) f(O) EZ],
<'Y1)'Y2)'Y3>f5 _#{P — X f(]) c Zz, f(OO) €Zs }

Note that now

reparametrization = Aut(PP',0, 1, c0) = trivial group.

1.2.4. Novikov Ring. Denote Novikov ring

QIEf(X)] = Q[[qﬁ]]BeEff(X]/<qO =1, qﬁl qﬁz _ qf51+[32>'
We will equip the degree
deg q® = (B, c1(T)).

1.3. Quantum cohomology.
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1.3.1. Quantum cohomology. We define
QH™(X) = H*(X, Q)[Eff(X)]

with the quantum product * uniquely determined by

vi=va,va) = Y 4Py, va,vades
B eEff(X)

where (, ) is the Poincaré pairing. As (y1,v2,Y3)o = (Y1Y2,V3), quantum prod-
uct is a q-deformation of classical product

Y1 *Y2 =7Y1Y2 + (Quantum correction)
with

(quantum correction) € Z qPH*(X)
BeEf(X)\{0}

which tends to 0 under the limit limg_,o : H*(X, Q)[Eff (X)] — H*(X, Q).

1.3.2. Commutativity. Note that this expression is symmetric under any permuta-
tion of v1,v2,7v3, so quantum product is commutative

Y1 *Y2=Y2%Y1
and satisfies the Frobenius property
(Y1 xv2,v3) = (v, Y2 *Y3)-
1.3.3. Associativity. Let us consider
ftx : Ma(X) — My =P'.
For the nodal curve C on M4, we have

fix ([Ch = | MalXB1) xx Ms(X, B2).

Br1+B2=p
Here //\
M (X, B1) xx Mz (X, B2) —= M3(X, B1) Ma(X, B)
i fibre product levg

evs

M;s(X, B2) X.

The map is given by gluing the last marked points.
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My (0 3 () My (x)

s\ ¢ <
TN T YT T

S ——
/./\./0/"_“7 \}——0—'

/H/\\M/%\H»/X\

Let us compute

L ev'(y1 My, Mys Xyqs) ft*([pt])
My (X,B)

(evMev) (yi Ry, T Ky; Kys X 1)

Bi1+B2=B JMS(X>BI )X x M3 (X,B2)

(evRev)*(y1 My, XTXRy3 Kys X 1)(evz Kevs)*(Ax)

B1+p2=B J'Ms(X»& )x M3 (X,B2)

- ¥

Br1+B2=p W JM3(X»BI )X M3 (X,B2)

= Z Z<Y]»Y2»Gw>f51<Y3»Y4»GW>[52)

B1+B2=p w

(evMev)*(y1 By N0, My; Ky, Ko™)

where {0} C H*(X) is a basis and {0"} is its dual basis under Poincaré duality.
Note that

Ax =) 0w®0™ e=H'(X) ® H*(X) = H*(X x X).
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As a result, we have

Z qBJf ev*(y1 Ry, Kys Kya) ft*([pt])
BEEM(X)

My (X,B)
= Z Zqﬁ1<YI»Y2»O—W>[51qBZ<Y3)Y4)GW>Bz
B1+B2 w

=Y (y1 %72, 0w) {3 *Ya,0™)
w

= (v1 *Y2,v3*va) = ((Y1 *V2) *Y3,Va).

Note that this is invariant under any permutation of y1,v2,v3,v4. In particular,
we have associativity

(vi*v2)*vs = (v2*v3)*v1 =v1*(y2*v3).
1.3.4. Remark. When vy; = [Z;] for subvariety Z; C X. This also tells

(vi+v2, 73 va) = Y aP#{P' 5 X IP'] = B, fled) € 24
B

for any given four points c1,...,cs4 € P'.
1.3.5. Identity. Let 3 > 0. Let us consider

ft3 : M3 (X, B) — M2(X, B).
Then

J; ev'(yr Xy, X 1)
M3 (X,B)

jﬁ £3 (ev* (y1 My2))
M3 (X,B)

:J ov* (1 By2) ftza(1) = 0

M2 (X,B)
Here ft3.(1) = 0 by degree reason. When 3 =0,
J* ev” (v ®Yz®1)=J Y1v2 = (Y1,Y2)-
M3 (X,0) X
This proves

(y1*1,v2) = (v1,v2)-
So 1 € H*(X) € QH*(X) is the identity

Y11 ="v1.
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2. PROPERTIES AND EXAMPLES

2.1. Divisor equation.

2.1.1. Divisor. Let A be a divisor. When 3 > 0,

ev (y1 Ry, ¥A) = J ft3(ev*(y1 My2))evi(A)

Ms (X,B)

_ J ev*(v1 By2) fta, (evi(A)).

JMs (X,B)

M2 (X,B)

By degree reason, ft3. (ev}(A)) is a number. So it equals to the intersecting number
of the generic fibre and ev; *(A). For a generic stable map (f,P',p1,p2), the fibre
along ft3 is P! itself, and ev; is identified with f. So the intersecting number is
(B,A). We conclude that

L ev'(y1 My, ®KA) = (A, B) L ev* (v K vya).
M3 (X,B) M (X,B)
In other word,
(Y1 *Av2) = (YiA v2) + Z (A, BYqP J* ev* (1 Kv2).
BEEf(X)\{0} M2 (X,B)

2.2. Remark. This can be understood as follows. Assume A = [D] for a codimen-
sion 1 subvariety D C X.

o 1 f . f*[ﬂpl]:ﬁ) f(O)EZ],
<Y1»Y2»7\>B—#{P — X f(1) € D, f(oo0) € Z, }

Note D intersects any P! — X by (B, A) points. Thus

B f . f*ﬂPﬂ]:B) x
vae = B8 S o) [ I ER e

Note that now
reparametrization = Aut(P', 0, 00) = C*.
2.3. Product.

2.3.1. Product. Let X and Y be two varieties. We have a birational
M3(X x Y, (B, B")) — M3(X, B) x M3(Y, B’)

induced by two projections. Note that, this is birational only for n = 3 in which
case M3 (X) is a compactification of Mor (P!, X). We can conclude

QH* (X x Y) — QH"(X) @ QH"(Y)

is an algebra isomorphism.
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2.3.2. Corollory. When 31,52 >0

L ev* ((vi @y K (y2 ®v3)) =0.
M2 (XY, (B1,B2))

This can be proved using divisor equation. For any ample divisor A € H2(X),
(vrev)«(A@1),v2®73)

— (v + 3 B e [ ev(m e v B e vi)).
B1,B2 Ma

Note that (A, 1) > 0. On the other hand,
(v1®@v1) = (D@1, v2@v2) = (v1#A,v2){(v2,72)

having no qP2-term.

2.3.3. Remark. Let us give a direct proof of this fact. When 1,3, > 0, we have
the following diagram

Ma(X %Y, (B, B')) — L = N, (X, B) x Ma(Y, B)

iev lev&ev

XXYxXxY XXxXXYxY

Note that
dim left-hand side of (%) — dim right-hand side of (¥) = 1.

By degree reason, the Gromov-Witten invariant vanishes.
2.4. Projective spaces.

2.4.1. Example. We have
P™ = (C™T\ {0h)/C*,
We know
H2(P") =7Z-H, H = [a hyperplane] = ¢ (0(1))
H2(PM) =7Z - (, ¢ = [a straight line].
Recall that
H*(P™) = Z[H]/(H™),  (H%H®) = 8qsbn.
Since the tangent bundle Tx can be put into the following short exact sequence

N+1

0— Opn — O(1) — Tx — 0,

we have ¢ (Tx) = (n+ 1)H. As a result, q := q° has degree n + 1.
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2.4.2. Approach A. Let us compute whena+b=n+1
He « H® = (?7)q.

That is,

(H « HP H™) = (77).
Note that H* is represented by a codimension k-plane, and in particular, H™ is
represented by a point. By the geometric meaning,

(77) — # straight lines going through a point P
O a (n — a)-plane A and a (n — b)-plane B

Note that the affine span of P and A intersects a unique point Q with B. Then PQ
is the straight line going through P, A and B. So (??) = 1. Thus when a+b =n-+1,
we have

H® « H® = q.
By degree reason, we can conclude that, for 0 < a,b < n,
NTURTUNED LA atbsn
qHe =1 a4+ b>n.

So we have the following presentation of quantum cohomology
QH*(P™) = QH, ql/(H™"" = q).

p o P
/F ?l\;\ -
|

2.4.3. Approach B. There is anther approach of doing this. Let us compute
Hsx---xH=(77)q.
~—

n+1
Recall that
Morgeg—1 (P',PN) = {P" 5 PN . £,[P'] = €}
_ st e HO(PY,0(1) x
- {(SO""’S“) " S ---Sn vanishes nowhere /T
Actually, for any f : P' — P™ of degree 1, the corresponding (so, ..., sn) is given
by

sy = *(x4), the i-th coordinate x; € HO(P', 0(1)) = C™*'.
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Conversely, f is defined by
f(x) =[so(x):---:sn(x)] € P x € P,

Let H; = {x; = 0} C P™ be the coordinate hyperplane. Let co, ...,cn € P! be given
points. Then

f f [IP”]:E SieHO(P1)O(1))
{]P’1 = PN f’(kcl) cH. } =< (S0y...y8n): So---Sn vanishes nowhere » /C*.
' ' si(ci) =0

Note that
si(ci) =0 <= si € Homp:1(0(c;),0(1)) = C.
For a given generic x € P!, we see that
1 f n. f*[]Pﬂ]:B evy N
{]P’ — P™: f(cy) € Hy — P
is an isomorphism. Thus

#{P1 L]P;n: f*DPﬂ] :ey f(ci) GHi }_]

f(x) = a given point

This proves
(Hx*---xH, [pt]) = q.

That is,
Hx...xH=q.
—_——
n+1
[PZ
7
VL \\( A,
W
H,

2.5. Full flag variety in C3.
2.5.1. Example. Let us consider the full flag variety
X=5F={0cV;cV,cC}.
We have a tautological flag bundle
0CVyCV,C03.
Let us denote
x1 =—c1(V1), x2 = —¢1(V2/V1), x3 = —c1(0%/V2).
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The usual cohomology is given by

X1 +x2+x3=0
H*(FL,) = Z[x1,xz,>c3}/< X1X2 +x1X3 +x1%x2 =0 >

xX1x2x3 =0

We have the following dual basis

1 Hx%xz, X1 6 X1X2, X1+ X2 Hx%.
Let us consider
X;=P>={0CV; CcC3, X, = (P?)Y ={0c V, c C3.
We have forgetful map 7 : X — X; and 71, : X — X;. Denote
1 = fibre of My, qs :qﬁ’, 32 = fibre of 73, qzzqﬁ'z.

The intersection form is

() [ x1 | x2 | x3

B |1 -1]o0
B2 |0 1 | -1
Since
c1(Tx) = (x1 —x2) + (x2 —x3) + (x1 —x3) = 2x1 — 2x3.
We have

degqi =degqz = 2.
By degree reason,
A1 % A2 = M A2 + (a number)q; + (a number)q;.
A1 kA2 A3 = A1A2A3 + (a diViSOr)q1 + (a diViSOI’)qz.

2.5.2. Relation A. We can get the quadratic relation as follows. For two divisors
A1,A2, by using the divisor equation twice, we have

(MxA2,y) = MA V) + ) q‘5<7\1,B>J7 ev* (A Ky)
BEEM(X)\{0} M2 (X,B)

—hay Y PBB) [ e,
BEEF(X)\{0}

The key observation is, we can identify

M (X, 1) ==X My (X, B2) ==X

T L

Mo (X, B1) Xi Mo (X, B2)
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By taking vy = [pt], we get
A A2 =MA+ (A1, B1) (A2, Br)gr + (A, B2) (A2, B2) 2.

We can now compute

* X1 X2 X3

2
X1 X7+ q1 X1X2 — Q1 X1X3

X2 [ xix2—q1 [ X5+ q1+q2 | XaX3 — Q2

2
X3 X1X3 X2X3 — (2 X3+ q2

So we can conclude that
X1X2 +X2X3 + x3x1 + 1 + g2 = 0.
2.5.3. Relation B. We further have
Ma(X, B1) =X xx, X, Ma(X,B2) =X xx, X.
We have

— fto

I(X) B])

evy
ft4 \L l7ﬁ ft

M (X, B1) t

It is well-known that the composition

[H*(X) 25 H* (X xx, X) 255 H*2(X)]
= [H(X) 25 H 2 (X)) 25 W (X)
= 0; the BGG Demazure operator.
The BGG Demazure operator acts as

f—f]
a]f: X](—?Xz’
X1 —X2 X2 —X3

For a divisor A, by divisor relation,

Asxy =AY+ qi (A B1)01(v) + q2(A, B2)02(v) + (other quantum terms).
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But by degree reason, there will be no other quantum terms. As a result,
X1 (X2 % X3) = X2 * (X1 % X3) = X2 * (x1%3)
=x1%2X3 + q1(x2, B1)01(x1%3) + q2(x2, B2)02(x1x3)
=0—qi1x3 —q2X1.
This proves
X1 * X2 *X3 +q1%3 + q2x7 = 0.

In summary, the relations are given by the coefficients of characteristic polynomial
of
X1 q
—1 X2 q2
—1 X3

4\ NN

P /

2.6. Grassmannian in C*.

(69 p*

2.6.1. Example. Let us consider
X=Gr(2,4)={VcC*:dimV =2}
We have a tautological exact sequence
0—V—0% —Q—0.
Let us denote
D =e; =h; =—¢1(V) =c1(Q), ex = c2(V), hy =c2(9Q).
The relation is

(1—ey+ ezyz)ﬂ +hy +h2y2) =1 (asapolynomial iny).
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We have Tx = Hom(V,Q), so ¢1(Tx) = nD. Let £ be the primitive generator of
Eff(X), we denote q = q*. We have deg g = n. Now let us consider

Fly Z{O cViCcV,CV;C (C4}7M1 (X,ﬂ)
Gr(2,4) Mo(X, ) =—={0CV; C V3 CC*
We can identify

Y:MO(X)O» :}-€4:M1(X)€)-
2.6.2. Relation. By degree reason, we have

ez * h, = e;hy + (a number)q.

Note that
the number = J* ev'(e; Xhy X [pt]).
M3 (X,0)
We can identify
M3(X, 0) = Fly xy Fly xy Fy .
We have

H* (M3 (X, 8)) = H* (Fly xy Fly xy Fly)
= H*(F) @n-(v) H (Fl) @n-v) H ()
H*(Y) = invariant algebra of H*(F{4) under x, < x3.
Let us denote
Xi=x®1x1, yi:]®Xi®1, zi =1®1®x4.

Note that

X1 =Y1 = 21, X4 =Yaq = 24.
We can represent

€2 = X1X2, h, :x%—kx]xz +x§, [pt] :x%xﬁ.
As a result,
ev*(-+) = (xixa) (x] +x1y2 +y3) (x723).

The pushforward is given by

f—1
0%0Y 03 of = — 29 aqe,
20202, X2 —x3

So
ft.(ev*(---)) = (x1)(x1 + Y2 +y3) (X3 (z2 + 23))
= (x1)(x1 +x2 +x3)(xF(x2 +x3)) = [pt].



16 RUI XIONG

As a result,
ey * ]’12 =d.
So the relation is

(1—ery+ey?)(1+hy+hy?) =1+gq.
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3. FUNDAMENTAL SOLUTION

The purpose of this section is to establish the theory of fundamental solution
of quantum differential equations.

3.1. Psi class.

3.1.1. Universal curve. We could view the forgetful morphism
ftni ﬁnJr] (X,B) — ﬁn(X» B)

the universal curve. That is, the fibre of a stable map (f, C,p1,...,pn) € Ma (X, B)
is C itself. We also have universal sections o; (1 <i<mn)

0i @ M'rL(X) B) — Mn+1 (X) B)
by attaching a
P' S pny1, (new py), (attaching point)
on the i-th marked point.
3.1.2. Universal cotangent line. We define the universal cotangent line to be

L; = o} (relative dualizing sheaf of ft,,; 1)

aline bundle over My, (X, B). In particular, at each point (f, C,p1,...,pn) € Mn (X, B),
the fibre of LL; is the cotangent line at p; € C. The psi-class is defined to be

Vi = c1(LLg) € H* (M (X, B), Q).

3.1.3. Local computation. The following computation is very important in the com-
putation of psi-classes. Consider the family of curves with 1 marked point

(1,h) e Ch ={(x,y):xy =h}c C?,  heC.

Then we have

v:C? —C, (x,y) — xy; (universal family)

0:C — C?, h+—— (1,h). (universal section)
We denote L the universal cotangent line. Note that the 2-nd projection defines a
morphism L* — T¢, i.e.

tangent line of Cy, at (1, h) P, tangent line of C at h.
Note that this morphism has a zero at h = 0. So we have
L ® Tc ~ 0({0}), ie. L ~Qc{0}).

The principle is

locus of curves collapsing on

Vi =i =1 o branch of the i-th marked point
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3.1.4. Example. Let C = (f,P',p1,...,pn) be a generic stable map on M, (X, ).
We know P! ~ ft. 1 ;(C). Let us compute the restriction of IL; to P'. The first guess
is

Lilpr  “=" Qp =0(-2).
But this is not true. At the point p; € P!, the corresponding curve is 0;(C) €
ft.11(C), whose i-th marked point is not p;. From the local computation above,
we actually have

Lilpr = Qpi (p1 + -+ +pn) = 0(n—2).
3.1.5. Example. Recall the forgetful map
ftni: ﬁnJr] (X,B) — Mn(xa B).

We shall compare psi classes for different number of marked points. The first
guess is

e = Wi
But this is not true. When forgetting the (n + 1)-th marked point, we might need
collapsion to get a stable map. The local computation shows

i — ft),  bi = [image of o7 : My (X, B) — M1 (X, B)]
3.1.6. Example. Consider the forgetful map
ftx : M3 (X, B) — Ms.
We shall compare psi classes between them. The first guess is
fex b “=" i =0.

But this is not true. When forgetting the underlying space X, we might need
collapsion to get a stable map. The local computation shows

Y= —ftx bz =Y [ Ms(X,B1) x Ma(X,B2)].
B=P1+B> ax
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Here
glue
ﬁs(xﬁﬂg Mz (X, B2) ——= M3 (X, B1) Mz (X, B1 + B2)
X
i/ fibre product ovs
ﬂl(xv BZ) X

evy
3.2. Fundamental solution.

3.2.1. GW invariant twisted by psi class. For v1,v2,v3 € H*(X), let us consider a
gravitational correlator

(Y1,Y2,TaY3)p = J; ev*(yr Myz Xy3)hs.
M3 (X,B)
Let us pick a basis {0} € H*(X) with dual basis {c"}.

3.2.2. Appraoch A. Let us apply Example Whena > 1,

ev'(yr Wy2 My3 )3

S
H

w

X

=2

B V3 (X, B1) xay Ma(X, B2)] - ev* (y1 Ky, Bys)ps !
M3 (X,B)

~

|
I\/]

@
Il
=
+
=

N
<

. . ev* (y1 BMys Rys3)(1 Kpy)* !
M3 (X,B1)xayM2(X,B2)

I
M

=
Il
=
+
=
N
<

r

. ev(y1 My, K Ax Kys)(1 K,y)* !
M3 (X,B1)xM2(X,B2)

Il
IVI

B=B11P2 "
= Z ZJ ev'(v1 By2 Koy Ko™ Kys)ps !
B=B1+B2 W X)X M (X)
-y ¥ v BB [ (o Eyaes
B=PB1+p2 W M3 (X,B1) MZ(X»BZ)
= Z (Y1,v2,0w)p J ev (0™ Byz)ps !
B=B1+ W M2 (X,B2)
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Thus
3 [ e mvaEyag
BEEf(X M3 (X,B)
ZZqB‘anz,Gwm]ZqﬁzL v (o™ Rys)ps !
w B> Mz(Xsz]
—Zq J ev*(y1 +v2 Kys)hs !
2(X,B)
T 04,80« T, O6,6) My (%, 60485) My
w o W "

}/// \\\z H;T//\H}//

3.2.3. Approach B. Let us apply Example[3.1.5 Let us denote
D= [image of o3 : Ma(X, B) — Mz(X, B)].
Note that o3L; is trivial,i.e. D -1, =0. Whena > 1,
P§ = ({502 +DIs ! = ft3hr -5 = =505 + D - ft3 s

Let us assume vy, = A is a divisor. When 3 > 0,

L ev*(y1 Kya Ky3)hs
M3 (X,B)

L ev* (v Bys BANDS
M3z (X,B)

=1 ev*(yr Rys ®IA)(ft3 05 +D-fE3p5")
M3 (X,B)

=1_ ev™(yq &’Y3|X7\)ft§ﬂ)§+J7
M3 (X,B) M3 (X,B)

= ft3 (ev(yr ®y3)hs) evi(A) + J* ev* (y1 Ky3)os(evi Aps!
M3 (X,B) M2 (X,B)

=\, B) L ev* (y1 Bys)hs + L ev*(y1 By - A)
My (X,B) M2 (X,B)

ev* (y1 Rys RA)D - ft3 g~

- L (0 B) ev* (y1 Bya b +ev*(y1 Bys - A)
(X,B)
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Here we use the facts

ft3* eV3()\) = <7\, [3>, €Vv3 003 = €evy, ft3 oy =id.
My (4,6) My (%,8) M (%,6)

1 =
—

~

1 v
e
o

e
7]

3.2.4. Summary. By equalizing the results by two approaches, we get (a > 1)

> qJ v (yr RAR y3))§
BEEH M3(X B)
= > q J ev* (y1 * AR y3)pg
BEEM(X M2 (X,B)
- Z qP L (0 BY ov* (y1 By3)h + ev*(y1 Bys - Anps .
BEE(X)\(0} (X,B)

When B =0, Mz(X, B) = &, so the integral is understood as 0. Recall

> q J ev*(y1 AR ys3)

BEEf(X Ms(X,B)
— At Y OB ety
BEEM(X)\0 M2 (X,B)

= (y1*\v3)
For any polynomial (or a power series) T(1), we denote T() = T)=TO0) " e
have

> L J ev* (y1 BARy3)T(h3)
BEEf(X Ms(X,B)
=AY TO) + ) q J v (y1 * AR y3)TH(2)
BEEM(X M2 (X,B)

= (y1,A-v3)T(0) + Z qf Jﬁ A\, B) ev* (v1 By3)T(hz) + ev*(y1 Bys - ATHW
BEEM(X)\0 M2 (X,B)
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3.2.5. Notations. Let us introduce more notations
e Let us take a formal variable z. Now let us consider

L V2 P P?
T(lb)_zflb_1flb/z z+zz+7+

) = (‘ _ ‘) SR

Then

z—V z z(z—YP) z

e For any divisor A denote 9 the differential operator on QH*(X) with

g =\ B)qP
Here, a differential operator is an H* (X)-linear operators with Leibniz rule.
e Let us denote p In q the unique function with
oa(plng) =A
It can be constructed by plnq = 5 piIngP for {Bi} C Eff(X) C Ha(X) a
basis with {p;} € H?(X) its dual basis. In particular,
1

_ePlna/zy
z

a)\(epln q/Z) —

3.2.6. Fundamental solution. Let us denote a functional S as follows. For y,y’ €
H*(X),

Sy = (v, )+ Y qBL ev'(y R eP M a/zy’)
BeEF(X)\[0} " M2(XB)

Then we can write down the equation

L
z—,’

1
ZS ALY =S, v
In particular, let us denote an operator S such that

¥, Sy =Slv,y') e Zcrw- ).

In particular,
Sty Ay = (v *A,S(Y) = (v, A% S(v'))
WSy, Y') = (v, S(v") = (v, 0aS(v").
Thus for any v’ € H*(X), we have
2AS(Y) — A% S(y) =0,

In particular, S(y’) solves the quantum differential equation (discussed later). We
call the operator S the fundamental solution.
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3.2.7. Remark. Since
lim S(y') =v'

Z—00

the operator S is nondegenerate.
3.3. J-function.

3.3.1. J-function. Let us define ] to be the unique class such that
<J)Y/>:S“)Y/):“)S(‘Y,D) ie. I:ZGW'S l,o

If we think S as a matrix, then each column of S is a solution of quantum dif-
ferential equation. The J-function is by definition the row of S corresponding to
1 € H*(X).

3.3.2. Simplification. By definition

]:ZGW~S1 o

1
= Z Ow (1,epl“q/zo“’> + Z qP J* evi(1XePma/zgW)— | .
~ EfF(X) z—1;

BG X \{O} MZ (X>|3)
More general, for 3 > 0, let us denote
D = [image of s1 : M; (X, B) — Ma(X, B)].

Similar as what we did in Approach B we have

| eamvvg
M2 (X,B)

| ermi
Mo (X,B)

ev* (YR T)(ft5 ¥y + D - ft3 ps ")

e (v)w?HL ev (Yo
My (X,B)

J ev (Y.
1(X,B)

b
(S
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Let us denote { =17 € H*(M; (X, B)). So

— (1 plnq/z w [§) WJ *(,plnqw
] ;G (1,e o) + Z q ZG - ev”(e o )77,(7.—11))

BEEf(X)\{0} w My (X,B)

— ePIna/z | cpina/z Z qP ev,
BeEf(X)\{0}

1
—ePna/z | 14 Pev,— |.
( Z)\{O}q 2z =)

BEEf(X

z(z =)

3.4. Relations. Let D = f(z0,, q) be a differential operator with f a noncommu-
tative polynomial. If
DJ =0
then lim, o f(A, q) = 0 in QH*(X).
Proof. Note that
zZOAS(v') = A*S(y').
When f takes form of
Z(a function in q) - (differential operators),
we have
DS(vy') = f(M, q)S(v').

Thus

0= <D]>Yl> = D<]>S(Y/)> = D<1)S('Y/)>

= <1 ) DS(Y/» = <])f()\*s q)S(Y/» = <f(}\*) Q)» S('Y/»
Since S(v’) is non-degenerate, f(A, q) = 0 in QH*(X).
The general case follows from the fact that

(20, multiplcation by qP] = z - multiplication by 9,q®,

which is killed by lim, 0. O
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4. QUASI MAPS

4.1. Normal bundle in terms of Psi class.

4.1.1. Local computation. Recall the family of curves
Ch ={(x,y) :xy =h} c C?, h e C.
The ideal for Cy = (x-axis) U (y-axis) is
m = (xy) C R:=Clx,yl.
So the normal bundle of Cy is
m/m? = xyR/m = O¢, (x) ® Oc, (y).
Thus we can naturally identify the normal bundle of the singleton Cy € {Cy,} with
(tangent line of 0 along x-axis) ® (tangent line of 0 along y-axis).

Say, by the following diagram

C x C—— (2

_— |

{x-axis} x {y-axis}——={Cy} ~ C.

The principle is

smoothing of the nodal point = tensor product of two tangent directions

4.1.2. Example. Let us consider the morphism

M1 (X, B1) Xx Mint1(X, B2) — Mman (X, B1 + B2)

by gluing the first marked points. Then the normal bundle of this morphism is
the restriction of (IL; X 1L;)*.
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4.1.3. Example. Let us consider the morphism

ﬁan (X> [31) X ﬁmwtl (Y) BZ) — Mern(X x Y, (Bh [32))
by gluing the first marked points. Then the normal bundle is the restriction of
(L XLy )™
4.1.4. Example. Let us consider
ﬁn(x) B) X IP] — ﬂn—] (X X P] ) (B) 1 ))

by sending (C,x) to the curve obtained by first putting C vertically at the point
x € P! and then gluing a P! horizontally at the first marked point. Then the
normal bundle is L7 X Tp1.

4.2. Quasi-maps.

4.2.1. Remark. Let £ and V be two vector bundles. For a sheaf morphism s : £ —
V, we have (by Nakayama lemma)

s is surjective < s is fibrewise surjective.
While we only have
s is injective < s is fibrewise injective.
Actually, when £ is a line bundle,

s is injective <= s is nonzero (on each connected component).

4.2.2. Quasi maps for projective space. Recall that
Mor(C,PN) = [ J Surj(0g*! — £)/C*.
£LEPic(C)
By taking dual,
Surj(Og*! — £)/C* < Inj(£Y — OFH1)/C* =P(H(C, L)N*).
We define quasi-map by

QM(C,PN) = JP(HO(C, £)N*).
L

When C = P!, we define
QM(PN) = | J QM(PN,d) = | P(CKINEL,).

d>0 d>0

It is a compactification of the space of P! — PN of degree d.
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4.2.3. Quasi maps for general X. Assume we can embed
X — PN x .. x PNm
using primitive nef divisors D1,...,Dn,. For § € Eff(X), denote
B1=(D1,B)y---, Bm = (Dm, B).
We can view
Morgeg—p (P',X) € Morgeg—p (P', PN x ... PNm)

= Morgeg—p, (P',PN1) x -+ x Morgeg—p., (P',PN™)

CQM(PNT, Bq) x - x QM(PN™, B.,).
We define

QM(X, (5) = closure of Morgeg—p (P!, X) in QM(PN', B1) x --- x QM(PN™ B,,)
and QM(X) = Ugepe(x) QM(X, B)-
4.2.4. Remark. We can think as follows. For sections sg,...,sn € H°(C, L), we
define a rational map
Cc — PN, x = [so(x) -+ sn(x)].

This defines a morphism when s,...,sn has no common zeros. In general, the
closure of C defines a morphism C — PN but with class

L(—common zeros).
We call those common zeros by marked points (with multiplicity). So we have
QM(P",d) = | | Morgeg—ar(P',P") x Sym* " C.
0<d’'<d

A quasi map can be uniquely recorded as a morphism C — PN and marked zeros.
Generally, a quasi map over X can be uniquely recorded as a morphism P! — X
with colored marked point. That is,

QM(X,B) = || Moraeg—p(C,P") XHSym<B B',Dy) pl
0<p’'<p i=1

N
N
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4.2.5. Fixed locus. There is C*-action on QM(X) induced from P'. Firstly, let us
look at
QM(PN, d) = P(CI}f2q)-
We have
QM(PN, d)(CX — U CN—H U IP;N
0<d’<d 0<d’<d
That s, it is set of constant quasi-map with d marked point at 0 and d —d’ marked
point at co. More generally, we have

QMX, B = (J xPx
0<B’'<P
4.2.6. Pseudo evaluation. Recall we have a morphism
ev* : Pic(X) — Pic(QM(X, B))
such that the restricting to any fixed component
Pic(QM(X, B)) — Pic(x?'X) ~ Pic(X)

is identity. For any polynomial f(x,...,Xm), we want to compute

J f(ev* D1,...,e0" D).
QM(X,B)

4.3. Graph Space.

4.3.1. Graph Space. Let us consider the graph space
GO(X> [5) = ﬁO(IPﬂ x X, (], B))

Note that Go(X) admits a C* action, so we can compute pushforward via local-
ization. We view the projection

P' x X — P!

as a fibre bundle. Every stable map in Go (X, 3) is a union of a section and vertical
curves.

4.3.2. Fixed component. For any x € X, we denote [x] the graph of constant map
x] =[P = P! x {x} cP' x X].
Assume 3 > 0. Let 31, 32 > 0. We have a morphism
igy,p, t M (X, B1) xx M (X, B2) — Go(X, B1 + B2)

by putting two stable maps with same marked point on X horizontally at 0 and co
respectively, and gluing them by [x]. We also have

1..[3,0 Iﬁ] (X, B) — GO(X) B)
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by putting a stable map at 0. We similarly define iy 3. Then

Go(X,B)°" = U (image of ig, 5, )-
Br+B2=p

4.3.3. Dimension estimation. Let us estimate the dimension. We have

dim Go(X, B) = dim X + 1 + (c1(Tx), B) + (1 (Tp1), 1) +0—3
= dim X + (c1(Tx), B).

For B1,p2 > 0with 1 + B2 =B,

dim M (X, B1) xx My (X, B2) =dim X + (¢1(Tx),B)+1—-3+1-3
— dimX + (¢1(Tx), B) — 4.

On the other hand,
dim M; (X, B) =dim X+ (c1(Tx),B) +1-3
=dim X + {c1(Tx), B) — 2.
4.3.4. Normal bundle. Denote £ the natural representation of C*. For 31,2 > 0,

the normal bundle along ig, s,.

(smoothing the gluing point at 0) = (L' ® £) X O.
(moving the vertical curve at 0) = £ O = £.

Similarly for the gluing point at co

(smoothing the gluing pointat co) = O K (L™ ® £7').

(moving the vertical curve at c0) = O X el =1,
Thus the Euler class
Eu(Nm(ig,,s,)) = restriction of z(z — ) ® (—z(—z —1)).
When 3, = 0, we do not need to smooth and move oo, so
Eu(Nm(ig,0)) = restriction of z(z — 1) ® 1.
Similarly, when 37 =0,

Eu(Nm(ip,p)) = restriction of 1® (—z(—z —1)).
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= =
(
{

/-\j
—/
—~

?\7 Koo ?\7 Nz

4.4. Comparison.

4.4.1. Comparison. Note that both G(X, ) and QM(X, ) are compatification of
Morgeg—p (P!, X). We actually have a birational morphism

w:G(X,B) — QM(X, B)

by changing the vertical curves by marked points.

S AZAAD
BM% RV

P — [P

0 So

G QM X)

o

4.4.2. Localization. Let
¢ =1f(Dq,...,Dmn).

As p is birational,

J f(ev*Dq,...,e0" D)
QM(X,B)

:J W flev*Dq,y...,e0" D)
G(X,B)
i, ’ﬁzu*f(ev* Di,...,ev* D)

N Bﬁ%_ﬁj Eu(Nm(ig, p,))
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When 31, 3, > 0, we have the following diagram

i

G(X,B) QM(X, B)
image of ig, g, BiX
MNX)BQ XXﬁ](X,BZ) evX1=1Kev X

Thus
J i5, p, W flev'Dy,...,ev" D)
My (X,B1)xx My (X,B2) Eu(Nm(iBth))

_ (ev®1)* (£(D1, ..., D))
My (X,B1)xx M1 (X,B2) Z(Z_Ib) ® (—Z)(—Z—lj))
_ (evXT)*(d) .
R 6B ) X (X,pa) 22— 1) @ (—2)(—z — ) (evBdev)™(Ax)
_ (evXT)*(d) T Hev
R 6B X (X,pa) 22— 1) @ (—2)(—z — ) ;(e Rev)*(ow M a™)

™

| i) | ev* (o™)
W IM(X,B1) z(z—) ﬁmx,ﬁz)l(lfﬂ’)

-5 (o) 4 o (o) )

Similarly, when B’ = j3,

image of ig,o ————xPX

ﬁ] (X) B)

We have

J' g0k *flev*Dy,...,e0* D)
M (X,B) Eu(Nm(ig,,p,))

Jm = <ev* (z(zlw)> ’d’>

5 (v (s

31
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Similarly,
i5 g f(ev* Dy,...,€0" D)
Eu(Nm(lﬁhﬁz))

(.
Lm (mw>—<““(—a—l_¢0*¢>
2

1 W
‘¢%<*(ﬂﬂwﬁ”>'

4.4.3. |-function again. Let us denote

o B 1 )
Jo) =1+ ) qev*<z(2_¢).

BEeEM (X)\{0}

Recall that
J=¢eP Inq/ Zj_

Then above computation shows
Z qBJ f(ev* Dq,...,e0" D)
qerfr(x) A

—Z )y & - ow)(J(=2),0%) = (J(2)](~2), ).
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5. PROPERTIES
5.1. Quantum connection.

5.1.1. Remark. Recall that a connection of a vector bundle V over a real manifold
M is an R-bilinear morphism

V:V—Qm Rom V.
with the Leibniz rule
V(fs)=df @ s+ - Vs.

For a local vector field X € Ty, we deonte Vxs = (X, Vs), with the pairing in-
duced by the natural pairing (, ) : Tm ® Om ® V — V. Then Vs satisfies

o Vixivys =fVxs+ Vys; (linearity)

e Vx(fs+1t) = (Xf)s+ fVxs + Vxt; (Leibinize rule)
To define a connection locally, it suffices to define Vx for those X forming a basis
of T over Op (called a frame) and check the second condition.

5.1.2. Quantum connection. Let us consider
the trivial vector bundle V over M = H?(X) with fibre H*(X).

Note that we can view qP as a function over H?(X) for B € Eff(X) c Hy(X,Z).
Thus

HO(M, V) = H*(X) ®c O(M) = QH*(X) ®¢(q) O(M).

The quantum connection is defined to be (z is a formal variable)
1
V)\ = ay\ — 77\*,
z

where

e 0, is the differential operator over M such that 3,q® = (A, B)q®;
e A« is the O-linear map of quantum product with divisor A € H?(X) fibre-
wise.

This is a connection:
1
Valfs +t) = 0x(fs +t) — ;7\ * (fs + 1)
1 1
= (0Af) + T(0rs) + Oxt — gm %S — Z7\ xt
= (0Af) + Vs + Vt.

Here we use the fact that the quantum product is C(q)-linear.
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5.1.3. Remark. For a connection V of a vector bundle V over M, we can extend
00—V Om @0, V-5 03 @0, V- -
by
V(iwAs)=dw® s+ (—1)%8*w A Vs.

The map VAP VN Q%A ®oy Vis Om-linear, called the curvature. A connection
is flat if V2 =0, equivalently, the above chain is a complex. In terms of Vs, it is
equivalent to say

<X AN Y, VZS> = VxVyS - VnyS — V[ny]s =0.

If we define Vx for a frame forming a basis of Tn, then it suffice to check for
all pairing of vector fields from the frame. For a flat connection V, the following
differential equation has a local solution

V(f) =0, fe HO(M, V)

for any given initial value of f at a point x € M.

5.1.4. Flatness. The quantum connection is flat.

VaVus =V Vas =V s
=VaAV,us =V, Vas
= (0p — 127\*)(6H - 1zu*)s — (0, — %u*)(ay\ — %7\*)5
= (0A0us — Tu*Oas — TA % dus+ JrAx pxs)
f(aua;\sflz?\*ausf%p*ay\s+;—zu*?\*s)
:Z]—Z()\*u*s—u*)\*s)zo.

Here we use the associativity and commutativity of the quantum product.

5.1.5. Remark. As we mentioned, S(y’) solves the quantum differential equation,
Valf) =0, ie. 0Oxf= %)\ *Y.

It is actually the fundamental solution.

5.1.6. Remark. Note that if we replace quantum product by usual product, then
the fundamental solution is easy seen to be

S(Y/) — eP In q/zyl‘

5.2. Applications.
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5.2.1. Remark. Let F be a component of X'. Then the push forward
it HE(F) — HE(X)
is an isomorphism after localization. The inverse is given by

YIr
Hx Hx(F —_.
7(X) — H3(F), v+— Fu(Nmr X)
5.2.2. Embedding. We have an embedding
ig,0: Mi(X,B) — Go(X,B).
For two varieties X and Y, we have

Gol(X x Y, (Bx, By)) 225 Gy (X, Bx) X Go(Y, By)

TiXXY "-XXiYT

My (X x Y, (Bx, By)) —= M (X, Bx) x M (Y, By)

XxY X xY.

This implies

1 1 1
- (z(zw) % z(z¢)> e

This shows the J-function of the product is the product of J-functions.

5.2.3. J-function of projective space. Recall we have

G(]P)N, d) birational QM(PN, d)

| |

M (X, d) S PN

As a result,

T\
o (Z(Z—w)> " B

QM(PN, d) = P(H(Cxlaeg<a)™ ).
Note that PN ¢ QM(PN, d) is induced by

(CN+] ~ (CXd)N+] C ((C[X}deggd)NJr]'

Recall

So it is defined by

coefficients of x°, .. x94T of every N + 1 component = 0.
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So

d
H (H + kz).

k=1

T:1+Z a .

a1 ko (H+kz) .

a
_ _H/ q
J=a"" (1 + d N+1> )
a1 Lo (H+kz)

5.2.4. Remark. Let us compute

As a result, we have
d

That is,

H
(d_,'_z)qurH/z .
a>1 ]_[ﬂ:](H—i—kz)N”

H
d _ H/z
HJ Z4 Tt

Similarly,
N+1  d+H/z
NA+TT _ yN+1 H/ (H+dz)""'q
(z0n) +]—H +q “+ d N+1
azi i (H+kz)
d+H/z
= : — =qJ.
Fecll § b 1 (H+ kz)N+
So we have
HNTT = g (quantum product).

5.3. Unitary property.
5.3.1. A twisted fundamental solution. Let us denote
My, v) =y + qBJ ev'(y Ry’)
’ ’ 2 M2 (X,B) z

BEEf(X)\{0}
Let us denote the operator M by

(M(v),v") = M(v,v").
5.3.2. Equation for M. Then

AMY),Y') = LM =Y, MOY) — L AMy), ),

—Uy

Thus 1 1
IAM(y) = ZMO\ *Y) — ZAM(V).

For general f, i.e. possibly involving quantum parameters,

IAM(f) = %M()\ «f) — %AM(f) + M(9rF).
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5.3.3. Summary. We have the following commutative diagram

Ho(X) — 2 () (q)

5.3.4. Equation for inverse. By substituting f by M~ (f), we get
Af = %M(?\ * M7 () — %?\f + MM ().
Applying M1, we get
M1 (0xf) = %?\ « M7 (f) — %sz (M) + oM (1).

That is,
1

M (f) = ——
z

Ax M) + %M“ (M) + M1 (9A1).

5.3.5. Equation for adjoint. On the other hand, denote the operator M’ by
(v, M'(y")) = My, v").
Then

Ly, MOy ).

AMY)) = L r A s M) —

Thus
AMI(Y) = A M'(y') — LM/ O ).

For general f, i.e. possibly involving quantum parameters,

1 1

AMI(f) = “Ax M'(f) — ~M(Af) + M/ (0af).

5.3.6. Conclusion. Let us denote M(y) = M(v, z) to empathise the dependence of
z. By comparing the differential equation, we have

M/(Y)Z) =M (Y) —z).

As a result, we have
<M(‘Y» z), M(V/) *Z)> = <V)y/>-
In the rest of this section, we are going to give a geometric proof of this identity.

5.4. Gromov-Witten invariant over graph space.
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5.4.1. A pairing. Let us denote similarly
GZ(X> B) = MZUPﬂ X X) (1) B)J
We define for y1,v2 € H*(X)

G(YHYZ) = <YI»V2> + Z qBJ eV*ﬁO*Y] X loo*YZ)
B>0 G2(X,B)

where ip : X = P! x X and i : X — P! x X the inclusion of the fibre at 0 and co
respectively.

5.4.2. Remark. Note that by[2.3.2} we have G(v1,v2) = (v1,V2)-

5.4.3. Components. Let us use localization to compute this pairing. Let us denote
for B1,B2 >0

ipy,pa s M2 (X, B1) xx M (X, B2) — Go(X, B1 + B2)
by gluing the second marked points. Similarly we define ig ¢ and i g. Then

Ga(X,B) =(-)u |J (imageof ig,,p,).
Br1+B2=R

Here (- - -) is the component does not contribute the pushforward.
5.4.4. Dimension estimation. Let us estimate the dimension. We have
dim G2 (X, B) =dim X+ 1+ (c1(Tx), B) + {(c1(Tpr1),1) +2 -3
=dim X+ {c1(Tx), B) + 2.
For 1,2 > 0with 1 +p2 =,
dim M3 (X, B1) xx M2(X, B2) = dim X + (c1(Tx),B) +2—3+2—3
=dim X + (c1(Tx), B) — 2.
On the other hand,
dim My (X, B) = dim X + {(cq(Tx),B) +2—3
=dim X+ (¢ (Tx), ) — 1.
5.4.5. Normal bundle. Similarly, when 31,32 >0,
Eu(Nm(ig,,p,)) = restriction of z(z — ) ® (—z(—z —V)).
When 3, = 0, we do not need to smooth the marked point on oo, so
Eu(Nm(ig,0)) = restriction of z(z — ) ® (—z).
Similarly, when 37 =0,
Eu(Nm(ip,g)) = restriction of z® (—z(—z —)).
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5.4.6. Localization. When {3 > 0, using localization, we have

Z J 1E1 B2 (ev* (iO*Yl X 100*Y2)

ev' (lox Y1 Miesy2) = -
Lz(x,ﬁ) Eu(Nm(ig,,p,))

Br1+B2=p
When 1,2 > 0, we have

J 5.5, (v (loxv1 Micoxv2)

Mo (X,B1)x x M (X,B2) Eu(Nm(ig, p,))

( (evi Mevq)*(iflosy1 B il looxy2)
I3 (X, B xx M (X,8,)  2(z2—2) ® (—z(—z—12))

( (evi Revi)*(iglosy1 ﬁi;ioowz)(
I X, x M (x,82) 2z —12) @ (—z(—2z—12))

[ (evi Mevq)*(zy1 M (—2)v2) . w
a3t a2 —2) & (2l — ) &2 B ev2) (o 6™)
_ZJ' ev*(y1 Moy) J ev*(y2 X o")

— ey 2—V2 e, 22

evy Mevz)*(Ax)

39
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Here {0,,} C H*(X) is a basis and {c™} C H*(X) is its dual basis. Similarly, when
2, we have
J i}kg,o (GV*(io*% X ‘Loo*'YZ)
M1 (X,B) Eu(Nm(io,p))

:J M:ZJ BNy o),
Ma(xp2)  TETW2 W hogen 202
5,5 (V™ (losy1 Micosyv2) v (v, B o)
Lvh (X,B) Eu(Nm(io,p)) = gmaﬁw) J_Mz(x,rSz) T v,

5.4.7. Conclusion. As a result,
<Y1 »YZ> = G(Y] »YZ) = Z M(y] ) O—W)M(YZ) O-W)lz»—>fz

w

= Z<M(Y] y Z), 0—w><M(YZ» _Z)) Gw>

w

= <M(Y1 ) Z)) M('Yz» _Z)>
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6. SHIFT OPERATORS

6.1. Shift operator.

6.1.1. Setup. Assume T acts on X. We are going to define a family of operators for
any k € 1PS(T). Let T =T x C*. We denote z the canonical generator in Héx (pt).

6.1.2. Twisted action. For any k € 1PS(T), we have a twisted T-action by
pr(t,u) - x =t-k(u) - x.
We have
H3 (X, po) ———— Hi(X, pi)

*T Ao+ (k) z *T
Hp(pt) —————— Hi(pt)
Let us denote the isomorphism by y +— y[k].

6.1.3. Bundle. Let us denote
Ex = (C2\{0) x X,
with the action induced by k. Then T acts on Ex. We have a projection
m:E — (C*\{0})/C* =P!
with
7 H0) = (X, p0) = Xo, 70 (00) = (X, i) =t Xeo-
6.1.4. Section class. Let us denote

Eff(Ex)sec = preimage of P! i) P'] € Eff(P') under 7, : Eff(Ey) — Eff(P").

6.1.5. Shift operator. Let us define
L : Xo — Ey, loo : Xoo — Ex.
Let us define the shifted operator
Sk : HE (X, po) — HE(X, px)
by

S YK=Y q‘sj eV (10xYy Mioowy ' [K]).

M2 (Ex,B)

BeEH(Ek)sec

Let us use localization to compute Sy.
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6.1.6. Example. When k = 0, then
Ex =P' x X.

Applying the same trick to C* fixed locus as in the previous section, we get

<Sk(Y))y/> = <Mh/) Z)a M(Y/) _Z)> = <Y»y/>'
Thus So = id. In general, we have to consider the T-fixed locus.

6.1.7. Fixed locus. Let F € 7o(XT) be a connected component of X'. We denote
or € Eff(Ey) to be the class of oy for any x € F. For 31,3, > 0, let us denote

M2 (Xo, B1) XF M2 (Xoo, B2) = (ev2 Kevy) ' (AF)

the space of stable maps with the second marked points the same in F. For (Cy, C3)
in this space with ev,(Cq) = ev,(C;) = x € F, by gluing o C Ey, we have a T-
invariant stable maps over Ey. This defines

ig1,p, : M2(Xo, B1) XF M2 (Xooy B2) — Ma(Ek,i04+B1 + oo B2 + OF).
It induces
M2(Xo, B1)" xF M2 (Xooy B2)T — M2 (Exy i04B1 + toosP2 + 0F)".
We similarly denote
ig1,0,10,8, : M2(Xo, B) Nevy ' (F) — My(Ex, B1 + 0F).

We have the following decomposition

Mo (B, )T =(---)U U image of ig, p,.

1o« B1+icoxP2+0Fr=0

Here (- - - ) are those components not in ev 1 (Xo X Xoo ), which does not contribute
the integral.
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6.1.8. Computation. Let us compute the normal bundle of
M2 (Xo, B1) xF M2 (Xoo, B2)-

It contains the fixed component. Denote & the natural representation of C*.

(smoothing the gluing point at 0) = (L, ' ® &) X O.

(moving the gluing point at 0) = EX O = &.
Similarly for the gluing point at co
(smoothing the gluing point at co) = O X (Ly' ® ).
(moving the gluing pointatoo) = ORI &' =&,
Thus the Euler class
Eu(Nm(ig, p,)) = z(z = 2) ® (—z(—z — }2)).

When (31 = 0, the computation will be different. Now 0 is a marked point, so we
do not need to smooth it. The Euler class

Eu(Nm(io,p,)) =z ® (—z(—z —12)).
Similarly for 3, =0,
Eu(Nm(ig, 0)) = z(z — %) @ (~2).
6.1.9. Lemma. The normal bundle of F x P! is

Nmper Ek= ) (NmpX)a B 0p1 (=(A k),
A€Echar(T)

where (Nmr X)), = Homrt(Cy,Nmr X). Actually, it is characterized by (as C*-
equivariant bundles)

NIanIP” Ek|F><O = NIHF Xo = Nm]: X = @ (Nm]: X))\
A€Echar(T)
Nmpypr Exlrxoo = Nmp Xoo = (NmeX) [kl = @ (Nmp X)A((A, k)z).
A€char(T)
6.1.10. Moving the horizontal cruve. Now let us compute the part of moving the
horizontal curve. We have
(moving the horizontal curve)
= (moving to be non-constant inside F) @ (moving out of F)

Note that

(moving to be non-constant inside F) = Mor(P', H® (F, T%))/constant = 0.
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Note that

(movingoutof F) = @5 ev*(Nme X)» - x(P', 0p(—(A, k)))
A€Echar(T)

where ev = ev, X1 = 1Xev;,. Here (Nmr X), has trivial C*-action, so ev* induced
by two maps do not differ. By localization theorem, we have

_ i—1
X(B0m (1) = oy e Y

c<0 c<—1i

So

(moving the horizontal curve) = EB *(Nmg X)a Z & — Z &°

A€char(T) c<0 c<(A,k)

Note that its Euler class is

[Tecolev*x+A+cz) .
H H H L ev X+>\+C):(BV2|E]) ())
A€char(T) xe , /(Nmr X)» c<(Ak)

. [[ccox +A+c2) .
= (ev, X1) H H i <0 CERYT = (eva ®T)*(---)
Aechar(T) xe \ /(Nmr X)n c<(Ak)

where /(Nmpr X)) means the Chern roots of the bundle.

6.1.11. Computation. Now, let us evaluate

L eV (0w, Mioxy[K])
M2 (Ex,B)
_ Z (evy Wevy)*(15tosy B U5 toor Y [K])
B1,B2,F M2 (Xo,B1)XFM2 (Xeo,B2) Nm()
(Broxy X U5 toox Y [K]) )
-y | _ - (ev2 Beva)* ()
BrBa F I M2 (X0, B1) X M2 (Xeo, B2) m(---)
Z J zev*(y Mip.of) v 1 J —zev*(v'[k] M i 0F)
- eV
B1,B2,F w 2(Xo,B1) z(z — 1) 2() M2 (Xeo,B2) —z(—z =)
_ Z J zev*(y@ip*cf&,)‘[ fzev*(y’[k]ﬁip*dﬁ)l[ oy ol
P (X80 2z—2) M (XoorB2) (—z—12) Fo()

Here we omit the summand of 31, 32 = 0. Here we assume

=) o}, Boy € H'(F) C Hi(X).
w
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We find

By I = 3 7 3 (M, 2), i 0h) (MU', —2), o) |

F w,u F()

oF
= Z < Z q°r ZIF* J O—FSJ'> <M(y/)_l),iF*G};L>[k]
Z < 'y) Zqo‘}: 1F>k > (’Y/)_Z))O-}:L>[k]_

We have

Let us compute

ip.0f, 1 — iF0 I I [Teco(x +A+c2z)
() Eu(Nmy X) NmFX Aeehar(T) e /N X HCS,(}\’]Q(X"‘)\‘FCZ)

Let us denote

[Tecox+A+c2)
Ar= ] [ = .
HC§_<)\Yk>(X+7\+CZ)

A€char(T) x€+/(Nmr X)a

- F
Note that {if.0¥} is dual to { EuH\;Ing) }, so

(S y)=K],v") <Zq“FAFMw, 2)l- k],M(v’,—zJ>.

By [5.3.6

(Sk(y)) =K =M™ <Z q°F A - M(v,z) [—k},z) .
F

6.1.12. Summary. Let us denote Sy by
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We have the following commutative diagram

Ho(X) —— 2 1y (X)(q)

Skl J/VHEBF qF A (v[=X])
X M(—,z)

Hr(X)(q) —————— Hr(X)(q)

6.1.13. Corollary. We have
Sk 0S¢ = q" IS
Since M is non-degenerate, this reduces to the following easy identity
A% - AR = AR
6.1.14. Seidel element. Define
Sk = lim Sk (1) € QH; (X).

Note that
[20A+A, ) qTAr] =2 (0rq°7)Ar = o(2).
F F

So
[Sk,zVA +A % | = o(z).

Then by taking z — 0, we see lim,_,o Sx commutes with the quantum product
with a divisor. When H7 (X) is generated by divisor (after localization), it is given
by the quantum product with Sy.

6.1.15. Remark. When z = 1, we can write Af in terms of Gauss Gamma function
I'(s) = J:o tse*t%.
Recall that
MNs+1)=sl(s).
Sowhen a,b € Z

Ms+a+1) (s+a)l(s+a)

Ms+b+1)  (s+b)I(s+b)
(s+a)---(s+c)l(s+c) Tle<als+e
(s+b)---(s+c)l'(s+c) Hcgb(s+c)



As a result,
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AF|Z:1 _ H H F(X+}\+])

Fx+A—Ak) +1
AGchar(T)Xe (Nmr X)a ( <‘ > )

_ ey/mmrmon [ * 1) [—K]
e ymmrxoey T HT)

_ M(1+ Nmg(X, p)) ]
(1 +Nmp(X,p0))
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