NOTES ON QUANTUM COHOMOLOGY

RUI XIONG

CONTENTS

1.	Quantum product	2
2.	Properties and Examples	8
3.	Fundamental solution	17
4.	Quasi maps	25
5.	Properties	33
6.	Shift operators	41
	-	

1. QUANTUM PRODUCT

1.1. The moduli space of stable maps.

1.1.1. Stable maps. A quasi-stable curve with n-marked point is

 (C, p_1, \ldots, p_n)

where C is a projective, connected, reduced, (at worst) nodal curve of arithmetic genus $0, p_1, \ldots, p_n \in C$ are distinct regular points on C. We call

 $\{\text{special points}\} = \{\text{marked points}\} \cup \{\text{nodal points}\}.$

For a variety X, $\beta \in Eff(X)$, we define the moduli space of stable maps

$$\overline{\mathfrak{M}}_{n}(X,\beta) = \left\{ \begin{array}{ll} (f,C,p_{1},\ldots,p_{n}) \text{ is quasi-stable} \\ (f,C,p_{1},\ldots,p_{n}): & f:C \to X \text{ with } f_{*}[C] = \beta, \\ & \text{ and the stability condition} \end{array} \right\} / \text{re-parametrization}$$

Here the stability condition is

If f is constant over an irreducible component of C, then there must be at least 3 special points on it.

Equivalently, the automorphism group $Aut(f, C, p_1, ..., p_n)$ is finite. We denote

$$\overline{\mathcal{M}}_n(X) = \bigcup_{\beta} \overline{\mathcal{M}}_n(X,\beta), \qquad \overline{\mathcal{M}}_n = \overline{\mathcal{M}}_n(\mathsf{pt}).$$

1.1.2. *Compactification*. It turns out $\overline{\mathcal{M}}_n(X,\beta)$ is a compactification of

 $\left\{ (f, \mathbb{P}^1, p_1, \dots, p_n): \begin{array}{c} f: \mathbb{P}^1 \to X \text{ with } f_*[\mathbb{P}^1] = \beta \\ p_1, \dots, p_n \in \mathbb{P}^1 \text{ distinct} \end{array} \right\} / \text{re-parametrization.}$

When n = 3, as any three points can be moved to $(0, 1, \infty)$ by a re-parametrization $\operatorname{Aut}(\mathbb{P}^1)$, the moduli space $\overline{\mathcal{M}}_3(X)$ is a compactification of $\operatorname{Mor}(\mathbb{P}^1, X)$.

 $\overline{\mathfrak{M}}_3 = \mathsf{pt}, \qquad \overline{\mathfrak{M}}_4 = \mathbb{P}^1.$

1.1.3. Example. We have

1.1.4. Example. We have

 $\overline{\mathcal{M}}_3(\mathbb{P}^1,1)=\mathsf{pt},\qquad\overline{\mathcal{M}}_3(X,0)=X.$

1.1.5. *Expected dimension*. At the point (f, C, p_1, \ldots, p_n) , the tangenet space is the difference of the following

(deforming f) = tangent fields of X along C

$$= \mathrm{H}^{\mathrm{O}}(\mathrm{C},\mathrm{f}^{*}\mathfrak{T}_{\mathrm{X}})$$

(infinitesimal automorphisms) = (infinitesimal reparametrization)

= tangent fields of C vanishing at p_1, \ldots, p_n

$$= \mathsf{H}^{\mathsf{c}}(\mathsf{C}, \mathcal{I}_{\mathsf{C}}(-\mathsf{p}_{1} - \cdots - \mathsf{p}_{n}))$$

$$= \operatorname{Ext}^{\mathfrak{o}}(\omega_{\mathbb{C}}(\mathfrak{p}_{1} + \cdots + \mathfrak{p}_{n}), \mathfrak{O}_{\mathbb{C}}).$$

By Riemann–Roch

$$\begin{split} \chi(C,f^*\mathfrak{T}_X) &= \dim X + \langle \beta,c_1(\mathfrak{T}_X) \rangle \\ \chi(C,\mathfrak{T}_C(-\mathfrak{p}_1-\cdots-\mathfrak{p}_n)) &= -n+3. \end{split}$$

So the expected dimension of $\overline{\mathfrak{M}}_n(X,\beta)$ is

$$\dim X + \langle \beta, c_1(\mathfrak{T}_X) \rangle + \mathfrak{n} - 3.$$

1.2. Gromov-Witten invariants.

1.2.1. Morphisms. We have a morphism called evaluation

 $\mathrm{ev}:\overline{\mathfrak{M}}_{n}(X,\beta)\longrightarrow X\times \cdots \times X: \qquad (f,C,p_{1},\ldots,p_{n})\longmapsto (f(p_{1}),\ldots,f(p_{n})).$

We denote ev_i the i-th component. We have a forgetful morphism ft

$$\mathrm{ft}_{\mathfrak{i}}: \mathfrak{M}_{\mathfrak{n}+1}(X,\beta) \longrightarrow \mathfrak{M}_{\mathfrak{n}}(X,\beta)$$

by forgetting the i-th marked point and collapsing branches if necessary to get a stable map. Note that this map is not defined for $\beta = 0$ and n = 2, as $\overline{\mathcal{M}}_2(X, 0) = \emptyset$. Similarly for $f: X \to Y$, we have

$$f_*: \mathcal{M}_n(X,\beta) \longrightarrow \mathcal{M}_n(Y,f_*\beta).$$

In particular, we have

$$\operatorname{ft}_X: \mathcal{M}_n(X, \beta) \longrightarrow \mathcal{M}_n.$$

1.2.2. *Gromov–Witten invariants*. For $\gamma_1, \gamma_2, \gamma_3 \in H^*(X)$, we define

$$\langle \gamma_1, \gamma_2, \gamma_3 \rangle_{\beta} := \int_{\overline{\mathcal{M}}_n(X, \beta)} \mathrm{ev}^*(\gamma_1 \boxtimes \gamma_2 \boxtimes \gamma_3).$$

Note that $\langle \gamma_1, \gamma_2, \gamma_3 \rangle_{\beta} = 0$ unless

$$(\deg \gamma_1 + \deg \gamma_2 + \deg \gamma_3) = \dim X + \langle \beta, c_1(\mathfrak{T}_X) \rangle.$$

Here $\deg \gamma = k$ if $\gamma \in H^{2k}(X)$.

1.2.3. *Meaning.* Assume $\gamma_i = [Z_i]$ for subvariety $Z_i \subset X$. Then the meaning of Gromov–Witten invariant can be understood as

$$\langle \gamma_1, \gamma_2, \gamma_3 \rangle_{\beta} = \# \left\{ \mathbb{P}^1 \xrightarrow{f} X : \begin{array}{c} f_*[\mathbb{P}^1] = \beta, \ f(0) \in Z_1, \\ f(1) \in Z_2, \ f(\infty) \in Z_3 \end{array} \right\}.$$

Note that now

reparametrization =
$$\operatorname{Aut}(\mathbb{P}^1, 0, 1, \infty) =$$
trivial group.

1.2.4. Novikov Ring. Denote Novikov ring

$$\mathbb{Q}[\![\mathrm{Eff}(X)]\!] = \mathbb{Q}[\![q^\beta]\!]_{\beta \in \mathrm{Eff}(X)} \big/ \langle q^0 = 1, \, q^{\beta_1} q^{\beta_2} = q^{\beta_1 + \beta_2} \rangle.$$

We will equip the degree

$$\deg q^{\beta} = \langle \beta, c_1(\mathfrak{T}) \rangle.$$

1.3. Quantum cohomology.

1.3.1. Quantum cohomology. We define

$$QH^*(X) = H^*(X, \mathbb{Q})\llbracket Eff(X) \rrbracket$$

with the quantum product * uniquely determined by

$$\langle \gamma_1 \ast \gamma_2, \gamma_3 \rangle = \sum_{\beta \in \operatorname{Eff}(X)} q^\beta \langle \gamma_1, \gamma_2, \gamma_3 \rangle_\beta,$$

where \langle , \rangle is the Poincaré pairing. As $\langle \gamma_1, \gamma_2, \gamma_3 \rangle_0 = \langle \gamma_1 \gamma_2, \gamma_3 \rangle$, quantum product is a q-deformation of classical product

$$\gamma_1 * \gamma_2 = \gamma_1 \gamma_2 + ($$
quantum correction $)$

with

$$(\text{quantum correction}) \in \sum_{\beta \in \operatorname{Eff}(X) \setminus \{0\}} q^{\beta} H^*(X)$$

which tends to 0 under the limit $\lim_{q\to 0} : H^*(X, \mathbb{Q}) \llbracket Eff(X) \rrbracket \to H^*(X, \mathbb{Q}).$

1.3.2. *Commutativity*. Note that this expression is symmetric under any permutation of γ_1 , γ_2 , γ_3 , so quantum product is commutative

$$\gamma_1 * \gamma_2 = \gamma_2 * \gamma_1$$

and satisfies the Frobenius property

$$\langle \gamma_1 * \gamma_2, \gamma_3 \rangle = \langle \gamma, \gamma_2 * \gamma_3 \rangle.$$

1.3.3. Associativity. Let us consider

$$\operatorname{ft}_X: \overline{\mathcal{M}}_4(X) \longrightarrow \overline{\mathcal{M}}_4 = \mathbb{P}^1.$$

For the nodal curve C on $\overline{\mathfrak{M}}_4$, we have

$$\operatorname{ft}_X^{-1}(\{C\}) = \bigcup_{\beta_1 + \beta_2 = \beta} \overline{\mathfrak{M}}_3(X, \beta_1) \times_X \overline{\mathfrak{M}}_3(X, \beta_2).$$

Here

The map is given by gluing the last marked points.

Let us compute

$$\begin{split} &\int_{\overline{\mathcal{M}}_{4}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{2} \boxtimes \gamma_{3} \boxtimes \gamma_{4}) \operatorname{ft}^{*}([\mathsf{pt}]) \\ &= \sum_{\beta_{1}+\beta_{2}=\beta} \int_{\overline{\mathcal{M}}_{3}(X,\beta_{1}) \times_{X} \overline{\mathcal{M}}_{3}(X,\beta_{2})} (\operatorname{ev} \boxtimes \operatorname{ev})^{*}(\gamma_{1} \boxtimes \gamma_{2} \boxtimes 1 \boxtimes \gamma_{3} \boxtimes \gamma_{4} \boxtimes 1) \\ &= \sum_{\beta_{1}+\beta_{2}=\beta} \int_{\overline{\mathcal{M}}_{3}(X,\beta_{1}) \times \overline{\mathcal{M}}_{3}(X,\beta_{2})} (\operatorname{ev} \boxtimes \operatorname{ev})^{*}(\gamma_{1} \boxtimes \gamma_{2} \boxtimes 1 \boxtimes \gamma_{3} \boxtimes \gamma_{4} \boxtimes 1) (\operatorname{ev}_{3} \boxtimes \operatorname{ev}_{3})^{*}(\Delta_{X}) \\ &= \sum_{\beta_{1}+\beta_{2}=\beta} \sum_{w} \int_{\overline{\mathcal{M}}_{3}(X,\beta_{1}) \times \overline{\mathcal{M}}_{3}(X,\beta_{2})} (\operatorname{ev} \boxtimes \operatorname{ev})^{*}(\gamma_{1} \boxtimes \gamma_{2} \boxtimes \sigma_{w} \boxtimes \gamma_{3} \boxtimes \gamma_{4} \boxtimes \sigma^{w}) \\ &= \sum_{\beta_{1}+\beta_{2}=\beta} \sum_{w} \langle \gamma_{1}, \gamma_{2}, \sigma_{w} \rangle_{\beta_{1}} \langle \gamma_{3}, \gamma_{4}, \sigma^{w} \rangle_{\beta_{2}}, \end{split}$$

where $\{\sigma_w\}\subset H^*(X)$ is a basis and $\{\sigma^w\}$ is its dual basis under Poincaré duality. Note that

$$\Delta_{\mathbf{X}} = \sum_{w} \sigma_{w} \otimes \sigma^{w} \in = \mathsf{H}^{*}(\mathbf{X}) \otimes \mathsf{H}^{*}(\mathbf{X}) = \mathsf{H}^{*}(\mathbf{X} \times \mathbf{X}).$$

As a result, we have

$$\begin{split} &\sum_{\boldsymbol{\beta} \in \mathrm{Eff}(X)} q^{\boldsymbol{\beta}} \int_{\overline{\mathcal{M}}_{4}(X,\boldsymbol{\beta})} \mathrm{ev}^{*}(\boldsymbol{\gamma}_{1} \boxtimes \boldsymbol{\gamma}_{2} \boxtimes \boldsymbol{\gamma}_{3} \boxtimes \boldsymbol{\gamma}_{4}) \, \mathrm{ft}^{*}([\mathsf{pt}]) \\ &= \sum_{\boldsymbol{\beta}_{1}+\boldsymbol{\beta}_{2}} \sum_{\boldsymbol{w}} q^{\boldsymbol{\beta}_{1}} \langle \boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{2}, \sigma_{\boldsymbol{w}} \rangle_{\boldsymbol{\beta}_{1}} q^{\boldsymbol{\beta}_{2}} \langle \boldsymbol{\gamma}_{3}, \boldsymbol{\gamma}_{4}, \sigma^{\boldsymbol{w}} \rangle_{\boldsymbol{\beta}_{2}} \\ &= \sum_{\boldsymbol{w}} \langle \boldsymbol{\gamma}_{1} * \boldsymbol{\gamma}_{2}, \sigma_{\boldsymbol{w}} \rangle \langle \boldsymbol{\gamma}_{3} * \boldsymbol{\gamma}_{4}, \sigma^{\boldsymbol{w}} \rangle \\ &= \langle \boldsymbol{\gamma}_{1} * \boldsymbol{\gamma}_{2}, \boldsymbol{\gamma}_{3} * \boldsymbol{\gamma}_{4} \rangle = \langle (\boldsymbol{\gamma}_{1} * \boldsymbol{\gamma}_{2}) * \boldsymbol{\gamma}_{3}, \boldsymbol{\gamma}_{4} \rangle. \end{split}$$

Note that this is invariant under any permutation of $\gamma_1, \gamma_2, \gamma_3, \gamma_4$. In particular, we have associativity

$$(\gamma_1 * \gamma_2) * \gamma_3 = (\gamma_2 * \gamma_3) * \gamma_1 = \gamma_1 * (\gamma_2 * \gamma_3).$$

1.3.4. *Remark.* When $\gamma_i = [Z_i]$ for subvariety $Z_i \subset X$. This also tells

$$\langle \gamma_1 \ast \gamma_2, \gamma_3 \ast \gamma_4 \rangle = \sum_{\beta} q^{\beta} \# \left\{ \mathbb{P}^1 \xrightarrow{f} X : f_*[\mathbb{P}^1] = \beta, f(c_i) \in Z_i \right\}$$

for any given four points $c_1, \ldots, c_4 \in \mathbb{P}^1$.

1.3.5. *Identity*. Let $\beta > 0$. Let us consider

$$\operatorname{ft}_3: \overline{\mathcal{M}}_3(X,\beta) \longrightarrow \overline{\mathcal{M}}_2(X,\beta).$$

Then

$$\begin{split} & \int_{\overline{\mathcal{M}}_{3}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{2} \boxtimes 1) \\ &= \int_{\overline{\mathcal{M}}_{3}(X,\beta)} \operatorname{ft}_{3}^{*}(\operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{2})) \\ &= \int_{\overline{\mathcal{M}}_{2}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{2}) \operatorname{ft}_{3*}(1) = 0 \end{split}$$

Here $ft_{3*}(1) = 0$ by degree reason. When $\beta = 0$,

$$\int_{\overline{\mathcal{M}}_{3}(X,0)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{2} \boxtimes 1) = \int_{X} \gamma_{1} \gamma_{2} = \langle \gamma_{1}, \gamma_{2} \rangle.$$

This proves

 $\langle \gamma_1 \ast 1, \gamma_2 \rangle = \langle \gamma_1, \gamma_2 \rangle.$

So $1 \in H^*(X) \subset QH^*(X)$ is the identity

$$\gamma_1 * 1 = \gamma_1.$$

2. PROPERTIES AND EXAMPLES

2.1. Divisor equation.

2.1.1. *Divisor*. Let λ be a divisor. When $\beta > 0$,

$$\begin{split} \int_{\overline{\mathcal{M}}_{3}(\mathbf{X},\boldsymbol{\beta})} \mathrm{ev}^{*}(\boldsymbol{\gamma}_{1} \boxtimes \boldsymbol{\gamma}_{2} \boxtimes \boldsymbol{\lambda}) &= \int_{\overline{\mathcal{M}}_{3}(\mathbf{X},\boldsymbol{\beta})} \mathrm{ft}_{3}^{*}(\mathrm{ev}^{*}(\boldsymbol{\gamma}_{1} \boxtimes \boldsymbol{\gamma}_{2})) \, \mathrm{ev}_{3}^{*}(\boldsymbol{\lambda}) \\ &= \int_{\overline{\mathcal{M}}_{2}(\mathbf{X},\boldsymbol{\beta})} \mathrm{ev}^{*}(\boldsymbol{\gamma}_{1} \boxtimes \boldsymbol{\gamma}_{2}) \, \mathrm{ft}_{3*}(\mathrm{ev}_{3}^{*}(\boldsymbol{\lambda})). \end{split}$$

By degree reason, $ft_{3*}(ev_3^*(\lambda))$ is a number. So it equals to the intersecting number of the generic fibre and $ev_3 *(\lambda)$. For a generic stable map $(f, \mathbb{P}^1, p_1, p_2)$, the fibre along ft_3 is \mathbb{P}^1 itself, and ev_3 is identified with f. So the intersecting number is $\langle \beta, \lambda \rangle$. We conclude that

$$\int_{\overline{\mathcal{M}}_3(X,\beta)} \mathrm{ev}^*(\gamma_1 \boxtimes \gamma_2 \boxtimes \lambda) = \langle \lambda, \beta \rangle \int_{\overline{\mathcal{M}}_2(X,\beta)} \mathrm{ev}^*(\gamma_1 \boxtimes \gamma_2).$$

In other word,

$$\langle \gamma_1 \ast \lambda, \gamma_2 \rangle = \langle \gamma_1 \lambda, \gamma_2 \rangle + \sum_{\beta \in \operatorname{Eff}(X) \setminus \{0\}} \langle \lambda, \beta \rangle q^\beta \int_{\overline{\mathcal{M}}_2(X, \beta)} \operatorname{ev}^*(\gamma_1 \boxtimes \gamma_2).$$

2.2. **Remark.** This can be understood as follows. Assume $\lambda = [D]$ for a codimension 1 subvariety $D \subset X$.

$$\langle \gamma_1, \gamma_2, \lambda \rangle_{\beta} = \# \left\{ \mathbb{P}^1 \xrightarrow{f} X : \begin{array}{c} f_*[\mathbb{P}^1] = \beta, \ f(0) \in Z_1, \\ f(1) \in D, \ f(\infty) \in Z_2 \end{array} \right\}.$$

Note D intersects any $\mathbb{P}^1 \to X$ by $\langle \beta, \lambda \rangle$ points. Thus

$$\langle \gamma_1, \gamma_2, \lambda \rangle_{\beta} = \langle \beta, \lambda \rangle \# \left\{ \mathbb{P}^1 \xrightarrow{f} X : \begin{array}{c} f_*[\mathbb{P}^1] = \beta, \\ f(0) \in \mathsf{Z}_1, f(\infty) \in \mathsf{Z}_2 \end{array} \right\} / \mathbb{C}^{\times}.$$

Note that now

reparametrization =
$$Aut(\mathbb{P}^1, 0, \infty) = \mathbb{C}^{\times}$$

2.3. Product.

2.3.1. Product. Let X and Y be two varieties. We have a birational

$$\overline{\mathcal{M}}_{3}(X \times Y, (\beta, \beta')) \longrightarrow \overline{\mathcal{M}}_{3}(X, \beta) \times \overline{\mathcal{M}}_{3}(Y, \beta')$$

induced by two projections. Note that, this is birational only for n = 3 in which case $\overline{\mathcal{M}}_3(X)$ is a compactification of $\operatorname{Mor}(\mathbb{P}^1, X)$. We can conclude

$$QH^*(X \times Y) \longrightarrow QH^*(X) \otimes QH^*(Y)$$

is an algebra isomorphism.

2.3.2. *Corollory.* When $\beta_1, \beta_2 > 0$

$$\int_{\overline{\mathcal{M}}_{2}(X\times Y,(\beta_{1},\beta_{2}))} \operatorname{ev}^{*} \left((\gamma_{1}\otimes \gamma_{1}')\boxtimes (\gamma_{2}\otimes \gamma_{2}') \right) = 0.$$

This can be proved using divisor equation. For any ample divisor $\lambda \in H^2(X)$,

$$\begin{split} &\langle (\gamma_1\otimes\gamma_1')*(\lambda\otimes 1), \gamma_2\otimes\gamma_2'\rangle \\ &=\langle \gamma_1\lambda,\gamma_1'\rangle + \sum_{\beta_1,\beta_2} \langle \lambda,\beta_1\rangle q^{\beta_1}q^{\beta_2}\int_{\overline{\mathcal{M}}_2} \mathrm{ev}^*((\gamma_1\otimes\gamma_1')\boxtimes(\gamma_2\otimes\gamma_2')). \end{split}$$

Note that $\langle \lambda, \beta_1 \rangle > 0$. On the other hand,

$$\langle (\gamma_1 \otimes \gamma_1') * (D \otimes 1), \gamma_2 \otimes \gamma_2' \rangle = \langle \gamma_1 * \lambda, \gamma_2 \rangle \langle \gamma_2, \gamma_2' \rangle$$

having no q^{β_2} -term.

2.3.3. *Remark.* Let us give a direct proof of this fact. When $\beta_1, \beta_2 > 0$, we have the following diagram

$$\overline{\mathcal{M}}_{2}(X \times Y, (\beta, \beta')) \xrightarrow{(*)} \overline{\mathcal{M}}_{2}(X, \beta) \times \overline{\mathcal{M}}_{2}(Y, \beta)
\downarrow^{ev} \qquad \qquad \downarrow^{ev \boxtimes ev}
X \times Y \times X \times Y \xrightarrow{(*)} X \times X \times Y \times Y$$

Note that

dim left-hand side of
$$(*) - \dim right$$
-hand side of $(*) = 1$.

By degree reason, the Gromov-Witten invariant vanishes.

2.4. Projective spaces.

2.4.1. Example. We have

$$\mathbb{P}^{n} = (\mathbb{C}^{n+1} \setminus \{0\}) / \mathbb{C}^{\times}.$$

We know

$$\begin{aligned} H^{2}(\mathbb{P}^{n}) &= \mathbb{Z} \cdot H, \qquad H = [a \text{ hyperplane}] = c_{1}(\mathcal{O}(1)) \\ H^{2}(\mathbb{P}^{n}) &= \mathbb{Z} \cdot \ell, \qquad \ell = [a \text{ straight line}]. \end{aligned}$$

Recall that

$$\mathsf{H}^*(\mathbb{P}^n) = \mathbb{Z}[\mathsf{H}]/\langle \mathsf{H}^n \rangle, \qquad \langle \mathsf{H}^a, \mathsf{H}^b \rangle = \delta_{a+b=n}.$$

Since the tangent bundle T_X can be put into the following short exact sequence

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^n} \longrightarrow \mathcal{O}(1)^{N+1} \longrightarrow \mathfrak{T}_X \longrightarrow 0,$$

we have $c_1(\mathfrak{T}_X) = (n+1)H$. As a result, $q := q^{\ell}$ has degree n + 1.

2.4.2. Approach A. Let us compute when a + b = n + 1

$$\mathrm{H}^{\mathfrak{a}} \ast \mathrm{H}^{\mathfrak{b}} = (??) \mathfrak{q}.$$

That is,

$$\langle \mathsf{H}^{\mathfrak{a}} * \mathsf{H}^{\mathfrak{b}}, \mathsf{H}^{\mathfrak{n}} \rangle = (??).$$

Note that H^k is represented by a codimension k-plane, and in particular, H^n is represented by a point. By the geometric meaning,

$$(??) = \# \left\{ \begin{array}{c} straight lines going through a point P \\ a (n - a)-plane A and a (n - b)-plane B \end{array} \right\}$$

Note that the affine span of P and A intersects a unique point Q with B. Then PQ is the straight line going through P, A and B. So (??) = 1. Thus when a+b = n+1, we have

$$H^{a} * H^{b} = q$$

By degree reason, we can conclude that, for $0 \le a, b \le n$,

$$\mathsf{H}^{\mathfrak{a}}\ast\mathsf{H}^{\mathfrak{b}} = \begin{cases} \mathsf{H}^{\mathfrak{a}+\mathfrak{b}}, & \mathfrak{a}+\mathfrak{b} \leq \mathfrak{n} \\ \mathsf{q}\mathsf{H}^{\mathfrak{a}+\mathfrak{b}-\mathfrak{n}-1}, & \mathfrak{a}+\mathfrak{b} > \mathfrak{n}. \end{cases}$$

So we have the following presentation of quantum cohomology

$$\mathsf{QH}^*(\mathbb{P}^n) = \mathbb{Q}[\mathsf{H},\mathsf{q}]/\langle \mathsf{H}^{n+1} = \mathsf{q}\rangle.$$

$$\underbrace{\mathsf{H}*\cdots*\mathsf{H}}_{n+1}=(??)\mathsf{q}.$$

Recall that

$$\begin{split} \mathrm{Mor}_{\mathrm{deg}=1}(\mathbb{P}^1,\mathbb{P}^N) &= \left\{ \mathbb{P}^1 \xrightarrow{f} \mathbb{P}^N : f_*[\mathbb{P}^1] = \ell \right\} \\ &= \left\{ (s_0,\ldots,s_n) : \begin{array}{c} s_i \in H^0(\mathbb{P}^1,\mathcal{O}(1)) \\ s_0 \cdots s_n \text{ vanishes nowhere } \end{array} \right\} / \mathbb{C}^{\times}. \end{split}$$

Actually, for any $f:\mathbb{P}^1\to\mathbb{P}^n$ of degree 1, the corresponding (s_0,\ldots,s_n) is given by

$$s_i = f^*(x_i),$$
 the i-th coordinate $x_i \in H^0(\mathbb{P}^1, \mathcal{O}(1)) = \mathbb{C}^{n+1}.$

Conversely, f is defined by

$$f(x) = [s_0(x) : \cdots : s_n(x)] \in \mathbb{P}^n, \qquad x \in \mathbb{P}^1.$$

Let $H_i=\{x_i=0\}\subset \mathbb{P}^n$ be the coordinate hyperplane. Let $c_0,\ldots,c_n\in \mathbb{P}^1$ be given points. Then

$$\left\{ \mathbb{P}^1 \xrightarrow{f} \mathbb{P}^N : \begin{array}{c} f_*[\mathbb{P}^1] = \ell \\ f(c_i) \in H_i \end{array} \right\} = \left\{ \begin{array}{c} s_i \in H^0(\mathbb{P}^1, \mathbb{O}(1)) \\ (s_0, \dots, s_n) : \begin{array}{c} s_0 \cdots s_n \text{ vanishes nowhere} \\ s_i(c_i) = 0 \end{array} \right\} / \mathbb{C}^{\times}.$$

Note that

 $s_{\mathfrak{i}}(c_{\mathfrak{i}})=0\iff s_{\mathfrak{i}}\in \operatorname{Hom}_{\mathbb{P}^1}(\mathbb{O}(c_{\mathfrak{i}}),\mathbb{O}(1))\cong\mathbb{C}.$

For a given generic $x \in \mathbb{P}^1$, we see that

$$\left\{\mathbb{P}^1 \xrightarrow{f} \mathbb{P}^n: \begin{array}{c} f_*[\mathbb{P}^1] = \ell \\ f(c_i) \in H_i \end{array}\right\} \xrightarrow{\operatorname{ev}_x} \mathbb{P}^N$$

is an isomorphism. Thus

$$\# \left\{ \mathbb{P}^1 \xrightarrow{f} \mathbb{P}^n : \begin{array}{l} f_*[\mathbb{P}^1] = \ell, \, f(c_i) \in H_i \\ f(x) = a \text{ given point} \end{array} \right\} = 1.$$

This proves

$$\langle \mathsf{H} * \cdots * \mathsf{H}, [\mathsf{pt}] \rangle = \mathsf{q}.$$

That is,

2.5. Full flag variety in \mathbb{C}^3 .

2.5.1. Example. Let us consider the full flag variety

$$X = \mathfrak{Fl}_2 = \big\{ \mathfrak{0} \subset V_1 \subset V_2 \subset \mathbb{C}^3 \big\}.$$

We have a tautological flag bundle

$$0 \subset \mathcal{V}_1 \subset \mathcal{V}_2 \subset \mathcal{O}_X^3.$$

Let us denote

$$\mathbf{x}_1 = -\mathbf{c}_1(\mathcal{V}_1), \qquad \mathbf{x}_2 = -\mathbf{c}_1(\mathcal{V}_2/\mathcal{V}_1), \qquad \mathbf{x}_3 = -\mathbf{c}_1(\mathcal{O}_X^3/\mathcal{V}_2).$$

The usual cohomology is given by

$$H^{*}(\mathcal{F}\ell_{2}) = \mathbb{Z}[x_{1}, x_{2}, x_{3}] \middle/ \left\langle \begin{array}{c} x_{1} + x_{2} + x_{3} = 0 \\ x_{1}x_{2} + x_{1}x_{3} + x_{1}x_{2} = 0 \\ x_{1}x_{2}x_{3} = 0 \end{array} \right\rangle.$$

We have the following dual basis

$$1 \leftrightarrow x_1^2 x_2, \qquad x_1 \leftrightarrow x_1 x_2, \qquad x_1 + x_2 \leftrightarrow x_1^2.$$

Let us consider

$$X_1 = \mathbb{P}^2 = \{ 0 \subset V_1 \subset \mathbb{C}^3 \}, \qquad X_2 = (\mathbb{P}^2)^{\vee} = \{ 0 \subset V_2 \subset \mathbb{C}^3 \}.$$

We have forgetful map $\pi_1 : X \to X_1$ and $\pi_2 : X \to X_2$. Denote

 $\beta_1 = \text{fibre of } \pi_1, \quad q_1 = q^{\beta_1}, \qquad \beta_2 = \text{fibre of } \pi_2, \quad q_2 = q^{\beta_2}.$ The intersection form is

$\langle, angle$	x ₁	x ₂	x3
β_1	1	-1	0
β ₂	0	1	-1

Since

$$c_1(\mathcal{T}_X) = (x_1 - x_2) + (x_2 - x_3) + (x_1 - x_3) = 2x_1 - 2x_3.$$

We have

$$\deg q_1 = \deg q_2 = 2.$$

By degree reason,

$$\begin{split} \lambda_1 * \lambda_2 &= \lambda_1 \lambda_2 + (\text{a number}) q_1 + (\text{a number}) q_2. \\ \lambda_1 * \lambda_2 * \lambda_3 &= \lambda_1 \lambda_2 \lambda_3 + (\text{a divisor}) q_1 + (\text{a divisor}) q_2. \end{split}$$

2.5.2. *Relation A.* We can get the quadratic relation as follows. For two divisors λ_1, λ_2 , by using the divisor equation twice, we have

$$\begin{split} \langle \lambda_1 * \lambda_2, \gamma \rangle &= \langle \lambda_1 \lambda_2, \gamma \rangle + \sum_{\beta \in \mathrm{Eff}(X) \setminus \{0\}} q^\beta \langle \lambda_1, \beta \rangle \int_{\overline{\mathcal{M}}_2(X, \beta)} \mathrm{ev}^*(\lambda_1 \boxtimes \gamma) \\ &= \langle \lambda_1 \lambda_2, \gamma \rangle + \sum_{\beta \in \mathrm{Eff}(X) \setminus \{0\}} q^\beta \langle \lambda_1, \beta \rangle \langle \lambda_2, \beta \rangle \int_{\overline{\mathcal{M}}_1(X, \beta)} \mathrm{ev}^*(\gamma). \end{split}$$

The key observation is, we can identify

By taking $\gamma = [pt]$, we get

$$\lambda_1 * \lambda_2 = \lambda_1 \lambda + \langle \lambda_1, \beta_1 \rangle \langle \lambda_2, \beta_1 \rangle q_1 + \langle \lambda_1, \beta_2 \rangle \langle \lambda_2, \beta_2 \rangle q_2.$$

We can now compute

*	x ₁	x ₂	x ₃
x ₁	$x_1^2 + q_1$	$x_1x_2 - q_1$	x ₁ x ₃
x ₂	$x_1x_2 - q_1$	$x_2^2 + q_1 + q_2$	$x_2x_3 - q_2$
x ₃	x ₁ x ₃	$x_2x_3 - q_2$	$x_3^2 + q_2$

So we can conclude that

$$x_1x_2 + x_2x_3 + x_3x_1 + q_1 + q_2 = 0.$$

2.5.3. Relation B. We further have

$$\overline{\mathfrak{M}}_2(X,\beta_1) = X \times_{X_1} X, \qquad \overline{\mathfrak{M}}_2(X,\beta_2) = X \times_{X_2} X.$$

We have

It is well-known that the composition

$$[H^{*}(X) \xrightarrow{\text{pull}} H^{*}(X \times_{X_{i}} X) \xrightarrow{\text{push}} H^{*-2}(X)]$$

= $[H^{*}(X) \xrightarrow{\text{push}} H^{*-2}(X_{i}) \xrightarrow{\text{pull}} H^{*}(X)]$
= ϑ_{i} the BGG Demazure operator.

The BGG Demazure operator acts as

$$\vartheta_1 \mathbf{f} = \frac{\mathbf{f} - \mathbf{f}|_{\mathbf{x}_1 \leftrightarrow \mathbf{x}_2}}{\mathbf{x}_1 - \mathbf{x}_2}, \qquad \vartheta_2 \mathbf{f} = \frac{\mathbf{f} - \mathbf{f}|_{\mathbf{x}_2 \leftrightarrow \mathbf{x}_3}}{\mathbf{x}_2 - \mathbf{x}_3}$$

For a divisor λ , by divisor relation,

 $\lambda*\gamma=\lambda\gamma+q_1\langle\lambda,\beta_1\rangle\vartheta_1(\gamma)+q_2\langle\lambda,\beta_2\rangle\vartheta_2(\gamma)+(\text{other quantum terms}).$

But by degree reason, there will be no other quantum terms. As a result,

$$\begin{aligned} x_1 * (x_2 * x_3) &= x_2 * (x_1 * x_3) = x_2 * (x_1 x_3) \\ &= x_1 x_2 x_3 + q_1 \langle x_2, \beta_1 \rangle \partial_1 (x_1 x_3) + q_2 \langle x_2, \beta_2 \rangle \partial_2 (x_1 x_3) \\ &= 0 - q_1 x_3 - q_2 x_1. \end{aligned}$$

This proves

$$x_1 * x_2 * x_3 + q_1 x_3 + q_2 x_1 = 0.$$

In summary, the relations are given by the coefficients of characteristic polynomial of

2.6. Grassmannian in \mathbb{C}^4 .

2.6.1. Example. Let us consider

$$X = \operatorname{Gr}(2,4) = \{ V \subset \mathbb{C}^4 : \dim V = 2 \}.$$

We have a tautological exact sequence

$$0 \longrightarrow \mathcal{V} \longrightarrow \mathcal{O}_{\mathbf{X}}^{4} \longrightarrow Q \longrightarrow 0.$$

Let us denote

$$\mathsf{D} = \mathsf{e}_1 = \mathsf{h}_1 = -\mathsf{c}_1(\mathfrak{V}) = \mathsf{c}_1(\mathfrak{Q}), \qquad \mathsf{e}_2 = \mathsf{c}_2(\mathfrak{V}), \qquad \mathsf{h}_2 = \mathsf{c}_2(\mathfrak{Q}).$$

The relation is

$$(1 - e_1y + e_2y^2)(1 + h_1y + h_2y^2) = 1$$
 (as a polynomial in y).

We have $\mathfrak{T}_X = \mathcal{H}om(\mathcal{V}, \Omega)$, so $c_1(\mathfrak{T}_X) = nD$. Let ℓ be the primitive generator of $\mathrm{Eff}(X)$, we denote $q = q^{\ell}$. We have $\deg q = n$. Now let us consider

We can identify

 $Y = \overline{\mathcal{M}}_0(X, \ell), \qquad \mathcal{F}\ell_4 = \overline{\mathcal{M}}_1(X, \ell).$

2.6.2. Relation. By degree reason, we have

 $e_2 * h_2 = e_2 h_2 + (a number)q.$

Note that

the number =
$$\int_{\overline{\mathcal{M}}_3(\mathbf{X},\ell)} \mathrm{ev}^*(e_2 \boxtimes h_2 \boxtimes [\mathsf{pt}]).$$

We can identify

 $\overline{\mathcal{M}}_3(X, \ell) = \mathcal{F}\ell_4 \times_Y \mathcal{F}\ell_4 \times_Y \mathcal{F}\ell_4 \,.$

We have

$$\begin{split} \mathsf{H}^*(\overline{\mathcal{M}}_3(X, \ell)) &= \mathsf{H}^*(\mathcal{F}\ell_4 \times_Y \mathcal{F}\ell_4 \times_Y \mathcal{F}\ell_4) \\ &= \mathsf{H}^*(\mathcal{F}\ell_4) \otimes_{\mathsf{H}^*(Y)} \mathsf{H}^*(\mathcal{F}\ell_4) \otimes_{\mathsf{H}^*(Y)} \mathsf{H}^*(\mathcal{F}\ell_4) \\ \mathsf{H}^*(Y) &= \text{invariant algebra of } \mathsf{H}^*(\mathcal{F}\ell_4) \text{ under } x_2 \leftrightarrow x_3. \end{split}$$

Let us denote

$$x_i = x_i \otimes 1 \otimes 1, \qquad y_i = 1 \otimes x_i \otimes 1, \qquad z_i = 1 \otimes 1 \otimes x_i.$$

Note that

$$x_1 = y_1 = z_1, \qquad x_4 = y_4 = z_4.$$

We can represent

$$e_2 = x_1 x_2,$$
 $h_2 = x_1^2 + x_1 x_2 + x_2^2,$ $[pt] = x_1^2 x_2^2.$

As a result,

$$ev^*(\cdots) = (x_1x_2)(x_1^2 + x_1y_2 + y_2^2)(x_1^2z_2^2).$$

The pushforward is given by

$$\partial_2^{\mathbf{x}}\partial_2^{\mathbf{y}}\partial_2^{\mathbf{z}}, \qquad \partial_2^{\mathbf{f}} = \frac{\mathbf{f} - \mathbf{f}|_{\mathbf{x}_2 \leftrightarrow \mathbf{x}_3}}{\mathbf{x}_2 - \mathbf{x}_3}, \text{ etc.}$$

So

$$\begin{aligned} \mathrm{ft}_*(\mathrm{ev}^*(\cdots)) &= (x_1)(x_1+y_2+y_3)(x_1^2(z_2+z_3)) \\ &= (x_1)(x_1+x_2+x_3)(x_1^2(x_2+x_3)) = [\mathsf{pt}]. \end{aligned}$$

As a result,

 $e_2 * h_2 = q.$

So the relation is

$$(1 - e_1y + e_2y^2)(1 + h_1y + h_2y^2) = 1 + q.$$

3. FUNDAMENTAL SOLUTION

The purpose of this section is to establish the theory of fundamental solution of quantum differential equations.

3.1. Psi class.

3.1.1. Universal curve. We could view the forgetful morphism

$$\operatorname{ft}_{n+1}: \overline{\operatorname{\mathcal{M}}}_{n+1}(X,\beta) \longrightarrow \overline{\operatorname{\mathcal{M}}}_n(X,\beta)$$

the universal curve. That is, the fibre of a stable map $(f, C, p_1, \ldots, p_n) \in \overline{\mathcal{M}}_n(X, \beta)$ is C itself. We also have universal sections σ_i $(1 \le i \le n)$

$$\sigma_{\mathfrak{i}}:\overline{\mathfrak{M}}_{\mathfrak{n}}(X,\beta)\longrightarrow\overline{\mathfrak{M}}_{\mathfrak{n}+1}(X,\beta)$$

by attaching a

 $\mathbb{P}^1 \ni p_{n+1}$, (new p_i), (attaching point)

on the i-th marked point.

3.1.2. Universal cotangent line. We define the universal cotangent line to be

 $\mathbb{L}_i = \sigma_i^*(\text{relative dualizing sheaf of } \operatorname{ft}_{n+1})$

a line bundle over $\overline{\mathcal{M}}_n(X,\beta)$. In particular, at each point $(f, C, p_1, \dots, p_n) \in \overline{\mathcal{M}}_n(X,\beta)$, the fibre of \mathbb{L}_i is the cotangent line at $p_i \in C$. The *psi-class* is defined to be

 $\psi_i = c_1(\mathbb{L}_i) \in H^2(\overline{\mathcal{M}}_n(X,\beta),\mathbb{Q}).$

3.1.3. *Local computation*. The following computation is very important in the computation of psi-classes. Consider the family of curves with 1 marked point

$$(1,h) \in C_h = \{(x,y) : xy = h\} \subset \mathbb{C}^2, \qquad h \in \mathbb{C}.$$

Then we have

$$\begin{split} \upsilon: \mathbb{C}^2 &\longrightarrow \mathbb{C}, \qquad (x,y) \longmapsto xy; \qquad & (\text{universal family}) \\ \sigma: \mathbb{C} &\longrightarrow \mathbb{C}^2, \qquad h \longmapsto (1,h). \qquad & (\text{universal section}) \end{split}$$

We denote \mathbb{L} the universal cotangent line. Note that the 2-nd projection defines a morphism $\mathbb{L}^* \longrightarrow \mathfrak{T}_{\mathbb{C}}$, i.e.

tangent line of C_h at $(1, h) \xrightarrow{pr_2}$ tangent line of \mathbb{C} at h.

Note that this morphism has a zero at h = 0. So we have

$$\mathbb{L}\otimes \mathfrak{T}_{\mathbb{C}}\simeq \mathfrak{O}(\{0\}), \qquad i.e. \qquad \mathbb{L}\simeq \Omega_{\mathbb{C}}(\{0\}).$$

The principle is

n point
1 2

3.1.4. *Example.* Let $C = (f, \mathbb{P}^1, p_1, \dots, p_n)$ be a generic stable map on $\overline{\mathcal{M}}_n(X, \beta)$. We know $\mathbb{P}^1 \simeq \mathrm{ft}_{n+1}^{-1}(C)$. Let us compute the restriction of \mathbb{L}_i to \mathbb{P}^1 . The first guess is

$$\mathbb{L}_{\mathbf{i}}|_{\mathbb{P}^1} \quad \text{``=''} \quad \Omega_{\mathbb{P}^1} = \mathbb{O}(-2).$$

But this is not true. At the point $p_i \in \mathbb{P}^1$, the corresponding curve is $\sigma_i(C) \in \operatorname{ft}_{n+1}^{-1}(C)$, whose i-th marked point is not p_i . From the local computation above, we actually have

$$\mathbb{L}_{\mathbf{i}}|_{\mathbb{P}^1} = \Omega_{\mathbb{P}^1}(\mathbf{p}_1 + \dots + \mathbf{p}_n) = \mathcal{O}(n-2).$$

3.1.5. Example. Recall the forgetful map

$$\operatorname{ft}_{n+1}: \mathcal{M}_{n+1}(X,\beta) \longrightarrow \mathcal{M}_n(X,\beta).$$

We shall compare psi classes for different number of marked points. The first guess is

 $\operatorname{ft}_{n+1}^*\psi_i\quad \ \ \ \ \ \ \psi_i.$

But this is not true. When forgetting the (n + 1)-th marked point, we might need collapsion to get a stable map. The local computation shows

$$\psi_{i} - \operatorname{ft}_{n+1}^{*} \psi_{i} = \left[\text{image of } \sigma_{i} : \overline{\mathcal{M}}_{n}(X, \beta) \to \overline{\mathcal{M}}_{n+1}(X, \beta) \right]$$

3.1.6. Example. Consider the forgetful map

$$\operatorname{ft}_X: \overline{\mathcal{M}}_3(X,\beta) \longrightarrow \overline{\mathcal{M}}_3.$$

We shall compare psi classes between them. The first guess is

$$\operatorname{ft}_X^*\psi_i\quad ``=''\quad \psi_i=0.$$

But this is not true. When forgetting the underlying space X, we might need collapsion to get a stable map. The local computation shows

$$\psi_{3} = \psi_{3} - \operatorname{ft}_{X}^{*} \psi_{3} = \sum_{\beta = \beta_{1} + \beta_{2}} \left[\overline{\mathcal{M}}_{3}(X, \beta_{1}) \underset{\Delta_{X}}{\times} \overline{\mathcal{M}}_{2}(X, \beta_{2}) \right].$$

3.2. Fundamental solution.

3.2.1. *GW invariant twisted by psi class.* For $\gamma_1, \gamma_2, \gamma_3 \in H^*(X)$, let us consider a *gravitational correlator*

$$\langle \gamma_1, \gamma_2, \tau_{\alpha} \gamma_3 \rangle_{\beta} := \int_{\overline{\mathcal{M}}_3(X,\beta)} \mathrm{ev}^*(\gamma_1 \boxtimes \gamma_2 \boxtimes \gamma_3) \psi_3^{\alpha}.$$

Let us pick a basis $\{\sigma_w\} \subset H^*(X)$ with dual basis $\{\sigma^w\}$.

3.2.2. *Appraoch A*. Let us apply Example 3.1.6. When $a \ge 1$,

$$\begin{split} & \int_{\overline{\mathcal{M}}_{3}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{2} \boxtimes \gamma_{3})\psi_{3}^{\alpha} \\ &= \sum_{\beta=\beta_{1}+\beta_{2}} \int_{\overline{\mathcal{M}}_{3}(X,\beta)} [\overline{\mathcal{M}}_{3}(X,\beta_{1}) \times_{\Delta_{X}} \overline{\mathcal{M}}_{2}(X,\beta_{2})] \cdot \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{2} \boxtimes \gamma_{3})\psi_{3}^{\alpha-1} \\ &= \sum_{\beta=\beta_{1}+\beta_{2}} \int_{\overline{\mathcal{M}}_{3}(X,\beta_{1}) \times_{\Delta_{X}} \overline{\mathcal{M}}_{2}(X,\beta_{2})} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{2} \boxtimes \gamma_{3})(1 \boxtimes \psi_{2})^{\alpha-1} \\ &= \sum_{\beta=\beta_{1}+\beta_{2}} \int_{\overline{\mathcal{M}}_{3}(X,\beta_{1}) \times \overline{\mathcal{M}}_{2}(X,\beta_{2})} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{2} \boxtimes \Delta_{X} \boxtimes \gamma_{3})(1 \boxtimes \psi_{2})^{\alpha-1} \\ &= \sum_{\beta=\beta_{1}+\beta_{2}} \sum_{w} \int_{\overline{\mathcal{M}}_{3}(X) \times \overline{\mathcal{M}}_{2}(X)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{2} \boxtimes \sigma_{w} \boxtimes \sigma^{w} \boxtimes \gamma_{3})\psi_{3}^{\alpha-1} \\ &= \sum_{\beta=\beta_{1}+\beta_{2}} \sum_{w} \int_{\overline{\mathcal{M}}_{3}(X,\beta_{1})} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{2} \boxtimes \sigma_{w}) \int_{\overline{\mathcal{M}}_{2}(X,\beta_{2})} \operatorname{ev}^{*}(\sigma^{w} \boxtimes \gamma_{3})\psi_{2}^{\alpha-1} \\ &= \sum_{\beta=\beta_{1}+\beta_{2}} \sum_{w} \langle \gamma_{1}, \gamma_{2}, \sigma_{w} \rangle_{\beta_{1}} \int_{\overline{\mathcal{M}}_{2}(X,\beta_{2})} \operatorname{ev}^{*}(\sigma^{w} \boxtimes \gamma_{3})\psi_{2}^{\alpha-1} \end{split}$$

Thus

$$\begin{split} &\sum_{\beta \in \operatorname{Eff}(X)} q^{\beta} \int_{\overline{\mathcal{M}}_{3}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{2} \boxtimes \gamma_{3}) \psi_{3}^{\alpha} \\ &= \sum_{w} q^{\beta_{1}} \langle \gamma_{1}, \gamma_{2}, \sigma_{w} \rangle_{\beta_{1}} \sum_{\beta_{2}} q^{\beta_{2}} \int_{\overline{\mathcal{M}}_{2}(X,\beta_{2})} \operatorname{ev}^{*}(\sigma^{w} \boxtimes \gamma_{3}) \psi_{2}^{\alpha-1} \\ &= \sum_{\beta} q^{\beta} \int_{\overline{\mathcal{M}}_{2}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} * \gamma_{2} \boxtimes \gamma_{3}) \psi_{2}^{\alpha-1} \end{split}$$

3.2.3. Approach B. Let us apply Example 3.1.5. Let us denote $D = \left[\text{image of } \sigma_2 : \overline{\mathcal{M}}_2(X,\beta) \to \overline{\mathcal{M}}_3(X,\beta) \right].$

Note that $\sigma_2^* \mathbb{L}_2$ is trivial, i.e. $D \cdot \psi_2 = 0$. When $a \ge 1$,

$$\begin{split} \psi_2^{\mathfrak{a}} &= (\mathrm{ft}_3^*\,\psi_2 + D)\psi_2^{\mathfrak{a}-1} = \mathrm{ft}_3^*\,\psi_2\cdot\psi_2^{\mathfrak{a}-1} = \cdots = \mathrm{ft}_3^*\,\psi_2^{\mathfrak{a}} + D\cdot\mathrm{ft}_3^*\,\psi_2^{\mathfrak{a}-1}. \end{split}$$
 Let us assume $\gamma_2 = \lambda$ is a divisor. When $\beta > 0$,

$$\begin{split} & \int_{\overline{\mathcal{M}}_{3}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{2} \boxtimes \gamma_{3})\psi_{3}^{\alpha} \\ &= \int_{\overline{\mathcal{M}}_{3}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{3} \boxtimes \lambda)\psi_{2}^{\alpha} \\ &= \int_{\overline{\mathcal{M}}_{3}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{3} \boxtimes \lambda) \left(\operatorname{ft}_{3}^{*}\psi_{2}^{\alpha} + \operatorname{D} \cdot \operatorname{ft}_{3}^{*}\psi_{2}^{\alpha-1}\right) \\ &= \int_{\overline{\mathcal{M}}_{3}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{3} \boxtimes \lambda) \operatorname{ft}_{3}^{*}\psi_{2}^{\alpha} + \int_{\overline{\mathcal{M}}_{3}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{3} \boxtimes \lambda) \operatorname{D} \cdot \operatorname{ft}_{3}^{*}\psi_{2}^{\alpha-1} \\ &= \int_{\overline{\mathcal{M}}_{3}(X,\beta)} \operatorname{ft}_{3}^{*} \left(\operatorname{ev}(\gamma_{1} \boxtimes \gamma_{3})\psi_{2}^{\alpha}\right) \operatorname{ev}_{3}^{*}(\lambda) + \int_{\overline{\mathcal{M}}_{2}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{3})\sigma_{2}^{*}(\operatorname{ev}_{3}^{*}\lambda)\psi_{2}^{\alpha-1} \\ &= \langle \lambda, \beta \rangle \int_{\overline{\mathcal{M}}_{2}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{3})\psi_{2}^{\alpha} + \int_{\overline{\mathcal{M}}_{2}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{3} \cdot \lambda)\psi_{2}^{\alpha-1} \\ &= \int_{\overline{\mathcal{M}}_{2}(X,\beta)} \langle \lambda, \beta \rangle \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{3})\psi_{2}^{\alpha} + \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{3} \cdot \lambda)\psi_{2}^{\alpha-1} \end{split}$$

Here we use the facts

$$\operatorname{ft}_{3*}\operatorname{ev}_3(\lambda)=\langle\lambda,\beta\rangle,\qquad\operatorname{ev}_3\circ\sigma_3=\operatorname{ev}_2,\qquad\operatorname{ft}_3\sigma_2=\operatorname{id}.$$

3.2.4. *Summary*. By equalizing the results by two approaches, we get $(a \ge 1)$

$$\begin{split} &\sum_{\beta \in \operatorname{Eff}(X)} q^{\beta} \int_{\overline{\mathcal{M}}_{3}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \lambda \boxtimes \gamma_{3}) \psi_{3}^{\alpha} \\ &= \sum_{\beta \in \operatorname{Eff}(X)} q^{\beta} \int_{\overline{\mathcal{M}}_{2}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} * \lambda \boxtimes \gamma_{3}) \psi_{2}^{\alpha-1} \\ &= \sum_{\beta \in \operatorname{Eff}(X) \setminus \{0\}} q^{\beta} \int_{\overline{\mathcal{M}}_{2}(X,\beta)} \langle \lambda, \beta \rangle \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{3}) \psi_{2}^{\alpha} + \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{3} \cdot \lambda) \psi_{2}^{\alpha-1}. \end{split}$$

When $\beta = 0$, $\overline{\mathcal{M}}_2(X, \beta) = \emptyset$, so the integral is understood as 0. Recall

$$\begin{split} &\sum_{\beta \in \operatorname{Eff}(X)} q^{\beta} \int_{\overline{\mathcal{M}}_{3}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \lambda \boxtimes \gamma_{3}) \\ &= \langle \gamma_{1}, \lambda \cdot \gamma_{3} \rangle + \sum_{\beta \in \operatorname{Eff}(X) \setminus 0} q^{\beta} \langle \lambda, \beta \rangle \int_{\overline{\mathcal{M}}_{2}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{3}) \\ &= \langle \gamma_{1} * \lambda, \gamma_{3} \rangle \end{split}$$

For any polynomial (or a power series) $T(\psi),$ we denote $T^{\downarrow}(\psi)=\frac{T(\psi)-T(0)}{\psi}.$ We have

$$\begin{split} &\sum_{\beta \in \operatorname{Eff}(X)} q^{\beta} \int_{\overline{\mathcal{M}}_{3}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} \boxtimes \lambda \boxtimes \gamma_{3}) T(\psi_{3}) \\ &= \langle \gamma_{1} * \lambda, \gamma_{3} \rangle T(0) + \sum_{\beta \in \operatorname{Eff}(X)} q^{\beta} \int_{\overline{\mathcal{M}}_{2}(X,\beta)} \operatorname{ev}^{*}(\gamma_{1} * \lambda \boxtimes \gamma_{3}) T^{\downarrow}(\psi_{2}) \\ &= \langle \gamma_{1}, \lambda \cdot \gamma_{3} \rangle T(0) + \sum_{\beta \in \operatorname{Eff}(X) \setminus 0} q^{\beta} \int_{\overline{\mathcal{M}}_{2}(X,\beta)} \langle \lambda, \beta \rangle \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{3}) T(\psi_{2}) + \operatorname{ev}^{*}(\gamma_{1} \boxtimes \gamma_{3} \cdot \lambda) T^{\downarrow}(\varphi_{2}) \end{split}$$

- 3.2.5. Notations. Let us introduce more notations
 - Let us take a formal variable z. Now let us consider

$$\mathsf{T}(\psi) = \frac{1}{z - \psi} = \frac{1/z}{1 - \psi/z} = \frac{1}{z} + \frac{\psi}{z^2} + \frac{\psi^2}{z^3} + \cdots.$$

Then

$$\mathsf{T}^{\downarrow}(\psi) = \frac{1}{\psi} \left(\frac{1}{z - \psi} - \frac{1}{z} \right) = \frac{1}{z(z - \psi)} = \frac{1}{z} \mathsf{T}(\psi).$$

• For any divisor λ denote ∂_{λ} the differential operator on $QH^*(X)$ with

$$\partial_{\lambda}q^{\beta} = \langle \lambda, \beta \rangle q^{\beta}$$

Here, a differential operator is an H*(X)-linear operators with Leibniz rule.
Let us denote p ln q the unique function with

$$\partial_{\lambda}(p \ln q) = \lambda.$$

It can be constructed by $p \ln q = \sum p_i \ln q^{\beta_i}$ for $\{\beta_i\} \subset Eff(X) \subset H_2(X)$ a basis with $\{p_i\} \subset H^2(X)$ its dual basis. In particular,

$$\partial_{\lambda}(e^{p\ln q/z}) = \frac{1}{z}e^{p\ln q/z}\lambda.$$

3.2.6. *Fundamental solution*. Let us denote a functional S as follows. For $\gamma, \gamma' \in H^*(X)$,

$$S(\gamma,\gamma') = \langle \gamma, e^{p \ln q/z} \gamma' \rangle + \sum_{\beta \in \operatorname{Eff}(X) \setminus \{0\}} q^{\beta} \int_{\overline{\mathcal{M}}_{2}(X,\beta)} \operatorname{ev}^{*}(\gamma \boxtimes e^{p \ln q/z} \gamma') \frac{1}{z - \psi_{2}}$$

Then we can write down the equation

$$\frac{1}{z}\mathsf{S}(\gamma*\lambda,\gamma')=\mathfrak{d}_{\lambda}\mathsf{S}(\gamma,\gamma').$$

In particular, let us denote an operator S such that

$$\langle \gamma, S(\gamma') \rangle = S(\gamma, \gamma')$$
 i.e. $S(\gamma') = \sum_{w} \sigma_{w} \cdot S(\sigma^{w}, \gamma')$.

In particular,

$$\begin{split} & \mathsf{S}(\gamma*\lambda,\gamma') = \langle \gamma*\lambda,\mathsf{S}(\gamma')\rangle = \langle \gamma,\lambda*\mathsf{S}(\gamma')\rangle \\ & \mathfrak{d}_{\lambda}\mathsf{S}(\gamma,\gamma') = \mathfrak{d}_{\lambda}\langle \gamma,\mathsf{S}(\gamma')\rangle = \langle \gamma,\mathfrak{d}_{\lambda}\mathsf{S}(\gamma')\rangle. \end{split}$$

Thus for any $\gamma' \in H^*(X)$, we have

$$\partial_{\lambda}S(\gamma') - \frac{1}{z}\lambda * S(\gamma') = 0.$$

In particular, $S(\gamma')$ solves the quantum differential equation (discussed later). We call the operator S the *fundamental solution*.

3.2.7. Remark. Since

$$\lim_{z\to\infty} \mathsf{S}(\gamma') = \gamma'$$

the operator S is nondegenerate.

3.3. J-function.

3.3.1. J-function. Let us define J to be the unique class such that

$$\langle J, \gamma' \rangle = S(1, \gamma') = \langle 1, S(\gamma') \rangle, \quad \text{i.e.} \quad J = \sum_{w} \sigma_{w} \cdot S(1, \sigma^{w}).$$

If we think S as a matrix, then each column of S is a solution of quantum differential equation. The J-function is by definition the row of S corresponding to $1 \in H^*(X)$.

3.3.2. Simplification. By definition

$$\begin{split} J &= \sum_{w} \sigma_{w} \cdot S(1, \sigma^{w}) \\ &= \sum_{w} \sigma_{w} \left(\langle 1, e^{p \ln q/z} \sigma^{w} \rangle + \sum_{\beta \in \mathrm{Eff}(X) \setminus \{0\}} q^{\beta} \int_{\overline{\mathcal{M}}_{2}(X, \beta)} \mathrm{ev}^{*} (1 \boxtimes e^{p \ln q/z} \sigma^{w}) \frac{1}{z - \psi_{2}} \right). \end{split}$$

More general, for $\beta > 0$, let us denote

 $D = [\text{image of } s_1 : \overline{\mathcal{M}}_1(X, \beta) \to \overline{\mathcal{M}}_2(X, \beta)].$

Similar as what we did in Approach B 3.2.3, we have

$$\begin{split} &\int_{\overline{\mathcal{M}}_{2}(X,\beta)} \operatorname{ev}^{*}(1\boxtimes\gamma)\psi_{2}^{\mathfrak{a}} \\ &= \int_{\overline{\mathcal{M}}_{2}(X,\beta)} \operatorname{ev}^{*}(\gamma\boxtimes1)\psi_{1}^{\mathfrak{a}} \\ &= \int_{\overline{\mathcal{M}}_{2}(X,\beta)} \operatorname{ev}^{*}(\gamma\boxtimes1)(\operatorname{ft}_{2}^{*}\psi_{1}^{\mathfrak{a}} + D\cdot\operatorname{ft}_{2}^{*}\psi_{1}^{\mathfrak{a}-1}) \\ &= \int_{\overline{\mathcal{M}}_{2}(X,\beta)} \operatorname{ft}_{2}^{*}(\operatorname{ev}^{*}(\gamma)\psi_{1}^{\mathfrak{a}}) + \int_{\overline{\mathcal{M}}_{1}(X,\beta)} \operatorname{ev}^{*}(\gamma)\psi_{1}^{\mathfrak{a}-1} \\ &= \mathfrak{0} + \int_{\overline{\mathcal{M}}_{1}(X,\beta)} \operatorname{ev}^{*}(\gamma)\psi_{1}^{\mathfrak{a}-1}. \end{split}$$

Let us denote $\psi = \psi_1 \in H^2(\overline{\mathcal{M}}_1(X,\beta))$. So

$$\begin{split} J &= \sum_{w} \sigma_{w} \langle 1, e^{p \ln q/z} \sigma^{w} \rangle + \sum_{\beta \in \mathrm{Eff}(X) \setminus \{0\}} q^{\beta} \sum_{w} \sigma_{w} \int_{\overline{\mathcal{M}}_{1}(X,\beta)} \mathrm{ev}^{*} (e^{p \ln q} \sigma^{w}) \frac{1}{z(z-\psi)} \\ &= e^{p \ln q/z} + e^{p \ln q/z} \sum_{\beta \in \mathrm{Eff}(X) \setminus \{0\}} q^{\beta} \operatorname{ev}_{*} \frac{1}{z(z-\psi)} \\ &= e^{p \ln q/z} \left(1 + \sum_{\beta \in \mathrm{Eff}(X) \setminus \{0\}} q^{\beta} \operatorname{ev}_{*} \frac{1}{z(z-\psi)} \right). \end{split}$$

3.4. **Relations.** Let $D = f(z\partial_{\lambda}, q)$ be a differential operator with f a noncommutative polynomial. If

DJ = 0

then $\lim_{z\to 0} f(\lambda, q) = 0$ in $QH^*(X)$.

Proof. Note that

$$z\partial_{\lambda}S(\gamma') = \lambda * S(\gamma').$$

When f takes form of

 \sum (a function in q) \cdot (differential operators),

we have

$$DS(\gamma') = f(\lambda *, q)S(\gamma').$$

Thus

$$0 = \langle DJ, \gamma' \rangle = D \langle J, S(\gamma') \rangle = D \langle 1, S(\gamma') \rangle$$

= $\langle 1, DS(\gamma') \rangle = \langle 1, f(\lambda^*, q)S(\gamma') \rangle = \langle f(\lambda^*, q), S(\gamma') \rangle.$

Since $S(\gamma')$ is non-degenerate, $f(\lambda, q) = 0$ in $QH^*(X)$.

The general case follows from the fact that

$$[z\partial_{\lambda},$$
 multiplication by $q^{\beta}] = z \cdot$ multiplication by $\partial_{\lambda}q^{\beta}$,

 \square

which is killed by $\lim_{z\to 0}$.

4. QUASI MAPS

4.1. Normal bundle in terms of Psi class.

4.1.1. Local computation. Recall the family of curves

$$C_h = \{(x, y) : xy = h\} \subset \mathbb{C}^2, \qquad h \in \mathbb{C}.$$

The ideal for $C_0 = (x-axis) \cup (y-axis)$ is

$$\mathfrak{m} = \langle \mathbf{x}\mathbf{y} \rangle \subset \mathsf{R} := \mathbb{C}[\mathbf{x},\mathbf{y}].$$

So the normal bundle of C_0 is

$$\mathfrak{m}/\mathfrak{m}^2 = xyR/\mathfrak{m} = \mathfrak{O}_{C_0}(x) \otimes \mathfrak{O}_{C_0}(y).$$

Thus we can naturally identify the normal bundle of the singleton $C_0 \in \{C_h\}$ with

(tangent line of 0 along x-axis) \otimes (tangent line of 0 along y-axis).

Say, by the following diagram

The principle is

smoothing of the nodal point = tensor product of two tangent directions

4.1.2. Example. Let us consider the morphism

 $\overline{\mathfrak{M}}_{n+1}(X,\beta_1) \times_X \overline{\mathfrak{M}}_{m+1}(X,\beta_2) \longrightarrow \overline{\mathfrak{M}}_{m+n}(X,\beta_1+\beta_2)$

by gluing the first marked points. Then the normal bundle of this morphism is the restriction of $(\mathbb{L}_1 \boxtimes \mathbb{L}_1)^*$.

4.1.3. Example. Let us consider the morphism

 $\overline{\mathfrak{M}}_{n+1}(X,\beta_1)\times\overline{\mathfrak{M}}_{m+1}(Y,\beta_2)\longrightarrow\overline{\mathfrak{M}}_{m+n}(X\times Y,(\beta_1,\beta_2))$

by gluing the first marked points. Then the normal bundle is the restriction of $(\mathbb{L}_1 \boxtimes \mathbb{L}_1)^*$.

4.1.4. Example. Let us consider

 $\overline{\mathfrak{M}}_{n}(X,\beta) \times \mathbb{P}^{1} \longrightarrow \overline{\mathfrak{M}}_{n-1}(X \times \mathbb{P}^{1},(\beta,1))$

by sending (C, x) to the curve obtained by first putting C vertically at the point $x \in \mathbb{P}^1$ and then gluing a \mathbb{P}^1 horizontally at the first marked point. Then the normal bundle is $\mathbb{L}_1^* \boxtimes \mathfrak{T}_{\mathbb{P}^1}$.

4.2. Quasi-maps.

4.2.1. *Remark.* Let \mathcal{L} and \mathcal{V} be two vector bundles. For a sheaf morphism $s : \mathcal{L} \to \mathcal{V}$, we have (by Nakayama lemma)

s is surjective \iff s is fibrewise surjective.

While we only have

s is injective \leftarrow s is fibrewise injective.

Actually, when \mathcal{L} is a line bundle,

s is injective \iff s is nonzero (on each connected component).

4.2.2. Quasi maps for projective space. Recall that

$$\operatorname{Mor}(C, \mathbb{P}^{N}) = \bigcup_{\mathcal{L} \in \operatorname{Pic}(C)} \operatorname{Surj}(\mathbb{O}_{C}^{N+1} \to \mathcal{L})/\mathbb{C}^{*}.$$

By taking dual,

$$\operatorname{Surj}(\mathbb{O}_{\mathsf{C}}^{\mathsf{N}+1} \to \mathcal{L})/\mathbb{C}^* \hookrightarrow \operatorname{Inj}(\mathcal{L}^{\vee} \to \mathbb{O}_{\mathsf{C}}^{\mathsf{N}+1})/\mathbb{C}^* = \mathbb{P}(\mathsf{H}^0(\mathsf{C}, \mathcal{L})^{\mathsf{N}+1}).$$

We define quasi-map by

$$\operatorname{QM}(C, \mathbb{P}^{N}) = \bigcup_{\mathcal{L}} \mathbb{P}(H^{0}(C, \mathcal{L})^{N+1}).$$

When $C = \mathbb{P}^1$, we define

$$\operatorname{QM}(\mathbb{P}^N) = \bigcup_{d \geq 0} \operatorname{QM}(\mathbb{P}^N, d) = \bigcup_{d \geq 0} \mathbb{P}(\mathbb{C}[x]_{\deg \leq d}^{N+1}).$$

It is a compactification of the space of $\mathbb{P}^1 \to \mathbb{P}^N$ of degree d.

4.2.3. *Quasi maps for general* X. Assume we can embed

$$X \longrightarrow \mathbb{P}^{N_1} \times \cdots \times \mathbb{P}^{N_m}$$

using primitive nef divisors D_1, \ldots, D_m . For $\beta \in Eff(X)$, denote

$$\beta_1 = \langle D_1, \beta \rangle, \dots, \beta_m = \langle D_m, \beta \rangle.$$

We can view

$$\begin{split} \operatorname{Mor}_{\operatorname{deg}=\beta}(\mathbb{P}^{1},X) &\subset \operatorname{Mor}_{\operatorname{deg}=\beta}(\mathbb{P}^{1},\mathbb{P}^{N_{1}}\times\cdots\mathbb{P}^{N_{m}}) \\ &= \operatorname{Mor}_{\operatorname{deg}=\beta_{1}}(\mathbb{P}^{1},\mathbb{P}^{N_{1}})\times\cdots\times\operatorname{Mor}_{\operatorname{deg}=\beta_{m}}(\mathbb{P}^{1},\mathbb{P}^{N_{m}}) \\ &\subset \operatorname{QM}(\mathbb{P}^{N_{1}},\beta_{1})\times\cdots\times\operatorname{QM}(\mathbb{P}^{N_{m}},\beta_{m}). \end{split}$$

We define

$$\begin{split} &\operatorname{QM}(X,\beta) = \text{closure of } \operatorname{Mor}_{\deg=\beta}(\mathbb{P}^1,X) \text{ in } \operatorname{QM}(\mathbb{P}^{N_1},\beta_1) \times \cdots \times \operatorname{QM}(\mathbb{P}^{N_m},\beta_m) \\ &\text{ and } \operatorname{QM}(X) = \bigcup_{\beta \in \operatorname{Eff}(X)} \operatorname{QM}(X,\beta). \end{split}$$

4.2.4. *Remark.* We can think as follows. For sections $s_0,\ldots,s_N\in H^0(C,\mathcal{L}),$ we define a rational map

$$C \longrightarrow \mathbb{P}^N$$
, $x \mapsto [s_0(x) : \cdots : s_N(x)]$.

This defines a morphism when s_0, \ldots, s_N has no common zeros. In general, the closure of C defines a morphism $C \to \mathbb{P}^N$ but with class

 $\mathcal{L}(-\text{common zeros}).$

We call those common zeros by marked points (with multiplicity). So we have

$$\operatorname{QM}(\mathbb{P}^n, d) = \bigsqcup_{0 \le d' \le d} \operatorname{Mor}_{\deg = d'}(\mathbb{P}^1, \mathbb{P}^n) \times \operatorname{Sym}^{d-d'} C.$$

A quasi map can be uniquely recorded as a morphism $C \to \mathbb{P}^N$ and marked zeros. Generally, a quasi map over X can be uniquely recorded as a morphism $\mathbb{P}^1 \to X$ with colored marked point. That is,

$$QM(X,\beta) = \bigsqcup_{0 \le \beta' \le \beta} \operatorname{Mor}_{\deg=\beta}(C,\mathbb{P}^n) \times \prod_{i=1}^m \operatorname{Sym}^{\langle \beta - \beta', D_i \rangle} \mathbb{P}^1$$

4.2.5. Fixed locus. There is $\mathbb{C}^\times\text{-action}$ on $\mathrm{QM}(X)$ induced from $\mathbb{P}^1.$ Firstly, let us look at

$$QM(\mathbb{P}^N, d) = \mathbb{P}(\mathbb{C}[x]_{\deg \leq d}^{N+1}).$$

We have

$$QM(\mathbb{P}^{\mathsf{N}},d)^{\mathbb{C}^{\times}} = \bigcup_{0 \le d' \le d} x^{d'} \mathbb{P}(\mathbb{C}^{\mathsf{N}+1}) = \bigcup_{0 \le d' \le d} \mathbb{P}^{\mathsf{N}}.$$

That is, it is set of constant quasi-map with d marked point at 0 and d-d' marked point at ∞ . More generally, we have

$$\operatorname{QM}(X,\beta)^{\mathbb{C}^{\times}} = \bigcup_{0 \leq \beta' \leq \beta} x^{\beta'} \cdot X.$$

4.2.6. Pseudo evaluation. Recall we have a morphism

$$\varepsilon \upsilon^* : \operatorname{Pic}(X) \to \operatorname{Pic}(\operatorname{QM}(X,\beta))$$

such that the restricting to any fixed component

$$\operatorname{Pic}(\operatorname{QM}(X,\beta)) \longrightarrow \operatorname{Pic}(x^{\beta'}X) \simeq \operatorname{Pic}(X)$$

is identity. For any polynomial $f(x_1, \ldots, x_m)$, we want to compute

$$\int_{\mathrm{QM}(\mathrm{X},\beta)} f(\varepsilon \upsilon^* \mathrm{D}_1,\ldots,\varepsilon \upsilon^* \mathrm{D}_m).$$

4.3. Graph Space.

4.3.1. Graph Space. Let us consider the graph space

 $G_0(X,\beta) = \overline{\mathcal{M}}_0(\mathbb{P}^1 \times X, (1,\beta)).$

Note that $G_0(X)$ admits a \mathbb{C}^{\times} action, so we can compute pushforward via localization. We view the projection

 $\mathbb{P}^1\times X\to \mathbb{P}^1$

as a fibre bundle. Every stable map in $G_0(X,\beta)$ is a union of a section and vertical curves.

4.3.2. *Fixed component.* For any $x \in X$, we denote [x] the graph of constant map

$$[x] = \left[\mathbb{P}^1 \to \mathbb{P}^1 \times \{x\} \subset \mathbb{P}^1 \times X \right].$$

Assume $\beta > 0$. Let $\beta_1, \beta_2 > 0$. We have a morphism

$$i_{\beta_1,\beta_2}: \overline{\mathcal{M}}_1(X,\beta_1) \times_X \overline{\mathcal{M}}_1(X,\beta_2) \longrightarrow G_0(X,\beta_1+\beta_2)$$

by putting two stable maps with same marked point on X horizontally at 0 and ∞ respectively, and gluing them by [x]. We also have

$$i_{\beta,0}: \overline{\mathcal{M}}_1(X,\beta) \longrightarrow G_0(X,\beta)$$

by putting a stable map at 0. We similarly define $i_{0,\beta}$. Then

$$G_0(X,\beta)^{\mathbb{C}^{\times}} = \bigcup_{\beta_1+\beta_2=\beta} (\text{image of } \mathfrak{i}_{\beta_1,\beta_2}).$$

4.3.3. Dimension estimation. Let us estimate the dimension. We have

$$\dim G_0(X,\beta) = \dim X + 1 + \langle c_1(\mathfrak{T}_X), \beta \rangle + \langle c_1(\mathfrak{T}_{\mathbb{P}^1}), 1 \rangle + 0 - 3$$
$$= \dim X + \langle c_1(\mathfrak{T}_X), \beta \rangle.$$

For $\beta_1, \beta_2 > 0$ with $\beta_1 + \beta_2 = \beta$,

$$\dim \overline{\mathcal{M}}_1(X,\beta_1) \times_X \overline{\mathcal{M}}_1(X,\beta_2) = \dim X + \langle c_1(\mathcal{T}_X),\beta \rangle + 1 - 3 + 1 - 3$$
$$= \dim X + \langle c_1(\mathcal{T}_X),\beta \rangle - 4.$$

On the other hand,

$$\dim \overline{\mathcal{M}}_1(X,\beta) = \dim X + \langle c_1(\mathcal{T}_X), \beta \rangle + 1 - 3$$
$$= \dim X + \langle c_1(\mathcal{T}_X), \beta \rangle - 2.$$

4.3.4. *Normal bundle.* Denote ξ the natural representation of \mathbb{C}^{\times} . For $\beta_1, \beta_2 > 0$, the normal bundle along i_{β_1,β_2} .

(smoothing the gluing point at 0) = ($\mathbb{L}^{-1} \otimes \xi$) $\boxtimes 0$. (moving the vertical curve at 0) = $\xi \boxtimes 0 = \xi$.

Similarly for the gluing point at ∞

(smoothing the gluing point at ∞) = 0 \boxtimes ($\mathbb{L}^{-1} \otimes \xi^{-1}$). (moving the vertical curve at ∞) = 0 $\boxtimes \xi^{-1} = \xi^{-1}$.

Thus the Euler class

$$\operatorname{Eu}(\operatorname{Nm}(\mathfrak{i}_{\beta_1,\beta_2})) = \operatorname{restriction} \operatorname{of} z(z-\psi) \otimes (-z(-z-\psi)).$$

When $\beta_2 = 0$, we do not need to smooth and move ∞ , so

$$\operatorname{Eu}(\operatorname{Nm}(\mathfrak{i}_{\beta,0})) = \operatorname{restriction} \operatorname{of} z(z-\psi) \otimes 1.$$

Similarly, when $\beta_1 = 0$,

$$\operatorname{Eu}(\operatorname{Nm}(\mathfrak{i}_{0,\beta})) = \operatorname{restriction} \operatorname{of} 1 \otimes (-z(-z-\psi)).$$

4.4. Comparison.

4.4.1. *Comparison.* Note that both $G(X, \beta)$ and $QM(X, \beta)$ are compatification of $Mor_{deg=\beta}(\mathbb{P}^1, X)$. We actually have a birational morphism

 $\mu: G(X,\beta) \longrightarrow QM(X,\beta)$

by changing the vertical curves by marked points.

4.4.2. Localization. Let

$$\phi = f(D_1, \ldots, D_m).$$

As µ is birational,

$$\begin{split} & \int_{\mathrm{QM}(\mathbf{X},\boldsymbol{\beta})} f(\boldsymbol{\varepsilon}\boldsymbol{\upsilon}^* \, \mathbf{D}_1, \dots, \boldsymbol{\varepsilon}\boldsymbol{\upsilon}^* \, \mathbf{D}_m) \\ &= \int_{\mathbf{G}(\mathbf{X},\boldsymbol{\beta})} \boldsymbol{\mu}^* f(\boldsymbol{\varepsilon}\boldsymbol{\upsilon}^* \, \mathbf{D}_1, \dots, \boldsymbol{\varepsilon}\boldsymbol{\upsilon}^* \, \mathbf{D}_m) \\ &= \sum_{\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2 = \boldsymbol{\beta}} \int \frac{\mathbf{i}_{\boldsymbol{\beta}_1, \boldsymbol{\beta}_2}^* \boldsymbol{\mu}^* f(\boldsymbol{\varepsilon}\boldsymbol{\upsilon}^* \, \mathbf{D}_1, \dots, \boldsymbol{\varepsilon}\boldsymbol{\upsilon}^* \, \mathbf{D}_m)}{\mathrm{Eu}(\mathrm{Nm}(\mathbf{i}_{\boldsymbol{\beta}_1, \boldsymbol{\beta}_2}))}. \end{split}$$

Thus

$$\begin{split} &\int_{\overline{\mathcal{M}}_{1}(X,\beta_{1})\times_{X}\overline{\mathcal{M}}_{1}(X,\beta_{2})} \frac{i_{\beta_{1},\beta_{2}}^{*}\mu^{*}f(\varepsilon v^{*}D_{1},\ldots,\varepsilon v^{*}D_{m})}{\mathrm{Eu}(\mathrm{Nm}(i_{\beta_{1},\beta_{2}}))} \\ &= \int_{\overline{\mathcal{M}}_{1}(X,\beta_{1})\times_{X}\overline{\mathcal{M}}_{1}(X,\beta_{2})} \frac{(\mathrm{ev}\boxtimes 1)^{*}\left(f(D_{1},\ldots,D_{m})\right)}{z(z-\psi)\otimes(-z)(-z-\psi)} \\ &= \int_{\overline{\mathcal{M}}_{1}(X,\beta_{1})\times\overline{\mathcal{M}}_{1}(X,\beta_{2})} \frac{(\mathrm{ev}\boxtimes 1)^{*}(\varphi)}{z(z-\psi)\otimes(-z)(-z-\psi)} (\mathrm{ev}\boxtimes\mathrm{ev})^{*}(\Delta_{X}) \\ &= \int_{\overline{\mathcal{M}}_{1}(X,\beta_{1})\times\overline{\mathcal{M}}_{1}(X,\beta_{2})} \frac{(\mathrm{ev}\boxtimes 1)^{*}(\varphi)}{z(z-\psi)\otimes(-z)(-z-\psi)} \sum_{w} (\mathrm{ev}\boxtimes\mathrm{ev})^{*}(\sigma_{w}\boxtimes\sigma^{w}) \\ &= \sum_{w} \int_{\overline{\mathcal{M}}_{1}(X,\beta_{1})} \frac{\mathrm{ev}^{*}(\varphi\cdot\sigma_{w})}{z(z-\psi)} \int_{\overline{\mathcal{M}}_{1}(X,\beta_{2})} \frac{\mathrm{ev}^{*}(\sigma^{w})}{z(z-\psi)} \\ &= \sum_{w} \left\langle \mathrm{ev}_{*}\left(\frac{1}{z(z-\psi)}\right), \varphi\cdot\sigma_{w} \right\rangle \left\langle \mathrm{ev}_{*}\left(\frac{1}{-z(-z-\psi)}\right), \sigma^{w} \right\rangle \end{split}$$

Similarly, when $\beta' = \beta$,

We have

$$\begin{split} & \int_{\overline{\mathcal{M}}_{1}(\mathbf{X},\boldsymbol{\beta})} \frac{\mathbf{i}_{\boldsymbol{\beta},0}^{*} \boldsymbol{\mu}^{*} \mathbf{f}(\boldsymbol{\varepsilon}\boldsymbol{\upsilon}^{*} \mathbf{D}_{1},\ldots,\boldsymbol{\varepsilon}\boldsymbol{\upsilon}^{*} \mathbf{D}_{m})}{\mathrm{Eu}(\mathrm{Nm}(\mathbf{i}_{\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2}}))} \\ &= \int_{\overline{\mathcal{M}}_{1}(\mathbf{X},\boldsymbol{\beta})} \frac{\mathrm{ev}^{*}(\boldsymbol{\varphi})}{z(z-\psi)} = \left\langle \mathrm{ev}_{*}\left(\frac{1}{z(z-\psi)}\right), \boldsymbol{\varphi} \right\rangle \\ &= \sum_{w} \left\langle \mathrm{ev}_{*}\left(\frac{1}{z(z-\psi)}\right), \boldsymbol{\varphi}\sigma_{w} \right\rangle \langle \mathbf{1}, \sigma^{w} \rangle \end{split}$$

Similarly,

$$\begin{split} &\int_{\overline{\mathcal{M}}_{1}(\mathbf{X},\boldsymbol{\beta})} \frac{\mathbf{i}_{0,\boldsymbol{\beta}}^{*} \boldsymbol{\mu}^{*} f(\boldsymbol{\varepsilon} \boldsymbol{\upsilon}^{*} \, D_{1}, \dots, \boldsymbol{\varepsilon} \boldsymbol{\upsilon}^{*} \, D_{m})}{\mathrm{Eu}(\mathrm{Nm}(\mathbf{i}_{\beta_{1},\beta_{2}}))} \\ &= \int_{\overline{\mathcal{M}}_{1}(\mathbf{X},\boldsymbol{\beta})} \frac{\mathrm{ev}^{*}(\boldsymbol{\varphi})}{-z(-z-\psi)} = \left\langle \mathrm{ev}_{*} \left(\frac{1}{-z(-z-\psi)}\right), \boldsymbol{\varphi} \right\rangle \\ &= \sum_{w} \left\langle \mathbf{1}, \boldsymbol{\varphi} \cdot \boldsymbol{\sigma}_{w} \right\rangle \left\langle \mathrm{ev}_{*} \left(\frac{1}{-z(-z-\psi)}\right), \boldsymbol{\sigma}^{w} \right\rangle. \end{split}$$

4.4.3. J-function again. Let us denote

$$\tilde{J}(z) = 1 + \sum_{\beta \in \operatorname{Eff}(X) \setminus \{0\}} q^{\beta} \operatorname{ev}_{*}\left(\frac{1}{z(z-\psi)}\right).$$

Recall that

$$\mathbf{J}=\mathbf{e}^{p\ln q/z}\tilde{\mathbf{J}}.$$

Then above computation shows

$$\begin{split} &\sum_{q\in \mathrm{Eff}(X)} q^{\beta} \int_{\mathrm{QM}(X,\beta)} f(\varepsilon \upsilon^* D_1, \dots, \varepsilon \upsilon^* D_m) \\ &= \sum_w \langle \tilde{J}(z), \varphi \cdot \sigma_w \rangle \langle \tilde{J}(-z), \sigma^w \rangle = \langle \tilde{J}(z) \tilde{J}(-z), \varphi \rangle. \end{split}$$

5. PROPERTIES

5.1. Quantum connection.

5.1.1. *Remark.* Recall that a connection of a vector bundle \mathcal{V} over a real manifold M is an \mathbb{R} -bilinear morphism

$$\nabla: \mathcal{V} \longrightarrow \Omega_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{V}.$$

with the Leibniz rule

$$\nabla(\mathsf{f}\mathsf{s}) = \mathsf{d}\mathsf{f} \otimes \mathsf{s} + \mathsf{f} \cdot \nabla \mathsf{s}$$

For a local vector field $X \in \mathcal{T}_M$, we deonte $\nabla_X s = \langle X, \nabla s \rangle$, with the pairing induced by the natural pairing $\langle , \rangle : \mathcal{T}_M \otimes \Omega_M \otimes \mathcal{V} \longrightarrow \mathcal{V}$. Then $\nabla_X s$ satisfies

•
$$\nabla_{fX+Y}s = f\nabla_X s + \nabla_Y s;$$
 (linearity)
• $\nabla_{Y}(fs + t) = (Yf)s + f\nabla_Y s + \nabla_Y t;$ (Loibinizo rulo)

•
$$\nabla_X(fs+t) = (Xf)s + f\nabla_X s + \nabla_X t;$$
 (Leibinize rule)

To define a connection locally, it suffices to define ∇_X for those X forming a basis of \mathcal{T}_M over \mathcal{O}_M (called a frame) and check the second condition.

5.1.2. Quantum connection. Let us consider

the trivial vector bundle \mathcal{V} over $M = H^2(X)$ with fibre $H^*(X)$.

Note that we can view q^β as a function over $H^2(X)$ for $\beta\in {\rm Eff}(X)\subset H_2(X,\mathbb{Z}).$ Thus

$$\mathrm{H}^{0}(M, \mathcal{V}) = \mathrm{H}^{*}(X) \otimes_{\mathbb{C}} \mathcal{O}(M) = \mathrm{Q}\mathrm{H}^{*}(X) \otimes_{\mathbb{C}(\mathfrak{q})} \mathcal{O}(M).$$

The *quantum connection* is defined to be (*z* is a formal variable)

$$abla_\lambda = arta_\lambda - rac{1}{z}\lambda st,$$

where

- ∂_{λ} is the differential operator over M such that $\partial_{\lambda}q^{\beta} = \langle \lambda, \beta \rangle q^{\beta}$;
- $\lambda *$ is the O-linear map of quantum product with divisor $\lambda \in H^2(X)$ fibrewise.

This is a connection:

$$\begin{aligned} \nabla_{\lambda}(\mathbf{f}\mathbf{s}+\mathbf{t}) &= \partial_{\lambda}(\mathbf{f}\mathbf{s}+\mathbf{t}) - \frac{1}{z}\lambda*(\mathbf{f}\mathbf{s}+\mathbf{t}) \\ &= (\partial_{\lambda}\mathbf{f}) + \mathbf{f}(\partial_{\lambda}\mathbf{s}) + \partial_{\lambda}\mathbf{t} - \frac{1}{z}\mathbf{f}\lambda*\mathbf{s} - \frac{1}{z}\lambda*\mathbf{t} \\ &= (\partial_{\lambda}\mathbf{f}) + \mathbf{f}\nabla_{\lambda}\mathbf{s} + \nabla_{\lambda}\mathbf{t}. \end{aligned}$$

Here we use the fact that the quantum product is $\mathbb{C}(q)$ -linear.

5.1.3. *Remark.* For a connection ∇ of a vector bundle \mathcal{V} over M, we can extend

$$0 \longrightarrow \mathcal{V} \xrightarrow{\nabla} \Omega_M \otimes_{\mathcal{O}_M} \mathcal{V} \xrightarrow{\nabla} \Omega^2_M \otimes_{\mathcal{O}_M} \mathcal{V} \xrightarrow{\nabla} \cdots$$

by

 $\nabla(\omega\wedge s)=d\omega\otimes s+(-1)^{\deg\alpha}\omega\wedge\nabla s.$

The map $\nabla^2 : \mathcal{V} \to \Omega^2_M \otimes_{\mathcal{O}_M} \mathcal{V}$ is \mathcal{O}_M -linear, called the curvature. A connection is flat if $\nabla^2 = 0$, equivalently, the above chain is a complex. In terms of $\nabla_X s$, it is equivalent to say

$$\langle X \wedge Y, \nabla^2 s \rangle = \nabla_X \nabla_Y s - \nabla_Y \nabla_X s - \nabla_{[X,Y]} s = 0.$$

If we define ∇_X for a frame forming a basis of \mathcal{T}_M , then it suffice to check for all pairing of vector fields from the frame. For a flat connection ∇ , the following differential equation has a local solution

$$\nabla(\mathbf{f}) = \mathbf{0}, \qquad \mathbf{f} \in \mathrm{H}^{\mathbf{0}}(\mathcal{M}, \mathcal{V})$$

for any given initial value of f at a point $x \in M$.

5.1.4. *Flatness*. The quantum connection is flat.

$$\begin{split} \nabla_{\lambda}\nabla_{\mu}s - \nabla_{\mu}\nabla_{\lambda}s - \nabla_{[\lambda,\mu]}s \\ &= \nabla_{\lambda}\nabla_{\mu}s - \nabla_{\mu}\nabla_{\lambda}s \\ &= (\partial_{\lambda} - \frac{1}{z}\lambda*)(\partial_{\mu} - \frac{1}{z}\mu*)s - (\partial_{\mu} - \frac{1}{z}\mu*)(\partial_{\lambda} - \frac{1}{z}\lambda*)s \\ &= (\partial_{\lambda}\partial_{\mu}s - \frac{1}{z}\mu*\partial_{\lambda}s - \frac{1}{z}\lambda*\partial_{\mu}s + \frac{1}{z^{2}}\lambda*\mu*s) \\ &- (\partial_{\mu}\partial_{\lambda}s - \frac{1}{z}\lambda*\partial_{\mu}s - \frac{1}{z}\mu*\partial_{\lambda}s + \frac{1}{z^{2}}\mu*\lambda*s) \\ &= \frac{1}{z^{2}}(\lambda*\mu*s - \mu*\lambda*s) = 0. \end{split}$$

Here we use the associativity and commutativity of the quantum product.

5.1.5. *Remark.* As we mentioned, $S(\gamma')$ solves the quantum differential equation,

$$abla_{\lambda}(\mathbf{f}) = \mathbf{0}, \quad \text{i.e.} \quad \partial_{\lambda}\mathbf{f} = \frac{1}{z}\lambda * \gamma.$$

It is actually the fundamental solution.

5.1.6. *Remark.* Note that if we replace quantum product by usual product, then the fundamental solution is easy seen to be

$$S(\gamma') = e^{p \ln q/z} \gamma'.$$

5.2. Applications.

5.2.1. *Remark.* Let F be a component of X^T . Then the push forward $i_* : H^*_T(F) \longrightarrow H^*_T(X)$

is an isomorphism after localization. The inverse is given by

$$H^*_{\mathsf{T}}(X) \longrightarrow H^*_{\mathsf{T}}(\mathsf{F}), \qquad \gamma \longmapsto \frac{\gamma|_{\mathsf{F}}}{\operatorname{Eu}(\operatorname{Nm}_{\mathsf{F}} X)}.$$

5.2.2. Embedding. We have an embedding

$$i_{\beta,0}: \mathcal{M}_1(X,\beta) \longrightarrow G_0(X,\beta).$$

For two varieties X and Y, we have

$$\begin{array}{c} G_{0}(X \times Y, (\beta_{X}, \beta_{Y})) \xrightarrow{\text{birational}} G_{0}(X, \beta_{X}) \times G_{0}(Y, \beta_{Y}) \\ & & \uparrow^{i_{X \times Y}} & i_{X \times i_{Y}} \uparrow^{i_{X \times i_{Y}}} \\ \hline \overline{\mathcal{M}}_{1}(X \times Y, (\beta_{X}, \beta_{Y})) \xrightarrow{\Pi} \overline{\mathcal{M}}_{1}(X, \beta_{X}) \times \overline{\mathcal{M}}_{1}(Y, \beta_{Y}) \\ & & e^{v} \bigvee_{X \times Y} & \bigvee^{ev} & \bigvee^{ev} \\ & X \times Y \xrightarrow{} X \times Y. \end{array}$$

This implies

$$\Pi_*\left(\frac{1}{z(z-\psi)}\boxtimes\frac{1}{z(z-\psi)}\right) = \frac{1}{z(z-\psi)}$$

This shows the J-function of the product is the product of J-functions.

5.2.3. J-function of projective space. Recall we have

$$\begin{array}{c} \operatorname{G}(\mathbb{P}^{\mathsf{N}},d) \xrightarrow{\operatorname{birational}} \operatorname{QM}(\mathbb{P}^{\mathsf{N}},d) \\ & \uparrow & & \uparrow \\ & & & i \\ \hline \overline{\mathcal{M}}_{1}(X,d) \xrightarrow{\operatorname{ev}} \mathbb{P}^{\mathsf{N}} \end{array}$$

As a result,

$$\operatorname{ev}_*\left(\frac{1}{z(z-\psi)}\right) = \frac{1}{\operatorname{Eu}(\mathfrak{i})}.$$

Recall

$$\operatorname{QM}(\mathbb{P}^{\mathsf{N}}, d) = \mathbb{P}(\operatorname{H}^{\mathsf{0}}(\mathbb{C}[x]_{\deg \leq d})^{\mathsf{N}+1}).$$

Note that $\mathbb{P}^{N} \subset \mathrm{QM}(\mathbb{P}^{N}, d)$ is induced by

$$\mathbb{C}^{N+1} \simeq (\mathbb{C}x^d)^{N+1} \subset (\mathbb{C}[x]_{\deg \le d})^{N+1}.$$

So it is defined by

coefficients of x^0,\ldots,x^{d-1} of every $N+1\ \text{component}=0.$

So

$$\operatorname{Eu}(\mathfrak{i}) = \prod_{k=1}^{d} (H + kz).$$

As a result, we have

$$\tilde{J} = 1 + \sum_{d>1} \frac{q^d}{\prod_{k=1}^d (H + kz)}.$$

That is,

$$J = q^{H/z} \left(1 + \sum_{d>1} \frac{q^d}{\prod_{k=1}^d (H + kz)^{N+1}} \right).$$

5.2.4. Remark. Let us compute

$$\partial_{\mathsf{H}} \mathbf{J} = \frac{\mathsf{H}}{z} \mathsf{q}^{\mathsf{H}/z} + \sum_{d>1} \frac{\left(d + \frac{\mathsf{H}}{z}\right) \mathsf{q}^{d + \mathsf{H}/z}}{\prod_{k=1}^{d} (\mathsf{H} + kz)^{\mathsf{N}+1}}.$$

Similarly,

$$(z\partial_{H})^{N+1}J = H^{N+1}q^{H/z} + \sum_{d>1} \frac{(H+dz)^{N+1}q^{d+H/z}}{\prod_{k=1}^{d} (H+kz)^{N+1}}$$
$$= \sum_{d>1} \frac{q^{d+H/z}}{\prod_{k=1}^{d-1} (H+kz)^{N+1}} = qJ.$$

So we have

$$H^{N+1} = q$$
 (quantum product).

5.3. Unitary property.

5.3.1. A twisted fundamental solution. Let us denote

$$\mathcal{M}(\gamma,\gamma') = \langle \gamma,\gamma'\rangle + \sum_{\beta \in \mathrm{Eff}(X) \setminus \{0\}} q^{\beta} \int_{\overline{\mathcal{M}}_{2}(X,\beta)} \mathrm{ev}^{*}(\gamma \boxtimes \gamma') \frac{1}{z - \psi_{2}}.$$

Let us denote the operator M by

$$\langle \mathsf{M}(\gamma), \gamma' \rangle = \mathfrak{M}(\gamma, \gamma').$$

5.3.2. Equation for M. Then

$$\partial_{\lambda}\langle \mathsf{M}(\gamma),\gamma'\rangle = rac{1}{z}\langle \mathsf{M}(\lambda*\gamma),\mathsf{M}(\gamma')\rangle - rac{1}{z}\langle\lambda\mathsf{M}(\gamma),\gamma'\rangle.$$

Thus

$$\partial_{\lambda} \mathcal{M}(\gamma) = \frac{1}{z} \mathcal{M}(\lambda * \gamma) - \frac{1}{z} \lambda \mathcal{M}(\gamma)$$

For general f, i.e. possibly involving quantum parameters,

$$\partial_{\lambda} M(f) = \frac{1}{z} M(\lambda * f) - \frac{1}{z} \lambda M(f) + M(\partial_{\lambda} f).$$

5.3.3. Summary. We have the following commutative diagram

$$\begin{array}{c|c} H_{\mathbb{T}}(X) & \xrightarrow{M(-,z)} & H_{\mathbb{T}}(X)(q) \\ \mathfrak{d}_{\lambda} + \frac{1}{z}\lambda_{*} & & & \downarrow \mathfrak{d}_{\lambda} + \frac{1}{z}\lambda \\ H_{\mathbb{T}}(X) & \xrightarrow{M(-,z)} & H_{\mathbb{T}}(X)(q) \end{array}$$

5.3.4. Equation for inverse. By substituting f by $M^{-1}(f)$, we get

$$\partial_{\lambda} f = \frac{1}{z} \mathcal{M}(\lambda * \mathcal{M}^{-1}(f)) - \frac{1}{z} \lambda f + \mathcal{M}(\partial_{\lambda} \mathcal{M}^{-1}(f)).$$

Applying M^{-1} , we get

$$M^{-1}(\partial_{\lambda}f) = \frac{1}{z}\lambda * M^{-1}(f) - \frac{1}{z}M^{-1}(\lambda f) + \partial_{\lambda}M^{-1}(f).$$

That is,

$$\partial_{\lambda}M^{-1}(f) = -\frac{1}{z}\lambda * M^{-1}(f) + \frac{1}{z}M^{-1}(\lambda f) + M^{-1}(\partial_{\lambda}f).$$

5.3.5. Equation for adjoint. On the other hand, denote the operator M' by

$$\langle \gamma, \mathsf{M}'(\gamma') \rangle = \mathsf{M}(\gamma, \gamma').$$

Then

$$\partial_{\lambda}\langle \gamma, \mathsf{M}'(\gamma') \rangle = \frac{1}{z} \langle \gamma, \lambda * \mathsf{M}'(\gamma') \rangle - \frac{1}{z} \langle \gamma, \mathsf{M}'(\lambda \gamma') \rangle.$$

Thus

$$\partial_{\lambda} \mathcal{M}'(\gamma') = \frac{1}{z} \lambda * \mathcal{M}'(\gamma') - \frac{1}{z} \mathcal{M}'(\lambda \gamma').$$

For general f, i.e. possibly involving quantum parameters,

$$\partial_{\lambda} M'(f) = rac{1}{z} \lambda * M'(f) - rac{1}{z} M'(\lambda f) + M'(\partial_{\lambda} f).$$

5.3.6. *Conclusion.* Let us denote $M(\gamma) = M(\gamma, z)$ to empathise the dependence of *z*. By comparing the differential equation, we have

$$\mathsf{M}'(\gamma, z) = \mathsf{M}^{-1}(\gamma, -z).$$

As a result, we have

$$\langle \mathsf{M}(\gamma, z), \mathsf{M}(\gamma', -z) \rangle = \langle \gamma, \gamma' \rangle.$$

In the rest of this section, we are going to give a geometric proof of this identity.

5.4. Gromov–Witten invariant over graph space.

5.4.1. A pairing. Let us denote similarly

$$\mathsf{G}_2(\mathsf{X},\beta) = \overline{\mathfrak{M}}_2(\mathbb{P}^1 \times \mathsf{X},(1,\beta)).$$

We define for $\gamma_1, \gamma_2 \in H^*(X)$

$$G(\gamma_1,\gamma_2) = \langle \gamma_1,\gamma_2 \rangle + \sum_{\beta>0} q^\beta \int_{G_2(X,\beta)} \mathrm{ev}^*(\mathfrak{i}_{0*}\gamma_1 \boxtimes \mathfrak{i}_{\infty*}\gamma_2)$$

where $i_0: X \to \mathbb{P}^1 \times X$ and $i_\infty: X \to \mathbb{P}^1 \times X$ the inclusion of the fibre at 0 and ∞ respectively.

5.4.2. *Remark.* Note that by 2.3.2, we have $G(\gamma_1, \gamma_2) = \langle \gamma_1, \gamma_2 \rangle$.

5.4.3. Components. Let us use localization to compute this pairing. Let us denote for $\beta_1,\beta_2>0$

$$i_{\beta_1,\beta_2}: \overline{\mathcal{M}}_2(X,\beta_1) \times_X \overline{\mathcal{M}}_2(X,\beta_2) \longrightarrow G_0(X,\beta_1+\beta_2)$$

by gluing the second marked points. Similarly we define $i_{\beta,0}$ and $i_{0,\beta}$. Then

$$G_2(X,\beta)^{\mathbb{C}^{\times}} = (\cdots) \cup \bigcup_{\beta_1 + \beta_2 = \beta} (\text{image of } \mathfrak{i}_{\beta_1,\beta_2}).$$

Here (\cdots) is the component does not contribute the pushforward.

5.4.4. Dimension estimation. Let us estimate the dimension. We have

$$\begin{split} \dim \mathsf{G}_2(X,\beta) &= \dim X + 1 + \langle \mathsf{c}_1(\mathfrak{T}_X),\beta \rangle + \langle \mathsf{c}_1(\mathfrak{T}_{\mathbb{P}^1}),1 \rangle + 2 - 3 \\ &= \dim X + \langle \mathsf{c}_1(\mathfrak{T}_X),\beta \rangle + 2. \end{split}$$

For $\beta_1, \beta_2 > 0$ with $\beta_1 + \beta_2 = \beta$, $\dim \overline{\mathcal{M}}_2(X, \beta_1) \times_X \overline{\mathcal{M}}_2(X, \beta_2) = \dim X + \langle c_1(\mathcal{T}_X), \beta \rangle + 2 - 3 + 2 - 3$ $= \dim X + \langle c_1(\mathcal{T}_X), \beta \rangle - 2.$

On the other hand,

$$\dim \overline{\mathcal{M}}_2(\mathbf{X}, \boldsymbol{\beta}) = \dim \mathbf{X} + \langle \mathbf{c}_1(\mathcal{T}_{\mathbf{X}}), \boldsymbol{\beta} \rangle + 2 - 3$$
$$= \dim \mathbf{X} + \langle \mathbf{c}_1(\mathcal{T}_{\mathbf{X}}), \boldsymbol{\beta} \rangle - 1.$$

5.4.5. *Normal bundle.* Similarly, when $\beta_1, \beta_2 > 0$,

$$\operatorname{Eu}(\operatorname{Nm}(\mathfrak{i}_{\beta_1,\beta_2})) = \operatorname{restriction} \operatorname{of} z(z-\psi) \otimes (-z(-z-\psi)).$$

When $\beta_2 = 0$, we do not need to smooth the marked point on ∞ , so

$$\operatorname{Eu}(\operatorname{Nm}(\mathfrak{i}_{\beta,0})) = \operatorname{restriction} \operatorname{of} z(z - \psi) \otimes (-z)$$

Similarly, when $\beta_1 = 0$,

$$\operatorname{Eu}(\operatorname{Nm}(\mathfrak{i}_{0,\beta})) = \operatorname{restriction} \operatorname{of} z \otimes (-z(-z-\psi)).$$

5.4.6. *Localization*. When $\beta > 0$, using localization, we have

$$\int_{G_2(X,\beta)} \mathrm{ev}^*(\mathfrak{i}_{0*}\gamma_1\boxtimes\mathfrak{i}_{\infty*}\gamma_2) = \sum_{\beta_1+\beta_2=\beta} \int \frac{\mathfrak{i}_{\beta_1,\beta_2}^*\left(\mathrm{ev}^*(\mathfrak{i}_{0*}\gamma_1\boxtimes\mathfrak{i}_{\infty*}\gamma_2) \\ \mathrm{Eu}(\mathrm{Nm}(\mathfrak{i}_{\beta_1,\beta_2}))\right)}{\mathrm{Eu}(\mathrm{Nm}(\mathfrak{i}_{\beta_1,\beta_2}))}.$$

When $\beta_1, \beta_2 > 0$, we have

$$\begin{split} & \int_{\overline{\mathcal{M}}_{2}(X,\beta_{1})\times_{X}\overline{\mathcal{M}}_{2}(X,\beta_{2})} \frac{i_{\beta_{1},\beta_{2}}^{*}\left(\mathrm{ev}^{*}(\mathfrak{i}_{0*}\gamma_{1}\boxtimes\mathfrak{i}_{\infty*}\gamma_{2})\right)}{\mathrm{Eu}(\mathrm{Nm}(\mathfrak{i}_{\beta_{1},\beta_{2}}))} \\ &= \int_{\overline{\mathcal{M}}_{2}(X,\beta_{1})\times_{X}\overline{\mathcal{M}}_{2}(X,\beta_{2})} \frac{(\mathrm{ev}_{1}\boxtimes\mathrm{ev}_{1})^{*}(\mathfrak{i}_{0}^{*}\mathfrak{i}_{0*}\gamma_{1}\boxtimes\mathfrak{i}_{\infty}^{*}\mathfrak{i}_{\infty*}\gamma_{2})}{z(z-\psi_{2})\otimes(-z(-z-\psi_{2}))} \\ &= \int_{\overline{\mathcal{M}}_{2}(X,\beta_{1})\times\overline{\mathcal{M}}_{2}(X,\beta_{2})} \frac{(\mathrm{ev}_{1}\boxtimes\mathrm{ev}_{1})^{*}(\mathfrak{i}_{0}^{*}\mathfrak{i}_{0*}\gamma_{1}\boxtimes\mathfrak{i}_{\infty}^{*}\mathfrak{i}_{\infty*}\gamma_{2})}{z(z-\psi_{2})\otimes(-z(-z-\psi_{2}))} (\mathrm{ev}_{2}\boxtimes\mathrm{ev}_{2})^{*}(\Delta_{X}) \\ &= \int_{\overline{\mathcal{M}}_{2}(X,\beta_{1})\times\overline{\mathcal{M}}_{2}(X,\beta_{2})} \frac{(\mathrm{ev}_{1}\boxtimes\mathrm{ev}_{1})^{*}(z\gamma_{1}\boxtimes(-z)\gamma_{2})}{z(z-\psi_{2})\otimes(-z(-z-\psi_{2}))} \sum_{w} (\mathrm{ev}_{2}\boxtimes\mathrm{ev}_{2})^{*}(\sigma_{w}\boxtimes\sigma^{w}) \\ &= \sum_{w} \int_{\overline{\mathcal{M}}_{2}(X,\beta_{1})} \frac{\mathrm{ev}^{*}(\gamma_{1}\boxtimes\sigma_{w})}{z-\psi_{2}} \int_{\overline{\mathcal{M}}_{2}(X,\beta_{2})} \frac{\mathrm{ev}^{*}(\gamma_{2}\boxtimes\sigma^{w})}{-z-\psi_{2}}. \end{split}$$

Here $\{\sigma_w\} \subset H^*(X)$ is a basis and $\{\sigma^w\} \subset H^*(X)$ is its dual basis. Similarly, when β_2 , we have

$$\begin{split} & \int_{\overline{\mathcal{M}}_{1}(X,\beta)} \frac{i_{\beta,0}^{*}\left(\mathrm{ev}^{*}(\mathfrak{i}_{0*}\gamma_{1}\boxtimes\mathfrak{i}_{\infty*}\gamma_{2})\right)}{\mathrm{Eu}(\mathrm{Nm}(\mathfrak{i}_{0,\beta}))} \\ &= \int_{\overline{\mathcal{M}}_{2}(X,\beta_{2})} \frac{\mathrm{ev}^{*}(\gamma_{1}\boxtimes\gamma_{2})}{-z-\psi_{2}} = \sum_{w} \int_{\overline{\mathcal{M}}_{2}(X,\beta_{1})} \frac{\mathrm{ev}^{*}(\gamma_{1}\boxtimes\sigma_{w})}{z-\psi_{2}} \langle \gamma_{2},\sigma^{w} \rangle, \\ & \int_{\overline{\mathcal{M}}_{1}(X,\beta)} \frac{i_{0,\beta}^{*}\left(\mathrm{ev}^{*}(\mathfrak{i}_{0*}\gamma_{1}\boxtimes\mathfrak{i}_{\infty*}\gamma_{2})\right)}{\mathrm{Eu}(\mathrm{Nm}(\mathfrak{i}_{0,\beta}))} = \sum_{w} \langle \gamma_{1},\sigma_{w} \rangle \int_{\overline{\mathcal{M}}_{2}(X,\beta_{2})} \frac{\mathrm{ev}^{*}(\gamma_{2}\boxtimes\sigma^{w})}{-z-\psi_{2}}. \end{split}$$

5.4.7. Conclusion. As a result,

$$\begin{split} \langle \gamma_1, \gamma_2 \rangle &= G(\gamma_1, \gamma_2) = \sum_w \mathcal{M}(\gamma_1, \sigma_w) \mathcal{M}(\gamma_2, \sigma^w)|_{z \mapsto -z} \\ &= \sum_w \langle \mathcal{M}(\gamma_1, z), \sigma_w \rangle \langle \mathcal{M}(\gamma_2, -z), \sigma^w \rangle \\ &= \langle \mathcal{M}(\gamma_1, z), \mathcal{M}(\gamma_2, -z) \rangle. \end{split}$$

6. Shift operators

6.1. Shift operator.

6.1.1. *Setup.* Assume T acts on X. We are going to define a family of operators for any $k \in 1PS(T)$. Let $\mathbb{T} = T \times \mathbb{C}^{\times}$. We denote z the canonical generator in $H^2_{\mathbb{C}^{\times}}(pt)$.

6.1.2. *Twisted action.* For any $k \in 1PS(T)$, we have a twisted \mathbb{T} -action by

$$\rho_k(t, u) \cdot x = t \cdot k(u) \cdot x.$$

We have

$$\begin{array}{c} H^*_{\mathbb{T}}(X,\rho_0) \xrightarrow{\sim} H^*_{\mathbb{T}}(X,\rho_k) \\ \uparrow & \uparrow \\ H^*_{\mathbb{T}}(\mathsf{pt}) \xrightarrow{\lambda \mapsto \lambda + \langle k,\lambda \rangle_z} H^*_{\mathbb{T}}(\mathsf{pt}) \end{array}$$

Let us denote the isomorphism by $\gamma \mapsto \gamma[k]$.

6.1.3. Bundle. Let us denote

$$\mathsf{E}_{\mathsf{k}} = \left(\mathbb{C}^2 \setminus \{0\}\right) \underset{\mathbb{C}^{\times}}{\times} \mathsf{X},$$

with the action induced by k. Then \mathbb{T} acts on E_k . We have a projection

 $\pi\colon E_k \to \big(\mathbb{C}^2 \setminus \{0\}\big)/\mathbb{C}^\times = \mathbb{P}^1$

with

$$\pi^{-1}(\mathfrak{0})\simeq (X,\rho_{\mathfrak{0}})=:X_{\mathfrak{0}},\qquad \pi^{-1}(\infty)\simeq (X,\rho_{k})=:X_{\infty}.$$

6.1.4. Section class. Let us denote

 $\mathrm{Eff}(\mathsf{E}_k)_{\mathrm{sec}} = \text{preimage of } [\mathbb{P}^1 \xrightarrow{\mathrm{id}} \mathbb{P}^1] \in \mathrm{Eff}(\mathbb{P}^1) \text{ under } \pi_* : \mathrm{Eff}(\mathsf{E}_k) \to \mathrm{Eff}(\mathbb{P}^1).$

6.1.5. Shift operator. Let us define

 $\iota_0:X_0\to \mathsf{E}_k,\qquad \iota_\infty:X_\infty\to \mathsf{E}_k.$

Let us define the shifted operator

$$\tilde{\mathbb{S}}_k : H^*_{\mathbb{T}}(X, \rho_0) \longrightarrow H^*_{\mathbb{T}}(X, \rho_k)$$

by

$$\langle \tilde{\mathbb{S}}_k(\gamma), \gamma'[k] \rangle = \sum_{\tilde{\beta} \in \operatorname{Eff}(\mathsf{E}_k)_{\operatorname{sec}}} q^{\tilde{\beta}} \int_{\overline{\mathcal{M}}_2(\mathsf{E}_k, \tilde{\beta})} \operatorname{ev}^*(\iota_{0*}\gamma, \boxtimes \iota_{\infty*}\gamma'[k]).$$

Let us use localization to compute \tilde{S}_k .

6.1.6. *Example*. When k = 0, then

$$\mathsf{E}_{\mathsf{k}} = \mathbb{P}^1 \times \mathsf{X}$$

Applying the same trick to \mathbb{C}^{\times} fixed locus as in the previous section, we get

$$\langle \tilde{\mathbb{S}}_{k}(\gamma), \gamma' \rangle = \langle M(\gamma, z), M(\gamma', -z) \rangle = \langle \gamma, \gamma' \rangle.$$

Thus $\tilde{\mathbb{S}}_0 = \mathrm{id}$. In general, we have to consider the T-fixed locus.

6.1.7. *Fixed locus.* Let $F \in \pi_0(X^T)$ be a connected component of X^T . We denote $\sigma_F \in \text{Eff}(E_k)$ to be the class of σ_x for any $x \in F$. For $\beta_1, \beta_2 > 0$, let us denote

$$\overline{\mathfrak{M}}_{2}(X_{0},\beta_{1})\times_{\mathsf{F}}\overline{\mathfrak{M}}_{2}(X_{\infty},\beta_{2})=(\mathrm{ev}_{2}\boxtimes\mathrm{ev}_{2})^{-1}(\Delta_{\mathsf{F}})$$

the space of stable maps with the second marked points the same in F. For (C_1, C_2) in this space with $ev_2(C_1) = ev_2(C_2) = x \in F$, by gluing $\sigma_x \subset E_k$, we have a T-invariant stable maps over E_k . This defines

 $\mathfrak{i}_{\beta_1,\beta_2}:\overline{\mathcal{M}}_2(X_0,\beta_1)\times_F\overline{\mathcal{M}}_2(X_\infty,\beta_2)\longrightarrow\overline{\mathcal{M}}_2(\mathsf{E}_k,\mathfrak{i}_{0*}\beta_1+\mathfrak{i}_{\infty*}\beta_2+\sigma_F).$

It induces

$$\overline{\mathcal{M}}_2(X_0,\beta_1)^{\mathsf{T}} \times_{\mathsf{F}} \overline{\mathcal{M}}_2(X_\infty,\beta_2)^{\mathsf{T}} \longrightarrow \overline{\mathcal{M}}_2(\mathsf{E}_k,\mathfrak{i}_{0*}\beta_1+\mathfrak{i}_{\infty*}\beta_2+\sigma_{\mathsf{F}})^{\mathbb{T}}.$$

We similarly denote

$$\mathfrak{i}_{\beta_1,0},\mathfrak{i}_{0,\beta_2}:\overline{\mathcal{M}}_2(X_0,\beta)\cap\mathrm{ev}_2^{-1}(F)\longrightarrow\overline{\mathcal{M}}_2(\mathsf{E}_k,\beta_1+\sigma_F).$$

We have the following decomposition

$$\overline{\mathfrak{M}}_{2}(\mathsf{E}_{k},\tilde{\beta})^{\mathbb{T}}=(\cdots)\cup\bigcup_{\mathfrak{i}_{0*}\beta_{1}+\mathfrak{i}_{\infty*}\beta_{2}+\sigma_{F}=\tilde{\beta}}\text{ image of }\mathfrak{i}_{\beta_{1},\beta_{2}}.$$

Here (\cdots) are those components not in $\mathrm{ev}^{-1}(X_0\times X_\infty)$, which does not contribute the integral.

6.1.8. Computation. Let us compute the normal bundle of

$$\overline{\mathfrak{M}}_2(X_0,\beta_1) \times_{\mathsf{F}} \overline{\mathfrak{M}}_2(X_\infty,\beta_2).$$

It contains the fixed component. Denote ξ the natural representation of \mathbb{C}^{\times} .

(smoothing the gluing point at 0) = ($\mathbb{L}_2^{-1} \otimes \xi$) $\boxtimes 0$.

(moving the gluing point at 0) = $\xi \boxtimes 0 = \xi$.

Similarly for the gluing point at ∞

(smoothing the gluing point at ∞) = $0 \boxtimes (\mathbb{L}_2^{-1} \otimes \xi^{-1})$.

(moving the gluing point at
$$\infty$$
) = $0 \boxtimes \xi^{-1} = \xi^{-1}$.

Thus the Euler class

$$\operatorname{Eu}(\operatorname{Nm}(\mathfrak{i}_{\beta_1,\beta_2}))=z(z-\psi_2)\otimes(-z(-z-\psi_2)).$$

When $\beta_1 = 0$, the computation will be different. Now 0 is a marked point, so we do not need to smooth it. The Euler class

$$\operatorname{Eu}(\operatorname{Nm}(\mathfrak{i}_{0,\beta_2}))=z\otimes(-z(-z-\psi_2)).$$

Similarly for $\beta_2 = 0$,

$$\operatorname{Eu}(\operatorname{Nm}(\mathfrak{i}_{\beta_1,0}))=z(z-\psi)\otimes (-z).$$

6.1.9. *Lemma*. The normal bundle of $F \times \mathbb{P}^1$ is

$$\operatorname{Nm}_{\mathsf{F}\times\mathbb{P}^1}\mathsf{E}_k=\bigoplus_{\lambda\in\mathsf{char}(\mathsf{T})}(\operatorname{Nm}_\mathsf{F} X)_\lambda\boxtimes\mathfrak{O}_{\mathbb{P}^1}(-\langle\lambda,k\rangle),$$

where $(\operatorname{Nm}_F X)_{\lambda} = \operatorname{Hom}_T(\mathbb{C}_{\lambda}, \operatorname{Nm}_F X)$. Actually, it is characterized by (as \mathbb{C}^{\times} -equivariant bundles)

$$\begin{split} \mathrm{Nm}_{F\times\mathbb{P}^1} \; \mathsf{E}_k|_{F\times \mathfrak{0}} &= \mathrm{Nm}_F \, X_{\mathfrak{0}} = \mathrm{Nm}_F \, X = \bigoplus_{\lambda\in\mathsf{char}(\mathsf{T})} (\mathrm{Nm}_F \, X)_{\lambda} \\ \mathrm{Nm}_{F\times\mathbb{P}^1} \; \mathsf{E}_k|_{F\times\infty} &= \mathrm{Nm}_F \, X_{\infty} = (\mathrm{Nm}_F \, X)[k] = \bigoplus_{\lambda\in\mathsf{char}(\mathsf{T})} (\mathrm{Nm}_F \, X)_{\lambda}(\langle\lambda,k\rangle z). \end{split}$$

6.1.10. *Moving the horizontal cruve.* Now let us compute the part of moving the horizontal curve. We have

(moving the horizontal curve)

= (moving to be non-constant inside F) \oplus (moving out of F)

Note that

(moving to be non-constant inside $F) = \operatorname{Mor}(\mathbb{P}^1, H^0(F, \mathfrak{T}_F))/constant = 0.$

Note that

$$(moving \ out \ of \ F) = \bigoplus_{\lambda \in \mathsf{char}(\mathsf{T})} \mathrm{ev}^*(\mathrm{Nm}_F \ X)_\lambda \cdot \chi\big(\mathbb{P}^1, \mathfrak{O}_\mathbb{P}(-\langle \lambda, k \rangle)\big)$$

where $ev = ev_2 \boxtimes 1 = 1 \boxtimes ev_2$. Here $(Nm_F X)_{\lambda}$ has trivial \mathbb{C}^{\times} -action, so ev^* induced by two maps do not differ. By localization theorem, we have

$$\chi(\mathbb{P}^{1}, \mathbb{O}_{\mathbb{P}^{1}}(\mathfrak{i})) = \frac{1 - \xi^{-\mathfrak{i} - 1}}{1 - \xi^{-1}} = \sum_{c \le 0} \xi^{c} - \sum_{c < -\mathfrak{i}} \xi^{c}$$

So

 $(\text{moving the horizontal curve}) = \bigoplus_{\lambda \in char(T)} \operatorname{ev}^*(\operatorname{Nm}_F X)_\lambda \cdot \left(\sum_{c \leq 0} \xi^c - \sum_{c < \langle \lambda, k \rangle} \xi^c \right).$

Note that its Euler class is

$$\prod_{\lambda \in \mathsf{char}(\mathsf{T})} \prod_{\mathbf{x} \in \sqrt{(\mathrm{Nm}_{\mathsf{F}} \mathsf{X})_{\lambda}}} \frac{\prod_{c \leq 0} (\mathrm{ev}^* \, \mathbf{x} + \lambda + cz)}{\prod_{c < \langle \lambda, k \rangle} (\mathrm{ev}^* \, \mathbf{x} + \lambda + cz)} = (\mathrm{ev}_2 \boxtimes 1)^* (\cdots),$$
$$= (\mathrm{ev}_2 \boxtimes 1)^* \left(\prod_{\lambda \in \mathsf{char}(\mathsf{T})} \prod_{\mathbf{x} \in \sqrt{(\mathrm{Nm}_{\mathsf{F}} \mathsf{X})_{\lambda}}} \frac{\prod_{c \leq 0} (\mathbf{x} + \lambda + cz)}{\prod_{c < \langle \lambda, k \rangle} (\mathbf{x} + \lambda + cz)} \right) =: (\mathrm{ev}_2 \boxtimes 1)^* (\cdots)$$

where $\sqrt{(Nm_F X)_{\lambda}}$ means the Chern roots of the bundle.

6.1.11. Computation. Now, let us evaluate

$$\begin{split} & \int_{\overline{\mathcal{M}}_{2}(E_{k},\tilde{\beta})} \operatorname{ev}^{*}(\iota_{0*}\gamma,\boxtimes\iota_{\infty*}\gamma'[k]) \\ &= \sum_{\beta_{1},\beta_{2},F} \int_{\overline{\mathcal{M}}_{2}(X_{0},\beta_{1})\times_{F}\overline{\mathcal{M}}_{2}(X_{\infty},\beta_{2})} \frac{(\operatorname{ev}_{1}\boxtimes\operatorname{ev}_{1})^{*}(\iota_{0}^{*}\iota_{0*}\gamma\boxtimes\iota_{\infty}^{*}\varphi'[k])}{\operatorname{Nm}(\cdots)} \\ &= \sum_{\beta_{1},\beta_{2},F} \int_{\overline{\mathcal{M}}_{2}(X_{0},\beta_{1})\times\overline{\mathcal{M}}_{2}(X_{\infty},\beta_{2})} \frac{(\iota_{0}^{*}\iota_{0*}\gamma\boxtimes\iota_{\infty}^{*}\varphi'[k])}{\operatorname{Nm}(\cdots)} (\operatorname{ev}_{2}\boxtimes\operatorname{ev}_{2})^{*}(\Delta_{F}) \\ &= \sum_{\beta_{1},\beta_{2},F} \sum_{w} \int_{\overline{\mathcal{M}}_{2}(X_{0},\beta_{1})} \frac{z\operatorname{ev}^{*}(\gamma\boxtimes\operatorname{i}_{F*}\sigma_{w}^{F})}{z(z-\psi_{1})} \cdot \operatorname{ev}_{2}^{*} \frac{1}{(\cdots)} \int_{\overline{\mathcal{M}}_{2}(X_{\infty},\beta_{2})} \frac{-z\operatorname{ev}^{*}(\gamma'[k]\boxtimes\operatorname{i}_{F*}\sigma_{F}^{W})}{-z(-z-\psi_{1})} \\ &= \sum_{\beta_{1},\beta_{2},F} \sum_{u,w} \int_{\overline{\mathcal{M}}_{2}(X_{0},\beta_{1})} \frac{z\operatorname{ev}^{*}(\gamma\boxtimes\operatorname{i}_{F*}\sigma_{w}^{F})}{z(z-\psi_{2})} \int_{\overline{\mathcal{M}}_{2}(X_{\infty},\beta_{2})} \frac{-z\operatorname{ev}^{*}(\gamma'[k]\boxtimes\operatorname{i}_{F*}\sigma_{F}^{W})}{-z(-z-\psi_{2})} \int_{F} \frac{\sigma_{F}^{w}\sigma_{u}^{F}}{(\cdots)} \end{split}$$

Here we omit the summand of $\beta_1, \beta_2 = 0$. Here we assume

$$[\Delta_{\mathsf{F}}] = \sum_{w} \sigma_{w}^{\mathsf{F}} \boxtimes \sigma_{\mathsf{F}}^{w} \in \mathsf{H}^{*}(\mathsf{F}) \subset \mathsf{H}^{*}_{\mathsf{T}}(X).$$

We find

$$\begin{split} \langle \tilde{\mathbb{S}}_{k}(\gamma), \gamma'[k] \rangle &= \sum_{F} q^{\sigma_{F}} \sum_{w,u} \langle \mathcal{M}(\gamma, z), \mathfrak{i}_{F*} \sigma_{w}^{F} \rangle \langle \mathcal{M}(\gamma', -z), \mathfrak{i}_{F*} \sigma_{F}^{u} \rangle [k] \int_{F} \frac{\sigma_{F}^{w} \sigma_{u}^{F}}{(\cdots)} \\ &= \sum_{u} \left\langle \mathcal{M}(\gamma, z), \sum_{F} q^{\sigma_{F}} \sum_{w} \mathfrak{i}_{F*} \sigma_{w}^{F} \int_{F} \frac{\sigma_{F}^{w} \sigma_{u}^{F}}{(\cdots)} \right\rangle \langle \mathcal{M}(\gamma', -z), \mathfrak{i}_{F*} \sigma_{F}^{u} \rangle [k] \\ &= \sum_{u} \left\langle \mathcal{M}(\gamma, z), \sum_{F} q^{\sigma_{F}} \frac{\mathfrak{i}_{F*} \sigma_{u}^{F}}{(\cdots)} \right\rangle \langle \mathcal{M}(\gamma', -z), \sigma_{F}^{u} \rangle [k]. \end{split}$$

We have

$$\begin{split} \langle (\tilde{\mathbb{S}}_{k}(\gamma))[-k], \gamma' \rangle &= \sum_{u} \left\langle M(\gamma, z), \sum_{F} q^{\sigma_{F}} \frac{i_{F*} \sigma_{u}^{F}}{(\cdots)} \right\rangle [-k] \langle M(\gamma', -z), \sigma_{F}^{u} \rangle \\ &= \sum_{u} \left\langle M(\gamma, z)[-k], \sum_{F} q^{\sigma_{F}} \frac{i_{F*} \sigma_{u}^{F}}{(\cdots)} [-k] \right\rangle \langle M(\gamma', -z), \sigma_{F}^{u} \rangle \end{split}$$

Let us compute

$$\frac{\mathfrak{i}_{\mathsf{F}*}\sigma_{\mathfrak{u}}^{\mathsf{F}}}{(\cdots)}[-k] = \frac{\mathfrak{i}_{\mathsf{F}*}\sigma_{\mathfrak{u}}^{\mathsf{F}}}{\mathrm{Eu}(\mathrm{Nm}_{\mathsf{F}}X)} \prod_{\lambda \in \mathsf{char}(\mathsf{T})} \prod_{x \in \sqrt{(\mathrm{Nm}_{\mathsf{F}}X)_{\lambda}}} \frac{\prod_{c \leq 0} (x+\lambda+cz)}{\prod_{c \leq -\langle \lambda, k \rangle} (x+\lambda+cz)}.$$

Let us denote

$$\Delta_{F} = \prod_{\lambda \in \mathsf{char}(T)} \prod_{x \in \sqrt{(\operatorname{Nm}_{F} X)_{\lambda}}} \frac{\prod_{c \leq 0} (x + \lambda + cz)}{\prod_{c \leq -\langle \lambda, k \rangle} (x + \lambda + cz)}.$$

Note that $\{i_{F*}\sigma_F^u\}$ is dual to $\left\{\frac{i_{F*}\sigma_u^F}{\operatorname{Eu}(\operatorname{Nm}_F X)}\right\}$, so

$$\langle (\tilde{\mathbb{S}}_{k}(\gamma))[-k], \gamma' \rangle = \left\langle \sum_{F} q^{\sigma_{F}} \Delta_{F} M(\gamma, z)[-k], M(\gamma', -z) \right\rangle.$$

By 5.3.6,

$$(\tilde{\mathbb{S}}_{k}(\gamma))[-k] = M^{-1}\left(\sum_{\mathsf{F}} \mathfrak{q}^{\sigma_{\mathsf{F}}} \Delta_{\mathsf{F}} \cdot M(\gamma, z)[-k], z\right).$$

6.1.12. Summary. Let us denote \mathbb{S}_k by

$$\mathbb{S}_{k}(\gamma) = (\tilde{\mathbb{S}}_{k}\gamma)[-k].$$

We have the following commutative diagram

$$\begin{array}{c|c} H_{\mathbb{T}}(X) & \xrightarrow{M(-,z)} & H_{\mathbb{T}}(X)(q) \\ & & & \downarrow_{\gamma \mapsto \bigoplus_{F} q^{\sigma_{F}} \Delta_{F}(\gamma[-k])} \\ & & & \downarrow_{\gamma \mapsto \bigoplus_{F} q^{\sigma_{F}} \Delta_{F}(\gamma[-k])} \\ & & H_{\mathbb{T}}(X)(q) & \xrightarrow{M(-,z)} & H_{\mathbb{T}}(X)(q) \end{array}$$

6.1.13. Corollary. We have

$$\mathbb{S}_k \circ \mathbb{S}_\ell = q^{(\cdots)} \mathbb{S}_{k+\ell}.$$

Since M is non-degenerate, this reduces to the following easy identity

$$\Delta_{\mathsf{F}}^{\ell} \cdot \Delta_{\mathsf{F}}^{k}[-\ell] = \Delta_{\mathsf{F}}^{k+\ell}.$$

6.1.14. Seidel element. Define

$$S_k = \lim_{z \to 0} \mathbb{S}_k(1) \in QH^*_T(X).$$

Note that

$$[z\partial_{\lambda} + \lambda, \sum_{F} q^{\sigma_{F}}\Delta_{F}] = z \sum_{F} (\partial_{\lambda}q^{\sigma_{F}})\Delta_{F} = o(z).$$

So

$$[\mathbb{S}_k, z\nabla_\lambda + \lambda *] = o(z).$$

Then by taking $z \to 0$, we see $\lim_{z\to 0} S_k$ commutes with the quantum product with a divisor. When $H^*_T(X)$ is generated by divisor (after localization), it is given by the quantum product with S_k .

6.1.15. *Remark.* When z = 1, we can write Δ_F in terms of Gauss Gamma function

$$\Gamma(s) = \int_0^\infty t^s e^{-t} \frac{dt}{t}$$

Recall that

$$\Gamma(s+1) = s\Gamma(s).$$

So when $a, b \in \mathbb{Z}$

$$\frac{\Gamma(s+a+1)}{\Gamma(s+b+1)} = \frac{(s+a)\Gamma(s+a)}{(s+b)\Gamma(s+b)} = \cdots$$
$$= \frac{(s+a)\cdots(s+c)\Gamma(s+c)}{(s+b)\cdots(s+c)\Gamma(s+c)} = \frac{\prod_{c \le a}(s+c)}{\prod_{c \le b}(s+c)}$$

As a result,

$$\begin{split} \Delta_F|_{z=1} &= \prod_{\lambda \in \mathsf{char}(T)} \prod_{x \in \sqrt{(\operatorname{Nm}_F X)_\lambda}} \frac{\Gamma(x + \lambda + 1)}{\Gamma(x + \lambda - \langle \lambda, k \rangle + 1)} \\ &= \frac{\prod_{x \in \sqrt{\operatorname{Nm}_F(X, \rho_k)}} \Gamma(x + 1)}{\prod_{x \in \sqrt{\operatorname{Nm}_F(X, \rho_0)}} \Gamma(x + 1)} [-k] \\ &=: \frac{\Gamma(1 + \operatorname{Nm}_F(X, \rho_k))}{\Gamma(1 + \operatorname{Nm}_F(X, \rho_0))} [-k]. \end{split}$$