Bumpless Pipe Dreams meet Puzzles

Neil. J.Y. Fan ${ }^{1}$, Peter L. Guo 2, and Rui Xiong ${ }^{3}$
${ }^{1}$ Sichuan University

${ }^{3}$ University of Ottawa
益 uOttawa

1 Introduction

Knutson and Zinn-Justin recently found a puzzle rule for the expansion of the product $\mathfrak{G}_{\mathfrak{u}}(x, t) \cdot \mathfrak{G}_{v}(x, t)$ of two double Grothendieck polynomials indexed by permutations with separated descents. We establish its triple Schubert calculus version in the sense of Knutson and Tao, namely, a formula for expanding $\mathfrak{G}_{u}(x, y) \cdot \mathfrak{G}_{v}(x, t)$ in different secondary variables. Our rule is formulated in terms of pipe puzzles, incorporating both the structures of bumpless pipe dreams and classical puzzles. As direct applications, we recover the separated-descent puzzle formula by Knutson and Zinn-Justin (by setting $y=t$) and the bumpless pipe dream model of double Grothendieck polynomials by Weigandt (by setting $v=\mathrm{id}$ and $x=\mathrm{t}$). Moreover, we utilize the formula to partially confirm a positivity conjecture of Kirillov about applying a skew operator to a Schubert polynomial.

2 Bumpless Pipe Dreams

Double schubert polynomials \mathfrak{S}_{w} for $w \in S_{\infty}$ are characterized by

$$
\begin{aligned}
\mathfrak{S}_{n \cdots 21} & =\prod_{i+j \leq n}\left(x_{i}-t_{j}\right) \\
\mathfrak{S}_{w s_{i}} & =\frac{\mathfrak{S}_{w}-\left.\mathfrak{S}_{w}\right|_{x_{i} \leftrightarrow x_{i+1}}}{x_{i}-x_{i+1}}, \quad \text { if } w(i)>w(i+1)
\end{aligned}
$$

They are the stable representatives of Schubert varieties in torus equivariant cohomology of flag varieties.

In [4], Lam, Lee and Shimozono found a (new) combinatorial model of computing it, known as bumpless pipe dream. Here is an example

So

$$
\begin{aligned}
\mathfrak{S}_{32514}(x, t) & =\left(x_{1}-t_{1}\right)\left(x_{1}-t_{2}\right)\left(x_{2}-t_{1}\right)\left(x_{3}-t_{1}\right)\left(x_{3}-t_{4}\right) \\
& +\left(x_{1}-t_{1}\right)\left(x_{1}-t_{2}\right)\left(x_{2}-t_{1}\right)\left(x_{2}-t_{2}\right)\left(x_{3}-t_{1}\right) \\
& +\left(x_{1}-t_{1}\right)\left(x_{1}-t_{2}\right)\left(x_{1}-t_{3}\right)\left(x_{2}-t_{1}\right)\left(x_{3}-t_{1}\right) .
\end{aligned}
$$

3 Puzzles

We would like to consider the Littlewood-Ricchardson coefficients $c_{u v}^{w}$ in the expansion

$$
\mathfrak{S}_{\mathfrak{u}} \cdot \mathfrak{S}_{v}=\sum_{w} c_{u v}^{w}(\mathrm{t}) \cdot \mathfrak{S}_{w}
$$

Recently, Knutson and Zinn-Justin [3] found a model for permutations of separated descents:
$\max (\operatorname{des}(u)) \leq k \leq \max (\operatorname{des}(v))$.
For example,

$$
\mathrm{c}_{42135,14532}^{53412}(\mathrm{t})=\left(\mathrm{t}_{4}-\mathrm{t}_{1}\right)+\left(\mathrm{t}_{5}-\mathrm{t}_{3}\right)+\left(\mathrm{t}_{3}-\mathrm{t}_{2}\right)
$$

4 Pipe Puzzles

Our main result generalizes the aforementioned results (and also their K-theory analogy). We are considering the triple version of Littlewood-Richardson coefficients

$$
\mathfrak{S}_{\mathfrak{u}}(x, y) \cdot \mathfrak{S}_{v}(x, t)=\sum_{w} c_{u v}^{w}(y, t) \cdot \mathfrak{S}_{w}(x, t)
$$

Assume u, v with separated descents

$$
\max (\operatorname{des}(u)) \leq k \leq \max (\operatorname{des}(v))
$$

Here is an example,

Our strategy is to check the model enjoys the same recurrence relations and initial condition. The proof follows from a classical trick of colored 6 vertex model. We remark that the above mentioned recurrence relations are no longer available in the case $y=t$. This means in some sense that while the problem of computing triple Schubert structure constants is broader, its proof could be simpler.

5 Applications

The case $y=t \quad$ If we specialize $y=t$, we will recover the separated descents puzzle mentioned above.

The case $k=n$ In this case, $u \in S_{\mathrm{n}}$ is arbitrary and v has to be id We will recover the model of bumpless pipe dream.

12345

The case $t=0$ In this case, it partially confirms the conjecture by Kirillov [1] which is equivalent to

$$
\mathfrak{S}_{u}(x) \mathfrak{S}_{v}(x, t) \in \sum_{w} \mathbb{Z}_{\geq 0}[t] \cdot \mathfrak{S}_{w}(x, t)
$$

References

[1] A. Kirillov, Skew divided difference operators and Schubert polynomials SIGMA Symmetry Integrability Geom. Methods Appl. 3 (2007), Paper 072, 14.
[2] A. Knutson and T. Tao, Puzzles and (equivariant) cohomology of Grassmanni Ans, Duke Math. J. 119 (2003), 221-260.
[3] A. Knutson and P. Zinn-Justin, Schubert puzzles and integrability III: separated descents, 2023, arXiv:2306.13855
[4] T. Lam, S.J. Lee and M. Shimozono, Back stable Schubert calculus, Compos Math. 157 (2021), 883-962.

