Motivic Lefschetz Theorem for twisted Milnor Hypersurfaces arXiv:2404.07314
 with Kirill Zainoulline

Rui Xiong

Simple algebras

Let F be a field. The study of simple algebras can be traced as follows.

- A simple F-algebra A, by Artin-Wedderburn theorem, is a matrix algebra over a division algebra:

$$
A=M_{n}(D)
$$

- A division algebra D is a central division algebra over its center:

$$
Z(D)=E \supset F
$$

- central division algebras are classified by the Brauer group:

$$
[D] \in \operatorname{Br}(E)=H^{2}\left(E, \mathbb{G}_{m}\right)
$$

Brauer Groups

The classical definition of Brauer group is

$$
\operatorname{Br}(F)=\frac{\{\text { central simple algebras over } F\}}{A \sim B \Longleftrightarrow M_{m}(A) \cong M_{n}(B)}
$$

Let A be a central simple algebra of degree n over F. Then $\operatorname{Aut}(A)$ is a twisted form of $P G L_{n}$, thus defines a class in

$$
[A] \in H^{1}\left(F, P G L_{n}\right) \subset H^{2}\left(F, \mathbb{G}_{m}\right)
$$

Here the inclusion is induced by the long exact sequence

$$
0 \longrightarrow \mathbb{G}_{m} \longrightarrow G L_{n} \longrightarrow P G L_{n} \longrightarrow 1
$$

Severi-Brauer variety

Let us denote the Severi-Brauer variety

$$
\mathrm{SB}(A)=\{I \subset A\}, \quad I \triangleleft_{r} A, \operatorname{dim} I=n
$$

This is a twisted form of the projective space \mathbb{P}^{n-1}. But the geometry is quite different from \mathbb{P}^{n-1}. For example, in general,

- There is no rational points. Actually,

$$
\mathrm{SB}(A)(E) \neq \varnothing \Longleftrightarrow A_{E} \simeq M_{n}(E) \Longleftrightarrow \mathrm{SB}(A)_{E} \cong \mathbb{P}_{E}^{n-1} .
$$

- There is no bundle behavior like $\mathcal{O}(1)$ over $\mathrm{SB}(A)$ in general. Otherwise, the intersection of hyperplane sections will produce a rational point.

Twisted Milnor Hypersurfaces

We can identify

$$
\mathrm{SB}\left(A^{\circ p}\right)=\{I \subset A\}, \quad I \triangleleft_{r} A, \operatorname{dim} I=n(n-1)
$$

which is also a twisted form of \mathbb{P}^{n-1}. Let us define the twisted Milnor hypersurface

$$
X=\left\{I_{1} \subset I_{n-1} \subset A\right\} \subset \mathrm{SB}(A) \times \mathrm{SB}\left(A^{o p}\right)
$$

cut by the section of the line bundle

$$
\left[\mathcal{I}_{1} \subset A \rightarrow A / \mathcal{I}_{n-1}\right] \in \mathcal{H o m}_{A}\left(\mathcal{I}_{1}, A / \mathcal{I}_{n-1}\right)
$$

Note that this is a twisted form of the incidence variety

$$
X_{0}:=F I(1, n-1 ; n)=\left\{V_{1} \subset V_{n-1} \subset F^{n}\right\}, \quad \operatorname{dim} V_{i}=i
$$

Cyclic algebras

There is a huge source of central simple algebras known as cyclic algebras.

Assume F contains a n-th primitive roots of unity ζ. We pick $a, b \in F^{\times}$. Let A be a cyclic algebra of degree n

$$
A=F\langle\mathbf{u}, v\rangle /\left\langle\mathbf{u}^{n}=a, v^{n}=b, u v=\zeta v u\right\rangle .
$$

This algebra is known to be a central simple algebra.

Problem

Given a prime p, it is an open problem of a construction of a non-cyclic division algebra of degree p over some field F.

固 Asher Auel, Eric Brussel, Skip Garibaldi, Uzi Vishne. Open Problems on Central Simple Algebras. Transformation Groups. June 2010.

The Hyperplane section

We define a hyperplane section of the twisted Milnor hypersurfaces X to be

$$
Y=\left\{\left(I_{1} \subset I_{n-1}\right) \in X: u I_{1} \subset I_{n-1}\right\} \subset X
$$

cut by the section of the line bundle

$$
\left[\mathcal{I}_{1} \subset A \xrightarrow{u} A \rightarrow A / \mathcal{I}_{n-1}\right] \in \mathcal{H o m}_{A}\left(\mathcal{I}_{1}, A / \mathcal{I}_{n-1}\right) .
$$

In other word, Y is a complete intersection of two sections from the same line bundle over $\mathrm{SB}(A) \times \mathrm{SB}\left(A^{o p}\right)$.

We will study the motivic decomposition of Y.

Motives

A Chow motive is a pair

$$
(X, p): \begin{aligned}
& X \text { is a smooth complete variety over } F, \\
& p \in \mathrm{CH}(X \times X) \text { is an idempotent. }
\end{aligned}
$$

A morphism $(X, p) \rightarrow(Y, q)$ is

$$
q \circ \mathrm{CH}(X \times Y) \circ p
$$

The Chow motives form an additive category, so we want to study how to decompose

$$
\mathcal{M}(X)=\left(X, \Delta_{X}\right)=\left(X, \operatorname{id}_{X}\right)
$$

into smaller direct summands.

Motivic decomposition

It is known that $\mathcal{M}(X)=$

Theorem (Calmès, Petrov, Semenov, Zainoulline, 2006)

$\mathcal{M}(\mathrm{SB}(A)) \oplus \mathcal{M}(\mathrm{SB}(A))(1) \oplus \cdots \oplus \mathcal{M}(\mathrm{SB}(A))(n-3) \oplus \mathcal{M}(\mathrm{SB}(A))(n-2)$.
Our result is $\mathcal{M}(Y)=$

Theorem (Xiong, Zainoulline, 2024)
 $\mathcal{M}(\mathrm{SB}(A)) \oplus \mathcal{M}(\mathrm{SB}(A))(1) \oplus \cdots \oplus \mathcal{M}(\mathrm{SB}(A))(n-3) \oplus \mathcal{M}(\operatorname{Spec} L)(n-2)$.

Here $L=F[\sqrt[n]{a}]$ is a field extension of F of degree n.
Since when A is a division algebra, $\mathcal{M}(\mathrm{SB}(A))$ is indecomposable, this is the best we can prove for general A.
Calmès, B.; Petrov, V.; Semenov, N.; Zainoulline, K. Chow motives of twisted flag varieties. Compos. Math. 142 (2006), no. 4, 1063-1080.

Example $(n=5)$

Hard Lefschetz

Recall the Hard Lefschetz theorem in complex algebraic geometry.

Theorem (Hard Lefschetz)

Let $\iota: Y \subset X$ be an ample smooth divisor. Then
the pullback the pushforward

$$
\iota^{*}: H^{*}(X) \longrightarrow H^{*}(Y) \quad \iota_{*}: H^{*}(Y) \longrightarrow H^{*+2}(X)
$$

is an isomorphism for $*<\operatorname{dim} Y \quad$ is an isomorphism for $*>\operatorname{dim} Y$.
The diagram is like this

$$
H^{0}(X) \quad H^{2}(X) \quad H^{4}(X) \quad H^{6}(X) \quad H^{8}(X) \quad H^{10}(X) \quad H^{12}(X) \quad H^{14}(X)
$$

Severi-Brauer part

The Severi-Brauer part of the decompostion can be viewed as an analogy of this theorem.

- In the motivic decomposition of $\mathcal{M}(X)$, the idempotents is given by

$$
g_{i} \circ f_{i}, \quad 0 \leq i \leq n-2 .
$$

- In the motivic decomposition of $\mathcal{M}(Y)$, the idempotents is given by

$$
\bar{g}_{i} \circ \bar{f}_{i+1}, \quad 0 \leq i \leq n-3
$$

where $\bar{*}$ is the restriction from X to Y.
Note that the shift of index is a feature of Lefschetz type theorem.

Example $(n=5)$

Monodromy Actions (I)

Hodge theory also gives us hint about how the middle dimension cohomology supposed to be.

Theorem (Deligne invariant cycle theorem)

$\operatorname{im}\left[H^{*}(X) \longrightarrow H^{*}(Y)\right]=$ monodromy invariant component.
This is over \mathbb{C}. While in our case, the Galois group $\Gamma_{L}=\operatorname{Gal}(L / F)$ will be a part of monodromy.

Universal family

We can consider the universal family of hyperplane sections

$$
\mathcal{Y}=\left\{\left(I_{1} \subset I_{n-1}, x\right) \in X \times A: x I_{1} \subset I_{n-1}\right\} \xrightarrow{\mathrm{pr}_{2}} A
$$

Thus Y is the fibre at $u \in A$.
Let us assume at this moment $F=\mathbb{C}$.

Theorem (Ehresmann's fibration theorem)

The space \mathcal{Y} is a topological fibre bundle over the smooth locus $A^{\text {sm }}$.
In particular, the fundamental group $\pi_{1}\left(A^{s m}\right)$ acts on the cohomlogy of the any smooth fibre (called the monodromy).

Artin braid group

It is not hard to see, $a \in A^{s m}$ if and only if the reduced characteristic polynomial of u has no multiple roots (i.e. a is a regular semisimple element).

Over \mathbb{C}, it is well-known that

$$
\pi_{1}\left(A^{s m}\right)=\mathfrak{B}_{n}=\{
$$

The monodromy action factors through the symmetric group S_{n}.
For general F, philosophically speaking, Galois group plays the role of (at least, a part of) monodromy.

1-cocycle

Recall $L=F[\sqrt[n]{a}]$. We know there is an L-algebra isomorphism

$$
\rho: A_{L} \simeq M_{n}(L) .
$$

But this does not commute with the obvious Galois group actions. The obstruction is recorded in a 1 -cocycle

$$
\begin{aligned}
\mathfrak{a}: \Gamma_{L} & \longrightarrow \operatorname{Aut}_{L}\left(M_{n}(L)\right) \simeq P G L_{n}(L), \\
\sigma & \longmapsto \mathfrak{a}_{\sigma}=\rho \circ \sigma \circ \rho^{-1} \circ \sigma^{-1} .
\end{aligned}
$$

In our case, we can compute this 1-cocycle explicitly:

- $\mathfrak{a}_{\sigma} \in N_{P G L_{n}}(T)(F) \subset P G L_{n}(F) \subset P G L_{n}(L)$
- \mathfrak{a} is actually a group homomorphism.

Monodromy Actions (II)

As we mentioned, X is a twisted form of

$$
X_{0}=F I(1, n-1 ; n)=\left\{V_{1} \subset V_{n-1} \subset F^{n}\right\}, \quad \operatorname{dim} V_{i}=i
$$

Thus ρ induces an isomorphism $X_{L} \simeq X_{0 L}$. On the geometric side, we have

This will allow us computing the monodromy action.

Torus fixed points

Note that X_{0} admits an action of the standard maximal torus $T \subset P G L_{n}$. The torus fixed point are given by

$$
[i j]=\left(\operatorname{span}\left(e_{i}\right) \subseteq \operatorname{span}\left(e_{1}, \ldots, \not \oplus_{j}, \ldots, e_{n}\right)\right), \quad 1 \leq i \neq j \leq n
$$

Then by the isomorphism $X_{L} \simeq X_{0 L}$, the torus T_{L} acts on X_{L}. Since L contains all eigenvalues of $u \in A$, we can assume the image of u is diagonal. So T_{L} also acts on Y_{L} and one can check directly that

$$
Y_{L}^{T_{L}}=X_{L}^{T_{L}}
$$

In particular, $\operatorname{rank} \mathrm{CH}\left(Y_{L}\right)=\operatorname{rank} \mathrm{CH}\left(X_{L}\right)$.

Monodromy Actions (III)

Now by taking torus fixed points, we get the following diagram

It is obvious that \mathfrak{a}_{σ} permutes [ij]. Explicit computation shows that it is induced by the n-cycle

$$
1 \stackrel{\eta}{\longmapsto} 2 \stackrel{\eta}{\longmapsto} \cdots n \stackrel{\eta}{\longmapsto} 1
$$

where $\eta \in \Gamma_{L}$ such that $\eta(\sqrt[n]{a})=\zeta \sqrt[n]{a}$.

Equivariant Chow ring

The T-invariance of the varieties allows us to consider T-equivariant Chow rings. Assume T splits. We have

Theorem (Brion, [Br97])

- $\mathrm{CH}_{T}(\mathrm{pt})=\operatorname{Sym}_{\mathbb{Z}} T^{*}$;
- the usual Chow ring $\mathrm{CH}(X)$ is a quotient of $\mathrm{CH}_{T}(X)$.

The main benefit of considering equivariantly is the localization theorem.

Theorem (Brion, [Br97])

Let X be a projective, nonsingular variety with an action of T. Then the restriction $\mathrm{CH}_{T}(X) \longrightarrow \mathrm{CH}_{T}\left(X^{T}\right)$ is injective.

Brion, M. Equivariant Chow groups for torus actions. Transform. Groups 2 (1997), no. 3, 225-267.

Monodromy Actions (IV)

As a result, we can lift the Galois group action to equivariant Chow ring where we can play the trick of localization theorem.

where

$$
\widehat{\sigma}\left(\varphi_{i j}\right)_{i j}=\left(\sigma \varphi_{\sigma^{-1}(i) \sigma^{-1}(j)}\right)_{i j}, \quad \varphi_{i j} \in \operatorname{Sym}_{\mathbb{Z}} T^{*}
$$

This will allow us computing the monodromy action combinatorially.

T-stable curves

Let us consider the following T-stable curves over X_{0}
(i) a root-conic curve connecting [ij] and [ji]:
$\mathbb{P}^{1} \ni[x: y] \mapsto\left(\operatorname{span}\left(x e_{i}+y e_{j}\right) \subset \operatorname{span}\left(e_{1}, \ldots, \not \not_{i}, \ldots, \not \oiint_{j}, \ldots, e_{n}, x e_{i}+y e_{j}\right)\right)$,
(ii) a plane curve connecting [ij] and [ik] (for distinct i, j, k):

$$
\mathbb{P}^{1} \ni[x: y] \mapsto\left(\operatorname{span}\left(e_{i}\right) \subset \operatorname{span}\left(e_{1}, \ldots, \not \oiint_{j}, \ldots, \not \not_{k}, \ldots, e_{n}, y e_{j}+x e_{k}\right)\right)
$$

(iii) a plane curve connecting [ij] and $[k j]$ (for distinct i, j, k):

$$
\mathbb{P}^{1} \ni[x: y] \mapsto\left(\operatorname{span}\left(x e_{i}+y e_{k}\right) \subset \operatorname{span}\left(e_{1}, \ldots, \not \not_{j}, \ldots, e_{n}\right)\right) .
$$

Theorem (Benedetti, Perrin, [BP22])

All T_{L}-stable curves over Y_{L} are plane curves.
Benedetti, V.; Perrin, N. Cohomology of hyperplane sections of (co)adjoint varieties. arXiv:2207.02089.

Equivariant cohomology

Let us define a graph with $n(n-1)$ vertices denoted $[i j], 1 \leq i \neq j \leq n$, which has two types of labelled edges

$$
[i j] \stackrel{\alpha_{j k}}{[i k]} \text { and }[i j] \stackrel{\alpha_{i k}}{ }[k j], \quad \text { where all } i, j, k \text { are distinct, }
$$ and $\alpha_{i j}=t_{i}-t_{j} \in T^{*}$.

Theorem

$$
\mathrm{CH}_{T_{L}}\left(Y_{L}\right) \simeq\left\{\left(\varphi_{i j}\right)_{i j}: \alpha \mid \varphi_{i j}-\varphi_{k h} \text { for any edge }[i j] \stackrel{\alpha}{ }[k h]\right\}
$$

This is a particular case [Br97, §3].

Example $(n=5)$

Poincaré pairing

We are now able to construct classes in $\mathrm{CH}_{T}\left(Y_{L}\right)$, but we need make sure they are non-zero under the forgetful map

$$
\mathrm{CH}_{T}\left(Y_{L}\right) \longrightarrow \mathrm{CH}\left(Y_{L}\right)
$$

The answer is the Poincaré pairing, which can be computed equivariantly.

Theorem

The Poincaré pairing is given by

$$
\langle\varphi, \psi\rangle_{Y_{L}}=\sum_{1 \leq i \neq j \leq n} \frac{\varphi_{i j} \psi_{i j}}{\prod_{s \neq i, j} \alpha_{i s} \alpha_{s j}} .
$$

Note that $\pm \alpha_{i s}$ and $\pm \alpha_{s j}$ are exactly the labels of edges joint [ij].

Hodge-Riemann relation

The last piece of $\mathcal{M}(Y)$, the Artin motive $\mathcal{M}(\operatorname{Spec} L)$, is supported on the primitive space (in terms of Hodge theory).

The Hodge-Riemann relations predicts the index of the intersection form over the primitive space

So the intersection form should be of $(-1)^{n-2}$-definite.

Monodromy actions (V)

We then constructed cycles

$$
\gamma_{\ell} \in \bigoplus_{1 \leq i \neq j \leq n} \operatorname{Sym}_{\mathbb{Z}} T^{*} \quad \text { with properties }\left\{\begin{array}{l}
\gamma_{\ell} \in \mathrm{CH}_{T}^{n-2}\left(Y_{L}\right) \\
\widehat{\sigma} \gamma_{\ell}=\gamma_{\sigma(\ell)}, \sigma \in \Gamma_{L} \\
\left\langle\gamma_{k}, \gamma_{\ell}\right\rangle Y_{L}=(-1)^{n-2} \delta_{k, \ell}
\end{array}\right.
$$

One can show further that they are orthogonal to the Severi-Brauer parts, and give the last motive $\mathcal{M}(\operatorname{Spec} L)$.

THANKS

