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Simple algebras

Let F be a field. The study of simple algebras can be traced as follows.
A simple F -algebra A, by Artin–Wedderburn theorem, is a matrix
algebra over a division algebra:

A = Mn(D).

A division algebra D is a central division algebra over its center:

Z (D) = E ⊃ F .

central division algebras are classified by the Brauer group:

[D] ∈ Br(E ) = H2(E ,Gm).
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Brauer Groups

The classical definition of Brauer group is

Br(F ) =

{
central simple algebras over F

}
A ∼ B ⇐⇒ Mm(A) ∼= Mn(B)

.

Let A be a central simple algebra of degree n over F . Then Aut(A) is a
twisted form of PGLn, thus defines a class in

[A] ∈ H1(F ,PGLn) ⊂ H2(F ,Gm).

Here the inclusion is induced by the long exact sequence

0 −→ Gm −→ GLn −→ PGLn −→ 1.
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Severi–Brauer variety

Let us denote the Severi–Brauer variety

SB(A) = {I ⊂ A}, I ◁r A, dim I = n.

This is a twisted form of the projective space Pn−1. But the geometry is
quite different from Pn−1. For example, in general,

There is no rational points. Actually,

SB(A)(E ) ̸= ∅ ⇐⇒ AE ≃ Mn(E ) ⇐⇒ SB(A)E ∼= Pn−1
E .

There is no bundle behavior like O(1) over SB(A) in general.
Otherwise, the intersection of hyperplane sections will produce a
rational point.
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Twisted Milnor Hypersurfaces

We can identify

SB(Aop) = {I ⊂ A}, I ◁r A, dim I = n(n − 1)

which is also a twisted form of Pn−1. Let us define the twisted Milnor
hypersurface

X = {I1 ⊂ In−1 ⊂ A} ⊂ SB(A)× SB(Aop)

cut by the section of the line bundle

[I1 ⊂ A → A/In−1] ∈ HomA(I1,A/In−1)

Note that this is a twisted form of the incidence variety

X0 := Fl(1, n − 1; n) = {V1 ⊂ Vn−1 ⊂ F n}, dimVi = i .
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Cyclic algebras

There is a huge source of central simple algebras known as cyclic
algebras.

Assume F contains a n-th primitive roots of unity ζ. We pick a, b ∈ F×.
Let A be a cyclic algebra of degree n

A = F ⟨u, v⟩/⟨un = a, vn = b,uv = ζvu⟩.

This algebra is known to be a central simple algebra.

Problem
Given a prime p, it is an open problem of a construction of a non-cyclic
division algebra of degree p over some field F .

Asher Auel, Eric Brussel, Skip Garibaldi, Uzi Vishne. Open
Problems on Central Simple Algebras. Transformation Groups.
June 2010.
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The Hyperplane section

We define a hyperplane section of the twisted Milnor hypersurfaces X
to be

Y = {(I1 ⊂ In−1) ∈ X : uI1 ⊂ In−1} ⊂ X

cut by the section of the line bundle

[I1 ⊂ A
u→ A → A/In−1] ∈ HomA(I1,A/In−1).

In other word, Y is a complete intersection of two sections from the
same line bundle over SB(A)× SB(Aop).

We will study the motivic decomposition of Y .
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Motives

A Chow motive is a pair

(X , p) :
X is a smooth complete variety over F ,
p ∈ CH(X × X ) is an idempotent.

A morphism (X , p) → (Y , q) is

q ◦ CH(X × Y ) ◦ p.

The Chow motives form an additive category, so we want to study
how to decompose

M(X ) = (X , ∆X ) = (X , idX )

into smaller direct summands.
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Motivic decomposition

It is known that M(X ) =

Theorem (Calmès, Petrov, Semenov, Zainoulline, 2006)
M(SB(A))⊕M(SB(A))(1)⊕· · ·⊕M(SB(A))(n−3)⊕M(SB(A))(n−2).

Our result is M(Y ) =

Theorem (Xiong, Zainoulline, 2024)
M(SB(A))⊕M(SB(A))(1)⊕· · ·⊕M(SB(A))(n−3)⊕M(Spec L)(n−2).

Here L = F [ n
√
a] is a field extension of F of degree n.

Since when A is a division algebra, M(SB(A)) is indecomposable, this
is the best we can prove for general A.

Calmès, B.; Petrov, V.; Semenov, N.; Zainoulline, K. Chow motives
of twisted flag varieties. Compos. Math. 142 (2006), no. 4, 1063–1080.
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Example (n = 5)
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Hard Lefschetz

Recall the Hard Lefschetz theorem in complex algebraic geometry.

Theorem (Hard Lefschetz)
Let ι : Y ⊂ X be an ample smooth divisor. Then

the pullback

ι∗ : H∗(X ) −→ H∗(Y )

is an isomorphism for ∗ < dimY

the pushforward

ι∗ : H
∗(Y ) −→ H∗+2(X )

is an isomorphism for ∗ > dimY .

The diagram is like this

H0(X ) H2(X ) H4(X ) H6(X )

��

H8(X )

��

H10(X )

��

H12(X )

��

H14(X )

H0(Y )

HH

H2(Y )

HH

H4(Y )

HH

H6(Y )

HH

H8(Y ) H10(Y ) H12(Y )
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Severi–Brauer part

The Severi–Brauer part of the decompostion can be viewed as an
analogy of this theorem.

In the motivic decomposition of M(X ), the idempotents is given
by

gi ◦ fi , 0 ≤ i ≤ n − 2.

In the motivic decomposition of M(Y ), the idempotents is given
by

g i ◦ f i+1, 0 ≤ i ≤ n − 3

where ∗ is the restriction from X to Y .
Note that the shift of index is a feature of Lefschetz type theorem.
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Example (n = 5)
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Monodromy Actions (I)

Hodge theory also gives us hint about how the middle dimension
cohomology supposed to be.

Theorem (Deligne invariant cycle theorem)

im
[
H∗(X ) −→ H∗(Y )

]
= monodromy invariant component.

This is over C. While in our case, the Galois group ΓL = Gal(L/F ) will
be a part of monodromy.

YL
//

��

σ

��
Spec L

��

σ

��

Y // SpecF
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Universal family

We can consider the universal family of hyperplane sections

Y =
{
(I1 ⊂ In−1, x) ∈ X × A : xI1 ⊂ In−1

} pr2−→ A.

Thus Y is the fibre at u ∈ A.

Let us assume at this moment F = C.

Theorem (Ehresmann’s fibration theorem)
The space Y is a topological fibre bundle over the smooth locus Asm.

In particular , the fundamental group π1(Asm) acts on the cohomlogy
of the any smooth fibre (called the monodromy).
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Artin braid group

It is not hard to see, a ∈ Asm if and only if the reduced characteristic
polynomial of u has no multiple roots (i.e. a is a regular semisimple
element).

Over C, it is well-known that

π1(A
sm) = Bn =

 , · · ·


The monodromy action factors through the symmetric group Sn.

For general F , philosophically speaking, Galois group plays the role of
(at least, a part of) monodromy.
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1-cocycle

Recall L = F [ n
√
a]. We know there is an L-algebra isomorphism

ρ : AL ≃ Mn(L).

But this does not commute with the obvious Galois group actions. The
obstruction is recorded in a 1-cocycle

a : ΓL−→AutL(Mn(L)) ≃ PGLn(L),
σ 7−→ aσ = ρ ◦ σ ◦ ρ−1 ◦ σ−1.

In our case, we can compute this 1-cocycle explicitly:
aσ ∈ NPGLn(T )(F ) ⊂ PGLn(F ) ⊂ PGLn(L)

a is actually a group homomorphism.

Rui Xiong Motivic Lefschetz Theorem for twisted Milnor Hypersurfaces arXiv:2404.07314 17 / 29

https://arxiv.org/abs/2404.07314


Monodromy Actions (II)

As we mentioned, X is a twisted form of

X0 = Fl(1, n − 1; n) = {V1 ⊂ Vn−1 ⊂ F n}, dimVi = i .

Thus ρ induces an isomorphism XL ≃ X0L. On the geometric side, we
have

YL
⊂ //

σ

��

XL
≃
ρ
//

σ

��

X0L

aσ×σ
��

YL
⊂ // XL

≃
ρ
// X0L

This will allow us computing the monodromy action.
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Torus fixed points

Note that X0 admits an action of the standard maximal torus
T ⊂ PGLn. The torus fixed point are given by

[ij ] =
(
span(ei ) ⊆ span(e1, . . . , ̸e j , . . . , en)

)
, 1 ≤ i ̸= j ≤ n.

Then by the isomorphism XL ≃ X0L, the torus TL acts on XL. Since L
contains all eigenvalues of u ∈ A, we can assume the image of u is
diagonal. So TL also acts on YL and one can check directly that

Y TL
L = XTL

L

In particular, rankCH(YL) = rankCH(XL).
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Monodromy Actions (III)

Now by taking torus fixed points, we get the following diagram

Y TL
L

σ

��

XTL
L

ρ //

σ

��

XT
0 × Spec L

aσ×σ
��

∐
1≤i ̸=j≤n[ij ]L

aσ×σ
��

Y TL
L XTL

L

ρ // XT
0 × Spec L

∐
1≤i ̸=j≤n[ij ]L.

It is obvious that aσ permutes [ij ]. Explicit computation shows that it is
induced by the n-cycle

1
η7−→ 2

η7−→ · · · n η7−→ 1

where η ∈ ΓL such that η( n
√
a) = ζ n

√
a.
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Equivariant Chow ring

The T -invariance of the varieties allows us to consider T -equivariant
Chow rings. Assume T splits. We have

Theorem (Brion, [Br97])
CHT (pt) = SymZ T

∗;
the usual Chow ring CH(X ) is a quotient of CHT (X ).

The main benefit of considering equivariantly is the localization
theorem.

Theorem (Brion, [Br97])
Let X be a projective, nonsingular variety with an action of T . Then the
restriction CHT (X ) −→ CHT (X

T ) is injective.

Brion, M. Equivariant Chow groups for torus actions. Transform.
Groups 2 (1997), no. 3, 225–267.
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Monodromy Actions (IV)

As a result, we can lift the Galois group action to equivariant Chow
ring where we can play the trick of localization theorem.

CHTL
(YL)

σ

��

CHTL
(XL)

σ

��

ı∗oo CHTL
(X0L)

� � //ρ∗oo

aσ×σ
��

⊕
1≤i ̸=j≤n SymZ T

∗

σ̂

��
CHTL

(YL) CHTL
(XL)

ı∗oo CHTL
(X0L)

� � //ρ∗oo
⊕

1≤i ̸=j≤n SymZ T
∗.

where
σ̂(φij

)
ij
= (σφσ-1(i)σ-1(j))ij , φij ∈ SymZ T

∗.

This will allow us computing the monodromy action combinatorially.
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T -stable curves

Let us consider the following T -stable curves over X0

(i) a root-conic curve connecting [ij ] and [ji ]:

P1 ∋ [x : y ] 7→ (
span(xei+yej) ⊂ span(e1, . . . , ̸e i , . . . , ̸e j , . . . , en, xei+yej)

)
,

(ii) a plane curve connecting [ij ] and [ik] (for distinct i , j , k):

P1 ∋ [x : y ] 7→ (
span(ei ) ⊂ span(e1, . . . , ̸e j , . . . , ̸ek , . . . , en, yej+xek)

)
,

(iii) a plane curve connecting [ij ] and [kj ] (for distinct i , j , k):

P1 ∋ [x : y ] 7→ (
span(xei + yek) ⊂ span(e1, . . . , ̸e j , . . . , en)

)
.

Theorem (Benedetti, Perrin, [BP22])
All TL-stable curves over YL are plane curves.

Benedetti, V.; Perrin, N. Cohomology of hyperplane sections of
(co)adjoint varieties. arXiv:2207.02089.
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Equivariant cohomology

Let us define a graph with n(n − 1) vertices denoted [ij ], 1 ≤ i ̸= j ≤ n,
which has two types of labelled edges

[ij ]
αjk—— [ik ] and [ij ]

αik—— [kj ], where all i , j , k are distinct,

and αij = ti − tj ∈ T ∗.

Theorem

CHTL
(YL) ≃

{
(φij)ij : α | φij −φkh for any edge [ij ] α— [kh]

}
.

This is a particular case [Br97, §3].
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Example (n = 5)
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Poincaré pairing

We are now able to construct classes in CHT (YL), but we need make
sure they are non-zero under the forgetful map

CHT (YL) −−−↠ CH(YL).

The answer is the Poincaré pairing, which can be computed
equivariantly.

Theorem
The Poincaré pairing is given by

⟨φ,ψ⟩YL
=

∑
1≤i ̸=j≤n

φijψij∏
s ̸=i ,j αisαsj

.

Note that ±αis and ±αsj are exactly the labels of edges joint [ij ].
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Hodge–Riemann relation

The last piece of M(Y ), the Artin motive M(Spec L), is supported on
the primitive space (in terms of Hodge theory).

The Hodge–Riemann relations predicts the index of the intersection
form over the primitive space

So the intersection form should be of (−1)n−2-definite.
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Monodromy actions (V)

We then constructed cycles

γℓ ∈
⊕

1≤i ̸=j≤n

SymZ T
∗ with properties


γℓ ∈ CHn−2

T (YL),

σ̂γℓ = γσ(ℓ), σ ∈ ΓL,

⟨γk , γℓ⟩YL
= (−1)n−2δk,ℓ.

One can show further that they are orthogonal to the Severi–Brauer
parts, and give the last motive M(Spec L). Q.E.D.
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