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2 NOTES ON MACDONALD POLYNOMIALS

1. DOUBLE AFFINE HECKE ALGEBRAS

1.1. Affine Weyl groups. Let us fix a finite root system. The affine
Weyl group is
—~ Q" = coroot lattice

— 0V _ v
W=@ X W =Wnx( W = Weyl group

The group W acts
on QY = /W/W affinely: | on Q = Q & Z& linearly:
(wty) - p=wA+pn). | (wty) - (a+kd) =wa+ (k— (N «a))d.

The set of (positive) real roots is

~ S aeA ~r ~k>0or
A—{a—i—kﬁ. ke7 }, A —{a—i—k‘(s. k‘zl,a>0}'

For any a = o + kd, we can define the reflection

ra = ratk;av = t_kav'r'a.

Assume the Dynkin diagram of R is connected, then there is a highest
root . We denote

So = T—-p+6 = Tgt,gv = tgvrg.

Then W is Coxeter system with I = I U {0}. For 2 = wt, € W, the
length is

Inv(z) = AT NatA-

l(x) = #Inv(z), where _(GeAtzacA)

We have a very famous formula

fwty) = Y

acAt

(o, Ay + [wa < 0]

Actually, if we denote for a > 0, the set
Inv,(z) = {£a+ kd € Inv(z)},
we have

Inv, (wty) = {a + kéock<(an+wa<ol; (o, Ay >0,
@ {—a + k5}0<k§—<a7>\>_[wa<0}, <a7 )\> <0,
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1.2. Affine Hecke Algebras. Let H,(W) be the Hecke algebra for
the Coxeter system W. We have

T,T, =T,, if
= T, atly zy
DT 1)) = o).
zeW
Let us denote Y for A € QY as follows. For dominant A\, we define
YA = t=OAT, ¢ for general \, we define Y» = Y 1(Y),)™! if we can
write A = A\ — >\2 with A1, Ag domlnant This is well-defined since for

dominant A € QV
=D He N =2(p, A).
a>0
Denote
H,(W) = @ Q¢ - T, = Hecke algebra for W
weW

= @ Q; - Y* = group ring of Q.

AEQY
Then ﬁt(W) contains them as subalgebras and
Hy(W) = QY] ® Hy(W) (as a vector space),

with intertwine
Ysz)\ . Y/\
Here our convention of quadratic relation for Hecke algebras is
(T —t)(T+1)=0.
We will check this relation soon after introducing extended affine Hecke
algebras. R
Consider the Bernstein representation of H:(1W') on Q [Y]:

-1

Y o —1

LYY — Y5 = (t — 1)

T; — Demazure-Lusztig operator =t s; + (t — 1)
Y — multiplication by Y.

It defines a faithful representation of ﬁt(W) Actually, it is isomorphic
to Hy(W) ®@u,w) Q¢ with T; — t on Q; (i € I).
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1.3. Extended affine Hecke algebras. Define extended affine Weyl
group

—

W, =W x PV =P xW.
It acts on PY and @ = Q ® 7Zd. We can extend the length function to
W, using the same expression. We have

WCZ/WNQ:QM/W.

Define the extended affine Hecke algebra

— —

H,(W,) = Q x H(W) 222 Q,[Q] ® Hy(W).

Then we have
. T,T, = Ty, if
BV = D QT i) ) 't

€W,

We can define Y? in the same manner. To check the intertwine, it
suffices to check for fundamental coweights € PV since it is true for
A — p if it is true for A and p. It reduces to check the following (A is
dominant)

HY* = Y H, | HY* H, = Y (H; — tY*)(H,; + /%) = 0.

Sketch for the second case. Denote X' = s;A. Then X + ) is dominant.
Using the length formula, we can check

tyvar = (tasi)(sita)
is a reduced decomposition i.e. £(ty1x) = l(tys;) + €(s;ity). Then
YA = HtA/M = (HtA/Hfl)(Hz‘ilHtx) = (HtA/Hfl)(Hle)\)-
Thus YV = Ti,, H[Q, SO

HYYH, = HT, ,H' = H, =Y
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ot

1.4. Double affine Hecke algebras. Let us denote Qg = Q(

q,
for short. Let us denote Qq¢[X] = D cq Qg - X For a+kd € Q
Q ® Z6, we denote

t)

XOotks _ gk xa
i.e. ¢ = X°. So we can identify
Qq,t[X] = a localization of the group ring of @ =QDZ6.
We define double affine Hecke algebras
Hy (W) = Qqu[X] @ Hy(W)
with intertwine for ¢ € I U {0}
XA _ X
Here, X = g X% Note that there is no minus. Note that q is

central, thus we can just record it in the base field. )
We define the following Cherednik’s representation of Hg (W) on

@q,t [X] by

T; — Demazure—Lusztig operator = ts; + (t — 1)

T,X* — X5, = (t — 1)

Si—l
Xoi — 1

X* — multiplication by X*

It is a faithful representation isomorphic to qut(W) R, (W) Qg+ With
T;—ton Qg (1 € IU{0}).

It is clear that T; (i € i) and X* (X € Q) generate the affine Hecke
algebra H,(W") of the dual root system. Let us denote 7Y = T} for i €
I. Denote Ty such that for anti-dominant weight A, X* = ¢=¢"NT.
Then T, (1 € I U{0}) generate ﬁq,t(WV).

In summary, we have

Hq t(W)

C )
Hoo(W)  Hae(WY)
C N C N

Qq,t [Y

=

a.t(W) Qq.t[X]
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Actually, the following is an isomorphism
T 1,
Hy (W) — Hy (W), q—qt—t
X YR YA s XA
Proof is technical and can be found in [Mac2, §3.5-3.7] and [Hai, §4].
The duality switches two copies of affine Hecke algebra induced from

the bar-involution.
Compare:

) N ;
Vi =P, (u€ Q" dominant),
Xt = t’<pv”\>Tt\i (A € Q anti-dominant).

where ¢ € R is the root with the coroot ¢V highest. Let 6 be the
highest root, and ¢ the root such that ¢¥ is the highest coroot. Note

that ¢ = 0 if and only if the Dynkin diagram is simply connected.
Then

Ty = t<p’0>Y0VTr—91 (tev = so79),
Ty = tWOTAX ™0 (tg = r450).

2. MACDONALD POLYNOMIALS
2.1. Cherednik’s representation. Let P be the weight lattice. Let

us denote
R:@Qw-e)‘, e’ =q.

AeP
We twist the Cherednik’s representation H,(W) on R by
S; — 1
e —1

T; — Demazure-Lusztig operator = ts; + (t — 1)

Recall that e = ge™’. Note that
Q:[Y] € H, (W)

is a family of commutative operators over R, thus can be upper trian-
gulated simultaneously. Actually, we are going to prove the eigenvalues
are different and thus can be diagonalized simultaneously.
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Let us define an order over P. We denote < the dominant order.
AT < utor

A<p = A =put <A

Here \* stands the dominant weight in the W-orbit of \. We are going
to show

yHer =t g= A A 4 (lower terms),

2 —a, (A\a) <0.

a>0
maximal element such that A = wA™*, then wp = p,.

The proof goes as follows. Denote for any root & an operator

1
where p) = = Z {Oé’ (A, a) > 0’. We remark that if w € W is the

1—r,

e~ —1

Note that T; — s;G(a;) and wG(a)w™! = G(wa). For any = € W, if
we pick a reduced word = = s;, 8, - - - 84,

= SilG(ah)SizG(aiz) o SizG(aie)

= Si Si2G(Si2ai1)G(ai2) T SieG(aie)

= xG(sie T 8i2ai1)G(sie e 8i305i2) T G(aie)'

G@) =t+(t—1)

Note that
{Si, =+ SiyQiyy Siy =+ * SigQiyy - -+ sy, } = Inv(z).
Thus for x = ¢, with ¢ dominant, we have
YH — t*<u,p>Ttu S t*(;«p&ﬂ@(ﬁl)g(&) .. G(ﬁe)

such that

{51, 52, Ce ,ﬁg} = IHV(tu>.

Note that any positive root of Inv(¢,) is of the form o+ kd for a > 0.
Let us study G(«) for @« mod § > 0. We can compute obtain directly

Gla)e* = e* + (lower terms), (A, ) >0,
| tet + (lower terms), (A, ) < 0.
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Here is an example in A, we have

(a,A) [-2 -1 0 1 2 {a,\) [-2 -1 0 1 2

e 1 e 1

Gla)er | t t-1 t-1 G(a)er | 0 1-t 1
Thus

YHer = (oo o= A= ()8 (lower terms)
=t~ g=Amed 4 (lower terms).

By definition of Y*, this extends to all 4 € Q. This shows Qg.[Y]
has different eigenvalues.

2.2. Nonsymmetric Macdonald polynomials. By above, there ex-
ists a unique E) € R called non-symmmetric Macdonald polynomials
such that
(1) E) = e* + (lower terms);
(2) YHE, =t~ (g~ By
Actually, E, can be constructed by the standard diagonalization trick.
Since (2) determines E up to a scalar, the condition of (1) by requiring
the coefficient of e* is 1:
(17) [e/\]EA =1.
For example:
® E() =1
e for a minuscule weight \, we have E\ = e”.
e for any weight A, we have E\ = e mod (t — 1).
Next, let us describe an induction formula for E,. If s;\ > A for
some i € I, i.e. (A a)) >0, then

t—1
Esi/\ = (ﬂ + t(vaapq(’\’o‘D — 1> E/\.

Let us check the two conditions. (1) is obvious by direct computa-~
tion. Let us check (2). Let us denote

t—1

m € a localization of f[t(W)

Tl:ﬂ‘i‘
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Note that the right-hand side is nothing but 7; E/y. The key observation
is

7,YH = Y®#r, € a localization of f[t(W)
Actually, it suffices to check this under the Bernstein representation:
s;— 1 N t—1 ty -« —1
v v = v 87,
Y~ -1 Y —1 Y —1

The standard trick tells
YHrE)) = 1,Y " Ey = Tt Pt g=usim) fry
— t*<psix,u>q*<sm,u> (1:Ey).

The proof is complete.

We can extend the induction formula to ¢ = 0 by introducing a
similar operator 7p. But for type A, it is simpler to make use of the
symmetry of the affine root system, see [Hai §2].

2.3. Center characters. The argument above tells for any A, we still
have

t—1
Esik € Q‘Lt ) (TVZ + t<p)\7a\z{>q<>\7a\i/> — 1) EA'

Note that ¢ # 1, so that the denominator never vanishes. This implies
AN = @ Qe By
NEWA

is closed under actions of T;. Since F)’s are eigenvalues of Q;[Y], A(\)
is a representation of Hy(W). So this gives the composition

R = @ A(N) (as a I?Tq,t(W)—module).
dom A

Actually A()) can be characterized by center characters. Note that
Z(ﬁt(W)) - @t[Y]W'
We have

e Q]
A ={oers 700 T,
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Recall that
YEEy =t~ vl g~V gy,
fY)Ey = f(t " q ) Ex

for f(Y) € QY]", Note that we can always find w € W such
that upy = pur, thus f(t=*¥q=") does not depend on the choice of
N € WA. Then the easiest choice is X = wo\ and f(t Pworg=wor) =
f(tPq=oA) = f(t=Pq~?), as desired.
Let us consider R, the ring of symmetric polynomials over Q.
We have N,
@q,t[y]
U U
N
Qqe[YT" RY

Firstly, we can rewrite the condition of being symmetric in terms of
DL operators:

sif — f

e —1

sif =f < T,f =ts;f +(t—1) =tf.

RV ={feR:Vie LT,f =tf} = \ker(T; — t).
iel
Secondly, since Q,[Y]W is the center of Hy(W), so RV is Q,[Y]V-
equivariant.
Let us denote for a dominant weight A the monomial symmetric

polynomials
my = Z N = Z e e RV
NeWA weWA
Note that by assumption

my = e“°* + (lower terms)
Yty = tlPH) glmwoda gwod 4 (lower terms)
f(Y)my = f(t7"q*)my + (lower terms)
for f € QY.
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2.4. Symmetric Macdonald polynomials. By above, there exists
a unique Py, € RY called symmmetric Macdonald polynomials such
that

(1) Py =my + (lower terms);
(2) f(Y)Py = f(t"q )Py for any symmetric f(Y) € Q;[Y]"

Let us state the relation between E, and P,. We have

a>0
Where L[//\(t) — E WEW), t( )

Let us denote the symmetrizer I1 = >, T,,. Since II = (T; +
1) 37, wow Tw, we have TIT = tII. Tt defines an operator R — R'. Tt
acts as the following operator

a>0

e*—1
If = Zw (fHea—1> .
For example, for Aq,

Mf=Tf+f=tsf+ [+ (t— 1)

=(1—“> (i & i)sf

e* —t te > —1 e“ —t
= + s 1+s)< f)

o—1 et —1 o —1

By direct computation, we see SFE) satisfies (2). Thus it suffices to
prove the property (1). It suffices to

[e0?] (ITet) = W (¢).
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The trick is polarization.

X*—t e*—t
# = I
Zw<e HXa_l) Au<eww<e >06a_1>>
w A «

weWw ueW
e —1
= u | e w
e*—1
ueWH weW,, a>0
(%) e* —t
= W, (t) E u et H
e —1
ueWH a€AH\AS

Here (%) is a very famous identity on the Poincaré polynomial of a
Weyl group, we will prove it in the appendix. Let us denote BT be the
polynomial ring generated by e* for a > 0. Then for o > 0,

a__ ¢ t— e
¢ T © _ (t —e*)(1+e* + e + --+) € completion of Rt
eOé_ _ea

for a < 0,

C—t 1—te
€ . — . € _ (1—te*a)(1+e*a—|—e*2a+- -+ ) € completion of R™.
eOé _ _ e—Oé

Then

doule II o= | =+ R,

ueWH acA\A,
An identity on Poincaré polynomials. Let us prove

weWw  a>0 weW
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Actually,
1
LHS = — (=1 T (e? = te2/?)
Moo 220 1
1 L(w) L(u) u,
- 11 >0(eo¢/2 — o2 Z(_l) Z(_t) e’
o wew ueWw
=) '™ = RHS.
ueW

In the second equality, [],.,(e*/? — te®/?) is supported over Weights
in the convex hull of {up},cw. For any such weight ), if e* is not
killed by >°(—1)“®) then it has to be up for some u € W. The third
equality follows from Weyl character formula.

3. CHERIDNIK PAIRING
3.1. Analogy of Discriminant. Recall the pairing over Rep(G) is

the multiplicity of the

(U, V) = dimHomg(U, V) = trivial component of V @ U".

If GG is reductive, then by Weyl character formula
Z(w w(A+p)— _ -«
x(VV) = % Z e A=TJa—e).
weW a>0

In particular, for any representation V', the multiplicity of the trivial
component is

[”] (char(V)A) = constant term of char(V)A.
Thus the Hom-pairing induces the following pairing over Rep(G)

(f.9) ="[(Afg),  (U.V) = (char(U), char(V)).

Here is the example for SLs:

dim 1 2 3
X 1 etel][e2+1+e2
1I—e?)x|[1—-e?|e—e3| 2—et
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We are going to construct the t-analogy and affine analogy of A.
Define

. 1 —e® it e*)(1 — gFe™)
at H 1 —tex _HH 1—tqk 1eo‘)(l—tqke a)’
acA >0 k=1

We shall understand it as an element in
Z Q[q,t] - * (possibly infinite sum).
AP

We normalize the constant term to be

Age =05/ ([€"]A7)-

We will show that [e*Ag: € Qg
For any i € I U {0}

- 1 L d=eti
5ilqt = [0]A , Ha€A+ 1—tesi®

_ 1 l—e % 1—te%i H . 1—e®
T [eVAY  1-tem Y 1—e™i a€EAL 1—te”
_ 1-te%

- t— eaz A

This relation can be expressed as a system of linear equations over Qg ¢
in [e*|Ay¢. Since we already have a solution in Q[g, t], it has a solution
in Qg Let A’ be the solution over Q,;. We can assume [¢"]A" = 1

by normalization. Then A’/A,; is W-invariant. But

t’ue)\ _ e>\—<>\,[l)6 _ q—()\,u)e)\.

This shows A'/Ag¢ = 1.

3.2. Non-symmetric case. Define the Cherednik’s inner product on
R by

(f,9)qr = [€°](f7Aq,)
where - is the involution e* — e, ¢ = ¢, t — t'. Note that
Ayt = Ay So we have (g, f)q: = <f {f,9)qs- Actually, we showed A,

is the unique element in

Z Qq,t - et (possibly infinite sum).

AEP
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such that
1—te™ ) 0
mAq’t, VielU {0}, [6 ]Aq,t =1.

The conditions are bar-invariant.
Let us compute the adjoint of several operators

(sifs @) qe = [€°](sif 9Aqe) = [€°](f Sigsilqyt)

SiAq,t =

_ 1 —tex 1—tex
e [60] (f SigmA%t) = [60] (f mSigAq’t)

1 —te*
= <f,m8i9>
q,t

Thus the adjoint of

s;— 1 te¥ —1 1—-1t
Ty =ts;+ (t— 1 = ;
si + )eai—l eai—18+eai—1

is
1—te® tle>—1 1—tt
t e a1 e —1
1 —tle®tley —1 1—t!
T e e o1 i e — 1
-1 -y -1
:t e _1si+1_t _ 1

e —1 e —1 !

15

As a result, <Ef7 g>q,t = <f7 jﬂiilg>q,t7 Le. <ﬂf7 ,‘Tig>q,t = <f7 g>q,t- As a

result,
YY" 9)qr = ([, 9)qst-

As a result, nonsymmetric Macdonald polynomials can be character-

ized by
(1) E\ = e* + (lower terms)
(27) (Ex, Eu)qe = 01if X # p.

3.3. Symmetric case. Similarly, symmetric Macdonald polynomials

can be characterized by

(1) Py = my + (lower terms)
(2’) <P>\a Pu>q,t =0if A 7é M.
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But we can simplify (-, ).
Here is a useful trick when doing computation. Note that for f &

@q,t = Q(q7t>7
flg,t) =0 <= f(q,q") =0for k =1,2,3,4,....

Thus assuming ¢t = g~ is harmless. For example,

1 —e” d e*)(1 — gFe™)
A°, = —
q;t H 1 —tex HH l—tqk 16a (l—tqke a)

aEA >0 k=1
_ H (1 _ qk—lea)(l _ qkse—a)
a>0
1<k<kr
1—qg"e™™@ o
=== Il a-d*en—-d'e)
a>0 a>0
0<k<k
Since
1 — gfe @
Z w (H 1_(1—(8:) = W(g") is a constant
weWw a>0
and
o 1 —tgre* 1 — tghe ™™ o a
A:I HH keal 604: H(l_qke )(1_qk6 )
a>0 k>0 q a>0
0<k<kr

is W-invariant. By denoting A} , := AP, /[e’]A”,, we have

(f.9)az = ["1(fTAG.)-
We remark that in type A, for f,g € A, we have

lim (f[Xa], gl X)) = (f. 9)au

n—

(If we want to extend to Ag, we need to replace g by glgsq—1t5t-1)
This is proved by the computation of (Py, Py) g+ and (Py[X,], PA[Xn])q.t
The computation shows the left-hand side is not a constant when t # q,
even for n > 0, see [Mac3].
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4. SPECIALIZATIONS

Recall that

The Demazure-Lusztig operator

id
s + ( )eaz —
When (), ;) > 0,
t—1
_ A k
Bair = (T T g — 1) Ex (*)

For dominant A,

(P15
weW a>0 o

4.1. The limit g — 0. The result is

if (@, \) >0 E,, = tT; 'E\.
Actually, when g — 0, the Cherednik pairing

S-Tlimgme ¥ Qe

a positive 3

0 { when A is domiannt E,=¢e
q—U,

So for dominant A\, and any pu < A (that is, u* <gom )
[€%] (e*e™#Ay L) = [e"] (e*Ay,) = 0.
From the fact that
E, = e + (lower term),

we see E, = e (from the construction, E) was constructed when £,
for all © < A are constructed).
By (*), when specialize ¢ — 0, we get

Egx = (T; — (t = 1)) Ex = tT; 'E)
= (Si +(1- t)ﬂ> Ej.

Thus E)|q4—0 essentially gives the Twahori- Whittaker functions.
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In particular, if we specialize ¢ — 0,1 — 0, we will get

i —id i —e
E,\ = SH‘L E)\:LE
’ e~ —1 l—e

Thus E)|q=0t=0 gives the Demazure character of finite Lie algebra g".

Now we have
1 e*—1t
P, = A .
e ()

weWw a>0

This is known as Hall-Littlewood polynomials. The representation
theoretic explanation is

t<p’>\>P>\|t»—>t*1,q:0

gives the spherical funtion in the dual group.

To explain the relation, we need an algebraic version of Satake
equivalence. Let G be a reductive group. As usual, let K be a non-
Archmedean local field with ring of integers O and residue field k.
Since G is compact, we take the Haar measure p with u(Go) = 1.

We have
Gk = || Got*Go= || OW).
AEPY AEPY

dom dom

We can define a convolution product over

Fun(Go\GK/Go) = @ 100\)

AEPY

dom

with convolution product

(fxg)x)= [ [flay )gly)dy.

Go
Explicitly, 1y x 1, =~ ¢ 1, with

& = / 'y € O] - [y € O(u)) de
—#{y €O : 'y~ € ON)}/Go

=#{(z,y) € O\) x O(n) - xy ="}/ (x, gy) ~ (vg,y),9 € G,
= #fibre of O(\) X O(pn) = Gk D O(v).



20 NOTES ON MACDONALD POLYNOMIALS

It is well known that this algebra is isomorphic to the spherical Hecke
algebra:

H(;%eﬁt(W)e‘t:#k with e= —— Z T,

’wGWtAW

Under the isomorphism,

10(>\) — %e ( Z Tw> e.

wEWEA\W
Note that
WHw = | | tW.
NEWA
We write ty = wuywvy with uy minimal representative of ¢y/W, and

vy € W. It is known that vy, is the minimal element such that vy =

A. Thus
|_| Zf,\/W: |_| th;}W
NeWA NeWA

So any element w € Wit,\WW can be uniquely written as w = vt u
with v € WA v € W and {(w) = —l(v) + £(ty) + £(u). Recall that
Y* =t=NT,, for A dominant. As a result,

looy — %6 ( Z Tw) e

weWt\W
_ Wt
=e Z T, 1) T, (Z Tu) e= t<p”\)—7leYAe
<UEW>‘ uew Wi(t™)
Wt
= ¢l w|Y?
e (i 2o (P ==

(b ))6'

weWw a>0
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That is, under the identification eHye(W) = Q, Y]V, 1o is the
function

1—t1Y
Ky = Zw<w£[0 1_Ya>.

Denote

m:Zw(WHYfil)

weW a>0

the Weyl character. By direct computation,

K)\Et A‘i‘ZQ

p<A

Let us describe the bar-involution over eH,(W)e. Recall that T, =
T} So

1
W(t)e (wE%WTw> e =

Do the same computation as above, we will see K, = K)|tye-1. In
particular, for a symmetric f € Q[Y]", f = f. As a result, the
Kazhdan-Lusztig basis of eﬁt(W)e is Weyl characters.

Perhaps let us state them in term of sheaves (geometric Satake).
Denote

e ( Z Tw_11> e = const - eY“e.

weWit\W

1
W(t)

Ei = Got)\Go/Go C Grg := GK/GO
Note that dim X% = 2(p, \). We have

K)\ — 123 c DGO(Ger),
Xr ¢ ICs¢ € SSPerv(Grg),

where the intersection complex is normalized such that IC(A)|gs =
Q[dim X§].
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References.
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4.2. The limit ¢ — 0. In this case, E) € R is the character of level
1 affine Demazure module. Let g be a semisimple Lie algebra. Recall
that the untwisted affine Kac—Moody algebra is

g=Lg® Coa Cc, Lg = g[t*] = g ® C[t*]
with 0 = t% and c central. We are working in
coroots  coweights

! ! ! ¢.8) —
—_—

weights roots

1
0

simple roots simple coroots
{ai} Ufao =6 -0} {a/}U{ag=c—0"}
Note that the central element ¢ can be written as a positive sum of
simple coroots

ccoy+ Z(GV,wi>ai.

Note that (Y, w;) is always positive. The fundamental weight A; for
i € IU{0} is normalized such that the coefficient of § is zero. In other

word,
AZ' _ AOa 2 = Oa
w; + <9V,wi>A0, (4 7& 0.
For an affine weight A € ZAy & P & Z4, we call the coefficient of Ay,
i.e. (¢, \), the level of .
e If )\ is a dominant affine weight of level 0, then

A EZI.

~

Then the dimension of V() is one.
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e If \ is a dominant affine weight of level 1, then

with (6Y,w;) = 1. This happens exactly when 4 is miniscule,
equivalently, conjugate to the affine node under graph auto-
morphism of the Dynkin diagram.

If X has level ¢, then the action of ¢ on the irreducible integrable
module V() is always ¢, thus to compute the character, specialization
of €2 =1 does not loss any generality if level is known.
Denote N
b=b®®CI CedtLy.

For an affine dominant weight A and affine Weyl group element w € ﬁ/\,
the Demazure module

Vi (A) = the b-submodule generated by w - Uhighest-
We have the following formula for its character
charV,4(\) = ¢,
charV,,(\) = m, (charVi(\)).
Here 7, is the Demazure operators
id —e %,
Since 7; satisfies the Braid relation, it is well-defined to denote .

Now let us describe the level 1 action of W on Ao+ P mod é. For a
finite weight A,

si(Ao+) = Ao+ + (o), Ao+ M)
B {A0+si/\, i€l
Ao+(rgA—0) +90, i=0.
Let us denote for a level one weight A = Ag + A\g + k6,
E\ = q"E),.
The result is, for type ADE, we have
charV,,(\) = eho wA =0,

for an affine domiant weight A of level 1.

T, =
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By (*), when specializing ¢t — 0,

i —id —s; +e*id
Esi,\:<—8 11+1)E,\=<$+1)EA
edi —

d _p Qg

1 —e

There are two methods of proving ¢ = 0.
e By the Dynkin diagram automorphisms, we can transform affine
node to a finite node, this proves for type A, D and Eg.
e In general, we need the ¢ = 0 analogy of the induction formula
(Cherednik intertwine theory).
We mention that the non-simply laced cases, we cannot apply the
Dynkin diagram automorphisms since the affine Dynkin diagram of

dual type are different. We remark that when A is anti-dominant,
Py = E). This follows from the fact 72 = ;.

References.

[San| On the connection between Macdonald polynomials and De-
mazure characters by Yasmine B. Sanderson.

[Ion] Nonsymmetric Macdonald polynomials and Demazure charac-
ters by Ion.

5. DEGENERATION OF DAHA

5.1. Degeneration of Hecke Algebra. Let u,v, 5 be three vari-
ables. Let us consider the Hecke algebra defined by

(T; —u)(T; +v) = 0.
Note that T; /v satisfies the usual Hecke algebra relation with ¢ = u/v:
(Tifv = ufo)(Tifv + 1) = 0.

Let us denote R = Q[e*],ep the group algebra of P. We should
understand the symbol

s

2 3
eBA:1+B/\+7A2+%A3+~- € Ov)[A].


https://arxiv.org/abs/math/0105061
https://arxiv.org/abs/math/0105061
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Denote cherednik representation on R

sif — f
efoi — 17

T.f =wus; + (u—v)
Xif =i

Then

s XA

Note that T; is the unique operator such that T;’s satisfy the relations
of Hecke algebra and T;1 = .

T,X* — X5, = (u —v)

Group algebra. Let us take u = v = = 1. We see T; = s;, and
X?* = mult by e*. The relations are

TP=1, XX F=X"
T, X — X5 = 0.
It gives the group algebra.

Degenerate Group algebra. Let us take u = v =1 but set § — 0.
Then

XA -1
T, = s, Ty = lim
B—0

= mult by A

. The relations are
Tf =1, zy—x,=2rp,
Tixy — x0T = 0.
It gives the group algebra.

Zero Hecke algebra. Let us take u = —f and v = 0, i.e. (T;—05)T; =
0. Then

s; —1 1 — ePaig,
v A
If we specialize further § = —1, we get
1 — e
T, = #, X = mult-by e

1—e
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The operator is originally found by Demazure. The relations are
=T, XAX = XA

)

Xsi)\ - X)\
EX)\ . Xsi)\r_ri -
Xai —1
Nil-Hecke algebra. If we specialize § = 0 in stead, we get
1—s; X*—1
T, = i , lim = ), = mult by \.
o =0 f3

The operator is the BGG Demazure operator. The relations are
Tf =0, Ty — Ty = Tr_y
Tixy — 22T = (o), \).
Note that by induction, it is not hard to prove
Ty = TuwrxTw + Z (¥, \T,.

a>0,w=urqy
L(w)=L(u)+1

Graded Hecke algebra. Let us take u = e, and v = 1. We have
B 4 (e BT
T,=e"s;+ (e 1)66%_1.
Let g — 0, we get

— S; X/\ —1

1
ﬂ =S; + s lim
(0%} B—0 e P -1

=z, = mult by A
This operator appears in the study of homology of Springer resolution.
The relations are
Tf =1, Ty — Xy =Ty
Tixy — 22T = (o), \).
By induction, it is not hard to prove

wa)\ = .%w)\Tw + Z <Oév, /\>Tu

a>0,w=urqy
L(w)>0(u)+1

Note that the sum is over Inv(w) = {a > 0 : wa < 0}. Moreover, we
can rewrite 1, = 1., T, .
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5.2. Degeneration of DAHA. Recall that a half of H, (W) is ﬁqyt(W)
and another half is H,(W"). We can degenerate both of them.

Double affine Weyl group. We degenerate
Aq,t(W) — Group algebra,
H,+(WY) — Group algebra.
In this case, we have
YEXA = g~ WV XAV,
Actually, we can view Y* as the ¢-difference operator
et —s g~ MM
Trigonometric degeneration. We degenerate
I?Iq,t(W) — Group algebra,
Hy+(WY) — Degenerate Hecke algebra.
Let us denote h = x5. Then

Yﬂx)\ = (33)\ - h</\7 M))YM + Z <>‘a a>YMT7“a+k5

a>0
0<k<({a“,u)
1 — y—{amay
= (zx — B\, p))Y* A oYt ———T,
(2x — h(A, 1)) +§< S S e v
YH — YTk
p— - M T N s—av
(za = AL )Y + ) (A ) Ty e
a>0
Thus
YK — YTk
B = Yhay = B, mY" =Y O\ o) T

a>0
Now let us consider

~

H,+(W)— Degenerate Hecke algebra,
Hy+(WY) — Group algebra.

We have

Xt = Xy + A, )X = (p,a)

a>0
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Recall that X* acts by product with e; T, acts by r,. In this case,
y» is given by the trigonometric Dunkl opemtor

raf

unf = houf — Zu,

a>0
Let us explain 9,,.
e Let us denote the differential operator,

o J@tpt) — f(z)

taO t

(Ouf)() =

Note that f € R are viewed as function over t, say e* are viewed
as z — M. For example, d,e* = (1, \)e*. We have Leibiniz
rule

au(fg) = (auf>9 + f(aug)-

In particular,
RO, X" = X R, + h{\, p)e

e Let us denote the operator

Then we can check directly that
fg B (Taf)(rag)

Galfg) =7 5
_ flrag) = (raf)(rag) | fg = f(rag)
l1—e@ 1—e@

= (Gaf)@"ag) + f(Gag)'

In particular,

XA o Xro)\
G X - XG,=——"—T.
1— X T

From the above discussion, ¥, is given by the operator above.
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Rational degeneration. Now let us consider

fIq7t(W) — Degenerate Hecke algebra
H,+(W") — Degenerate group algebra.

It can be computed by taking limit above,

Ty — Ty,
yu.f)\ = .%)\y‘u + h()\,/j> — Z</,L’ OZ>%
a>0 @
= @y + L ) = Y G a)(Xa¥)ra.
a>0
That is,
[yﬂﬂ SL’)\] = h<>‘7 V> - Z(N’? Oé> </\7 O[V>T.a.
a>0
Moreover, y,, is given by the rational Dunkl operator
f B Taf
yuf =ho,f =) (N a)y—==.
a>0
References.

[Che] Double Affine Hecke Algebras by I Cherednik.
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6. MACDONALD FUNCTIONS

6.1. Symmetric functions. In type A, the Weyl group W = §,,, we
should deal with

RV = Q[ ..., 2515,
We have a smaller subring
A, = Q[z1, ..., 2,]" = symmetric functions.
We define
A:@[...in_:(’/\nzfﬁ_lzo...]_
Each element of A can be viewed as a function over the space
{(2:)2y : zi = 0 for almost all i}

and thus is called a symmetric function. Recall the following functions:

\ monomial
my(z) = E 2N, : :
symmetric functions;

ANeSnA
pr(2) = Z 7, (Newton’s) power sum;
i
B elementary
er(2) = ‘ Z i Fir symmetric functions;
11 < <lp
ho(z) = Z L (complete) homogeneous
r\#) = Fi " Fis symmetric functions.
11 <<
Note that
A =Qles, ea,...] = Qlh1, ha,...] = Qp1,pa, .. |-

Let us include q,t: Ay = Qg ® A.

6.2. Plethysm. Let us define plethysm. Roughly speaking, plethysm
is a notation for generalized substitution, i.e. for f € Ay, we can
write

f(O,0,0,A,-- ) =fIO04+0+Q+A+---].

Since f is symmetric, the order does not matter. For example,

f[233+y+4]:f(a:,x,y,l,l,l,l,0,0,)
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To define it properly, we note that
(0,0, 0,4, ) =04+ "+0"+ A"+ - -
=[O+ +Q+ A+ )|z
Now we give the strict definition.

For f, A € A+, wedefine f — f[A] to be the unique map Ag: — Ag s
with the following preperties

(A) (ef +gh)[A] = cf[A] + g|A]n[A] for ¢ € Qg

(P) p,[A] = Al.izr gosgr it for any 7 € Zg.
That is f +— f[A] is an Qg ¢-algebra homomorphism.

In general, if A = A(z,y,q,x,...)is any function and f = f(z,y,q,z,- - -

is any function symmetric in z, we define f[A] by
(A) (cf + gh)[A] = cf[A] + g[A]h[A], where ¢ does not contain z;
(P) p.[A]l = A(z", 9%, q", 2", ...).
Note that under this notation, z is the special in the condition (A).
Let us denote
Z=p(2)=z1+2z2:+ .
Then clearly, Z[f] = f by (P). We actually have
P pT[Z} = (Zl +2+-- )|zin{,q»—>qT,t»—>tr
flZ)=f, since =z1+2 -+ =p.
(A) f+— fis an algebra homomorphism
Let us give some examples to see the flavor of plethysm.

Example 1. For any f,
floe) = f

zg—)zf ‘

Since
(A) f — RHS is an algebra homomorphism

P plpk] = (¥ + 25 +--)
:Z]]-CT+Z§T+_..

= (2] + 23+ )|;,0:r = RHS when f = p,.

zi—=>z] ,q—qT >t

Compare with:

plfl=f

@k grgh stk
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We remind this is the property (P). They coincides when f € A i.e.
f only involving x1, s, . . ..
Example 2. For any f,
fler+ .. +x,] = flag, - 20,0, 4).
Here x4, ..., z, are viewed as variables, by default. Since
(A) f — RHS is an algebra homomorphism

(P) LHS = (21 + - + Zn)|essar
=21+ -+ 2 = RHS when f =p,.

Example 3. Recall that the coproduct A — A®A is defined as follows.
We can always write

flzy) == f(x1, 29, ..., Y1, Y2, - - -)
= Zfl(xlyf% )2y, e, )

Note that the substitution makes sense by picking a bijection Z-q
between Zsg Ll Z~o. Then we define Af = > f1 ® fo. Following the

same principle as above examples, we have
fIX+Y] = f(z1, 22, .-, Y1, Y2, - - )
=Y ALY =) Aler,xa, ) oy, ),
where X =21+ 20+, Y +y1 + 92+ - -.

Example 4. Much generally, if we can expand A = ) c,z% with
Caq € Z~p, then

flA =G 2. 2% )

the substitution of f by the multiset [A] such that multiplicity of z*
is ¢,. Since

(A) f — RHS is an algebra homomorphism

(P) LHS = (Z ca:v“> rsal = Y Cal
=42+ +24+-.- =RHS when f =p,.

Ca
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We basically achieve the goal in the motivation. For our purpose,
we need to make sense of “substitution of negative many variables”,

e.g. flz —y]. We first f[-Y].
Example 5. Note that the power sum p, is very special since

p X £Y] =p.[X] £p[Y]

e[ XY] = p, [X]p,[Y].

Both of them can be checked directly by (P). In particular (or direct
computation),

pr[_Z] = (_Zl — 22 — ) zi—= 2] ,qrqT b tT
=—2] — 2 — = —Dp.

Example 6. Let

1
Q::Hl_Zi:1+h1+h2+...

= exp (p1 +gp2 +5p3+ ).

We remark that even the sum is infinite, but we understand €2 as a

formal sum of each degree component, which of them is in A. Note
that by (A)

Q[A] = 14 hy[A] + ho[A] + hs[A] + - - -
= exp (p1[A] + 1po[A] + Lps[A] + ).

Then
Q2] =exp (—p1—gp2—gps — ) =2

=[Ja-=)=1-e1+e—---.

This shows h,.[—Z] = (=1)"e, = e,(—21,—22,...).
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Example 7. Denote w : A — A the w-involution. It is an algebra
homomorphism given by p, <> —(—1)"p,. It is also characterized by
h, <> e,. Then by the above computation, we have

fl=Z] = (wf) (=21, —29,...).

Recall that wsy = sy for Schur functions.
Now we can compute f[X — Y]. This follows from a more general
associativity.

Example 8. We have associativity

Since:

(A) f —LHS or RHS are both algebra homomorphism
RHS = (p,[9])[A] = (glzmer)[A]  when f = p,.

Note that ? — ?" is a ring homomorphism but in general not linear:

(cf + gh)|zmser = (clomser) (floszr) + (gloszr) (Alemer)
# c(flzser) + (glzmszr) (Alomer).

As ¢ would contain variables other than z. Therefore, we need to check
two cases, g = pr and g = ¢ for ¢ not relating to z. When g = py,

LHS = pi[A]lecser = (Alosor)|oyor = Aloyore
RHS = (pi|zeser)[A] = prr[A] = Alzsors.

When g = ¢,

LHS = c[A]|zser = c|zmer
RHS = <C|?H?r>[A] = C‘?,_)?r.

So LHS = RHS.
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Example 9. Assume Af =" f1 ® fo, then

= Zfl X
= Zfl Ty, T, .. sz)(-@h, —Ya, .. .).

Of course, this can be checked directly by setting f = p,. But let us
mention the following proof. We know

fIX+Y]=> flX
equivalently,
fIX+2) =) hlX
We apply [—Y] on both sides, we get

FIX =Y = (X +2)[-Y]] =>_ hlX]

This makes sense of “replacing Y by —Y”.

Forget the next sentence if it looks confusing. Theoretically speak-
ing, plethysm should be denoted by f[Z +— A], and “replacing Y by
—Y” should be denoted by f[Y]— f[Y — =Y.

Example 10. More generally, if we can expand A =) _c,2%, then

cq>0 —cq>0
JP— [P —— ——

A =3 Al wh) (- St ),

Let A= AT — A~ in the obvious sense. Denote (wfs)(—z1,—22,...) =
fa

(X Y] =5 AX]A[Y]
= [flZ=Y]= hlZ]lf]Y]
= [IAT Y] =3 AlATIAY]
= AT —Z] =) HhlAT]A]Z]
= [] A AAT
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Example 11. It follows from the computation that
QX +Y]=exp(m[X + Y]+ 30X + Y]+ ips[X + V] +---)

= exp ((pl[X] +p1[Y]) + %(pQ[X] +p2[Y]) + - )
= Q[X]Q[Y]

and similarly
QX —Y]=exp(m[X - Y]+ ip[X = Y]+ ip[X = Y] +---)

= exp ((pl[X] —pl[Y]) + %(p2[X] _p2[Y]> + )
— Q[x]/QY).

We thus have

if we can expand A =) cz"

Example 12. Let us finally mention more useful computation.

Yl =1] !

1— 2y,
i.j i

QX ] ZHH%M'

i k>0

Note that
FIXT] = X0 +q+q+-)]
= f(l’l,l'g, ...,qT1,qra, . .. ,q25(71,q2.l’2, ey )

But since we expand ﬁ with |g| < 1, it would be a few words to say.
The result of f [Z ﬁ] must be with rational coefficients in q. It gives
the same answer as that over the ring of power series, this proves the
validity of the expansion.

1—tx;

11—

QX(1-t)] =QX(1-t)]-x]=]]

)
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i k>0

6.3. Macdonald functions. Recall the Hall inner product (-,-) is
given by (s, s,) = 1x=,. The kernel of the inner product is

> @) =[] = = 2xY)

Let us denote for partition A

pA=plpy 2y = 1™my12M2my! - -
for m; = #{j : \; = i}. Recall
Q=exp(p1+sp2+ips+--)
= exp(p1) exp () exp (B)--- = N

Since pA[XY] = p[XIpA[Y], QIXY] = 32, S-pa(@)paly). So (1) is
characterized by

(Dx, Pu) = Iazp2n.
Let us equip A4 a new inner product

(f,9)qr = (f9[Z2L])
Then the kernel is
H H 1-— tq Y,
%,J k>0 1- kxly

and is characterized by

<p)\7pu>q,t - 1>\:uz>\(q7 t)
where
— —g\m1 —_ag2\m
alg.t) =[] = (=)™ (=R)™
We define Macdonald functions {Py}x C Ag+ by
(1) Py =my + (lower terms);
(2) (P\,Pu)q+ =0 for X # pu.
This definition is actually compatible with the definition of Macdonald
polynomials in type A.
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7. DIFFERENCE OPERATORS

Now let us restrict to type A. Now the Weyl group W = S,,. The
convention of the root system is weird:

P="P'={(a,...,2,) € Z"})Z(1,...,1)

(N
7r =7
U u

Q=Q"={(x1,...,2,) €Z" 21+ + 2, = 0}
The identification is

We = Sn/(t(l ,,,,, ), recall: tq  1)(a) =a+n.
i

S, = {bijection f:Z — Z: f(a+n) = f(a) +n}
U
W={f€S:f(1)+--+ f(n) =0}
The action is given by
wtp (i) = w(i) + n\;, i=1,2,...,n.
We will use the Hecke algebra for S,,.

7.1. Diagramatics. We denote
H, = t'W2T, .

The Hecke algebra }AIn can be defined by
o (H; — t'/?)(H; + tY/?) = 0 for all i € Z/n;
® HZH] = HJHZ fOI‘j 7£ Z—l, Z,Z+1 and HZHZ+1HZ = Hi-l—lHin'-l—l;
° wHi(,dil = ;1.
Note that ﬁt(W) = ﬁn/(w" = 1). It has Bernstein’s presentation
o (Hy —t'/?)(H; +t'/?)=0for 1 <i<n-—1;
L] HZH] = HJHZ for i 7é ’L—l, Z,Z+1 and HzHH-le = Hz’—i—lHiHi—i-l;
o VY, =Y}V
e HY; =Y,H, for j #i,i+1and H; 'V;H; ' =Yi;,.
where
Y, =H,- "Hn—MHfl . "Hz:lr
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We can use a diagram on a cylinder to illustrate them

m= | M
R

Y, = +....\L|_..._|_

For example, when n = 3,

wHow ™' = ]DPL

I
X
I
=

HQ(,UH = 5% = —:\\-I' :HQ.
A
wYow ! = j?ﬁa- = ~-- =Y.
r
J
HYiH' = Q—‘ = - =Y
r

|- L
vy = 1 = O =wn
7.2. Computation. Let us consider Qg [z1,...,2,]. Note that our
convention is e = z;/x;11. Then the Weyl group action is
wty T; — q_)‘ixw(i),
W Ty > Ty > - > To — T1 — Ty,

S 1T > QTy, Ty > qilxl.
Recall that

Qqe[Y7, Y Y Qulart, x5
We will see that
@q,t[yia o 7Yn]8n m @q,t[x17 CRCIRS 7xn]8n = Ny

Let us describe the action for the elementary symmetric polynomials
e.(Y)in RV,
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Let e = #(t) > T, be the symmetrizer. We have H;e = t/2%e.
Step 1. We have the following identity

Sy (t)Sn—r<t) 77

Yy ri1- - Yne= 5.0 ce.(Y)-e€ H,.

Since the Bernstein representation on H, ® u, 1 is faithful, we check
this by considering it as an operator over Qg ¢[Y7,...,Y,]. Since e is a
symmetrizer, we have

e((Yors1--Yo)ef) = (eYn_ry1 -~ Yo)(ef).

Note that, as an operator,
1 Y;/Y: —
-5 2 (IEE)

For example, when n = 2,

ef—L<1+tsif+(t—1)Sif—_1)

14t Ya/Y1 =1
1 (Ya/Yi—t . tY,)Yi—1

_ 2/1 f+ 2/ 1 Sif
L+t \Yy/Y1 -1 Ya/Y1 —1

1 Yo/Y1 —t tY1/Ys — 1
_ 2/ Voot (/Y2 1N
1+t \Yy/Y; -1 Y1/Y, =1
Since the r-th fundamental weight is minuscule, we get immediately
that

Sr(£)Sn—r(t)
Sn(t)

eYn—r—i—l : Y, - r+1° Y, ) = GT(Y)~

For example, when n = 2,

oY, — 1 Y22—tY1Y2+Y12—tY1Y2
1+t \ Y-V, Yi—-Y,
1
(Y1 4+ Y3).

T 1+t
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Step 2. We have the following identity
eYn i1 Ype = t R =k)2e e € ﬁIn

This can be proven quickly by diagrammatics.

IIIL_IIIIk

This can also be proven by definition. For example, when n = 3
eYsYse = e(HowH; M) (wH " Hy e
= e(Hyw?H, ' H P Hy e
We thus have

Sn(t)
S,(0)Sn_r (1)

(YY) e=e-e(Y)-e=tT"0/2 ew'e € H,.

In general, such simplification can be done for any minuscule weight.

Let us consider the Cherednik representation. Let f € Qg¢[z1,. .., z,]".
Then
ww’l‘f - wf(q‘rn—’/‘—i-la 5, qTn, L1, T2, . - )
= wf(a:la L2y ooy Tp—ry qTp—p41, """ 7qxn)
- f(xw(l)v Ta(2)s +  + s Lw(n—r)s qlw(n—r+1), " qxw(n)

= f(qelxb s 7q0n$n)
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where 0; = 1 if i € wly = w{n-r+1, ..., n} and §; = 0 otherwise. Now
we can compute

T o 1 T SE/ZL'J
W= 5w Zw( fH:g/g;J—1)

weSy 1<J
S (£)Sn_r(t) 3 Tu(i)/Tu() —
= f Ti—rqr; Vicwly H
Sn(t) WESn /(Sn—rxSr) 1<i<n-r xw(i)/xw(j) -1

n-r<j<n

S (t)Sn—r(1) T — tx;
— RN Z H— flaimsqui vier

~ €T; — $]’
(") \ ‘%)

S, (8)Sn—r (1) by —
= T(t) Z H - f|xi»—>qxi,ViEI-

e \jg

We can finally conclude that

ere (V) o=tz 3 [T |

Ti—rqr Viel

oy \ der i b
Ie(™ 4
(%) JEl
t1/2CEZ‘ — t71/2$’j
- E H f Ti—>qxi Viel -
my \ i€l Li = L
Ie(™ A

( T ) ]%I

Thus this action gives the action of e,(Y) on Qg ¢lx1, ..., x,]5".

7.3. Compatibility. To check

Py(zq,...,2,,0,...)
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is the symmetric Macdonald polynomial for the root system A, 1, it
suffices to check

tr; — x;
D": f— —
() \ig)

Viel

is unitary with respect to the truncation of inner product (-,-)q:. It
suffices to show for X, =21+ ---+ 2, and Y,, = 2, + - - - + y,, that

Dy Q[X,Y, =) = Dy - Q[X,Y, =L,

Note that k
B 1 —tq"z;y;
Q[X,Y, =t = E R —
[ l—q} 1§£‘[§n 1 — g~y
0<k
S
0 o - L —xy
Q[X Ynl q} Ti=qr i€l = Q[Xnynﬁ} H m
14550
So

LHS =Q[X,Y =% }(express,lon only depend on t).
Similarly,
RHS = Q[X,Y =] (expression only depend on t).

Thus it suffices to show when q = ¢, i.e. (-,-)q: = (-,-). Then if we

denote A = [],_;(1 — x;/x;), we can rewrite
1 1 y
Z Z(Af)m'—mxmef = n'Z Z (_1)“ )(Af)xinxw(i)'

When f = s), then each term As) gives a multiple of s,.

8. ORIGIN OF PLETHYSM
8.1. K-theory. Note that the topological K-group
K(X) = Z{vector bundles over X}/~ o _
= mo(X, BGLow X 7).
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But let us use the more classic definition. That is, K(X) is the
Grothendieck group of

K*(X) = {vector bundles over X} /.

That is, the element in K(X) is a formal difference U — V for U,V €
K+(X) with

U-V=U-V +—

Y = U
{U@ vez for some Y, Z € K1 (X).

VezZz=2V'aeY

We can take Y and Z to be trivial bundles.
We would like to consider

Ende (K (—)) Sedalonns, g BGL. x Z) S Ag.
Plethysm is the composition of this endomorphism ring.

Let us state it in a more concrete way. For a vector bundle V', we
define

SV = >0 t"S*V e K(X)[t],
ANV =322 (—8)NV € K(X)[t].

Note that
SS(Ue V) = (SU)(S:V), MU V) = (NU)AV).
This extends to an operator over K (X). That is
S(U-V):=313, AU-V) =35

Note that these operators are not additive.
Now let us make it additive. To do this, we have to work over
K(X)g. We have
In(S;(U @ V)) =In(SU) + In(S;V),
In(A(U @ V)) =In(AU) + In(AV).

Now we define Adams operation 1, : K(X) — K(X)g by the coeffi-
cients of In(S;V):

2 3
In(S,V) = 81 (V) + Sa(V) + (V) +
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Actually, we have —In(A;V) = In(S;V'), but we will not use it. Note
that

V(U@ V) = (U) + (V).

We extend ¢, : K(X)g — K(X)g by linearity. Actually, if we expand
1, in terms of coefficients of S;, it is not hard to see Adams operation
is defined over K (X).

Let us compute for line bundle L

- 1
1— Lt

t2 t3
In(S;L) = —In(1 — Lt) = Lt + L®25 + L®3§ 4

SiL=1+Lt+ L%t + ...

This shows
(L) = LE".

Now let us compute ¢, (U®V'). By splitting principle, we can assume
U and V are both direct sums of line bundles. Then immediately, we
have

U @ V) = 6, (U, (V).

As a result, 1, is not only additive but also multiplicative. Similarly,
using the splitting principle again, we have

Ur(r(V)) = (V).
Note that we can use A,V = >3 (—t)*"A*V. Then

t? 3
In(AV) = ~t61(V) = S0a(V) = =65(V) + -+
8.2. Character. Let us find the Adams operation in terms of charac-
ters. That is,
Ka(pt) = Rep(G) = Fun(G,C*),

where (x) is given by V' — x(V) = [g — Tr(g;V)]. Actually, the
case G = GL, and V = C" is the universal case. The restriction to a
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maximal torus is enough.

X

C* € Rep((T) Fun(T,C*)

C" € Rep(GL,) —> Fun(GL,,Cx)
V€ Rep(G) X - Fun(G,C*)
Thus finally, it suffices to deal with G = GL; and V = C whose

character is id = [z +— z]. Then direct computation shows
X(@r(V)) = [z = 2],
As a result, if we define for x € Fun(G,C*)
dr(x) = [z = x(2")]

Then we have the following commutative diagram

Rep(G)g —= Fun(G, C*)

| N

Rep(G)g —> Fun(G, CX).

8.3. Lambda-ring. A lambda ring is a commutative ring R with a

family of operators A" for r € Z>, with certain properties. Let R

be a commutative algebra containing Q. Then lambda-ring can be

equivalently defined by a family of ring homomorphisms p, : R — R for

r € Z~o with p; = id and p, opr = pr. We say ¢ : Ry — Rs a lambda-

ring homomorphism if ¢ is a ring homomorphism and ¢ o p, = p, o .
For a lambda-ring R, we have a ring homomorphism

A — Endgt(R), by p. — p,.
Namely, it is extended to A by
(cf + gh)(z) = cf(x) + g(x)h(z).
Note that
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o if ¢ € Homy gring(R1, R2), then ¢(f(x)) = f(e(x)) for any f,
since we assume ¢ is a ring homomorphism.
e since p, o p = pj © pr, we have p, € End) ging(R) so that
prof = fop, forany f e A.
I claim that
fog=flg]: K(X) — K(X).

Firstly, by construction,

. {LHS:fog € End(R)
RHS = f[g] € A

are both algebra homomorphisms. Thus it suffices to check when f =
pr. In this case,

s LHS =4, 09 = go, € End(K (X))
RHS = pilg] = g[ps] € A
is also an algebra homomorphism.

Note that A itself is a lambda-ring with p; : A — pg[A]. We claim
that

(A7 Z = pl)
is the universal lambda-ring in the following sense.
For any lambda—ring.R o Q .and A .
any r € R, there exists a unique | m

lambda ring homomorphism ¢ :| 4 R
A — R such that ¢(Z) = z. 14

That is, for any z € R, we define ¢ : A — R be f +— f(x). Since
(pr o 0)(f) = pe(f (@) = (2 [f])(2) = (0 o pr)[f],

this is a lambda-ring homomorphism. Conversely, for any lambda-
ring homomorphism ¢ : A — R, we take z = ¢(Z) € R. Then

e(f) = e(flm]) = felpr) = f(z).
For two lambda rings R;, Ry, their tensor product is naturally a
lambda ring by
pe(z ®@y) = pr(x) ® pi(y).



48 NOTES ON MACDONALD POLYNOMIALS

Since pg(1) = 1, the natural map R; — Ry ® Ry is lambda-ring homo-
morphism for ¢ = 1,2. It has the universal property

\\ Homy, ging (R1, R)

R1 ® Ry R x Homy ging(R2, R)
/ = Hom) ring (111 ® Ry, R).
Ry
We claim if f[X +Y] =) fi[X]f2[Y], then

fla+b)=>" fi(a)

This follows directly from the universal property — we can replace X
by a and Y by b. Namely, we have the following diagram

Z—X+Y
_—

A A®A

Zrsa || Zb
Zr—a+b

R
Similarly, if f[XY] = X A[X]/2[Y], then f(ab) = X2 fi(a) fa(b).
8.4. Return to K-theory. Now, for V € K*(X) or V € Rep(G),
h.(V)=S"V, e, (V) =NV
from the construction:
L+ h(V)t+ hy(V)E2+ - -
= (L+ hyt + hot®- - )(V)

t? t3
= exp <p1t—|—p2§ +P3§+"') (V)

= exp <p1(V)t +p2(V)§ erz(V)ﬁ + )

=1+S'(V)t+S*(V)t* + -
Similar computation for e, (V). We also have h,.(=V) = —(—=1)"e, (V).
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Recall that for any partition A F n, there is an idempotent e, €
Q[S,], such that the irreducible representation of GL,, of highest
weight A\ is

V(X) = e, (C™)n,

Here, if A cannot be viewed as a weight of GL,,, i.e. the length of A
is more than m, we take the convention that V(A) = 0. We claim that
for any V € K(X) or Rep(G)

S)\(V) = 6>\V®n.

This is known as Schur functor. For example,

e when A= (17), ex = >, o5 (—1)™w then e, V& = A"V;
e when A = (r), ex = D cs, w then ey V" =SV,

For any V' € Rep(G) of dimension m, we define
¢ : Rep(GL,,) — Rep(G)
by restriction. For any V' € K(X) of rank m, we define
o(U) = Fx(V) xar,, U,
where
Fx(V)={(z,v1,...,vp) : x € X,span(vy, ..., v,) = Vi }.
Since both construction is a functor, we have
p((CMEM) =V p(ea(C)™") = eVE™.

In particular, ¢ commutes with A¥ thus is a lambda ring homomor-
phism.

So it reduces to check the universal case, i.e. when V = C™ €

Rep(GL,,), this follows from the fact that the ring homomorphism
A — Rep(GL,,) sending e, — AN"C™ sends sy to V(A).
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Remark. Note that it is not obvious that A" extends to K(X)q, the
existence of the extension follows from the construction of Adams op-
erators. Moreover, there is no direct meaning of e, for any elements.
For example,

1) = (p% —p2) (Av) = pi(3V)? = p(3V)

62(5

2 2
1 2 1 2
o zp1<v) - 5172(‘/) o _1 2 lpl(v) —p2(V)
1 1
e ®2 _/\2
8V + 5 V.

But if V = 2U, then

1 1 1 1
—§V®2 + 5/\2v = —§U®2 + 5(/\2U +U@U+ NU) = NU.
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9. HAIMAN THEORY
9.1. Springer theory. Let B = G/B be the flag variety. Let
m:T"B=N — N Cgl,

be the Springer resolution of type A. For a nilpotent matrix of Jordan
type A F n, we denote the Springer fibre by B,. Let us consider

B, fibre N
any point (O N.

It was computed

EndPerv(N) (7T* 1]\7) = Q[Sn]
thus the (co)homology of By has an S,, action. Note that all represen-
tation of §,, are isomorphic to its dual, thus

H*(B)) ~ H.(B)) as S,-reprsentations.
We will study the cohomology of By. We have (up to graded shifting)
at the level of K-group

Tl = Zt? H*(By) ® 1g, € K(S,-Rep) ® K(N)[t].
AFn
Here 1p, = 211g,. By decomposition theorem, we also have
7T*1/\7 = @ Htop(B)\) & IC@A.
AFn

Here the top degree can be compute explicitly, it is
: N
UOEDIEINEDS (2) = (p, wo)).
i>1 j>1

For example, for n = 3,

A B)\ dim H.
(3) a point 0 |tri
(2,1) | union of two P’s | 1 | tri® std
(13) | full flag variety | 3 |tri® std @ std & alt
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It was known that
H”(’\)(B,\) ~irr,, as an S,-representation.
Later, we will see

H*(B)) ~ Indg’; tri, as an S,-representation.

9.2. Lusztig embedding. Recall affine Grassmannian for GL,, is
Gr = {O—lattioes in IC@”} = Gx/Go.
Denote Ay the standard lattice O%". Recall the Schubert cell

Zg\ = {A Q AO : Ao/A has type )\} = G(Qt)\ : Ao.

A torsion O-module has type A means it is isomorphic to O/t O @
O/t**O @ --- for t the generator of the maximal ideal. Note that

) = Ly

= {A CAp:dimA/A = n}
Let us take O = C[[t]] and K = C((t)). Let us define
L N — S, Ar— (t— A)A,.
Then we have
(Ao/(t — A)Ao,t) ~ (C", A).
This shows Q) is mapped into X3. Not hard to show it is an embedding,

and by dimension reason, it is open. See [Zhu, Example 2.1.8.] In this
case, we get a linear map

i 1so — 1
B Eew) = KN, {IC;O 1,
Y AT

Recall that the character
1y —> Pylsse-1 up to some power of
ICss — xa = s

Here P is the Hall-Littlewood polynomial (i.e. Macdonald polynomial
at ¢ = 0) in n variables. It is not hard to see the the expansion of P
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to s, does not change if we understand them as symmetric functions.
Then the identity

Y t'H'(By) ® 1o, = Y Hipp(B)) ®1ICq, € K(S,-Rep) @ K(N)

AFn AFn

reduces to
Z t?H.(BA)PA|th—1 — Z Ht0p<B/\) ® Sx € K(Sn—Rep) ® At-
AFn AFn

By applying the Frobenius character, irr) — sy, we get

. { F-ch f
Zt‘< HC.(ag/\;) )®PA|ti—>t1:ZS>\®3A€At®AtJ

AFn AFn
That is

F-char of
gt(wgkﬁmawﬂm_gﬁwﬁy

The right hand side is Q[XY]9=". This implies, under the Frobenius
character,

dual basis of Py -1
. n(\) Alt—t
H*(By) — t ( under the Hall pairing ) '

Let us have a quick look at the case t = 1, i.e. if forgetting the grading.
Recall that Py|;—; = m,. This tells the Frobenuis character of H*(5))
is hy = hy,hy, - - -, the same as Indgz tri. So

A) (By) ~ irry, as an S,-representation.

Now return to the graded version. Denote

1
=—P dual HL polynomials
Qx (Py, Py); A poly
Hy=Q\Z] transformed HL polynomials
H, = t”(’\)HA|th71 cocharge variant of THLP

Since @) is the dual basis of P, under (-,-);, H, is the dual basis of Py
under (-,-). As a result, Hy|;,;-1 is the dual basis of P[4 -1 under
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(-,-). This implies

HY(B) — ( F-char of) .

By )~ >

Note that Hy can be characterized by
(1) (s, Hu) =1 for n = |ul.
(2) H,[Z] € span(sy : A > p)
(3) H,[Z(1 —t)] € span(sy : A > ).
The proof goes as follows:
(1) Since H*(B,) ~ Indgz tri, the invariant H®(By)®" has to be
one-dimensional, thus it is H%(B)).
(2) This is a standard fact about Indgz tri.
(3) comes from

H,(Z(1-t)]=Q, = P, € span(sy, A < p).

(P, Py
So
FIM[Z(l —t)] = ﬁM[tZ(t*1 —1)] = twﬁu[—Z(l B til)]
(N
B mpu _ZHth—l < Span(s)\/ A < Iu)
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Note that the rank of the torus has rank ¢(\) the number of parts of
A. Consider the following closed variety

X)\ = {(t,X) :
Then O(X)\) = Hj.w)\ (X/\)(C with

the coordinate of x
has \; many copies of t;

} C Ct™ % .

functions t1,...,%y) are equivariant parameters of T},
functions 1, ..., z, are restricted from full flag variety,
grading is from the C*-action on t;, x;

S, acts by permuting z;’s.

We will view X\ as a variety over C" = Spec H7, (pt). Then the generic
fibre at t = (t1,...,te ) is

Sp-orbit of (+++ -+ ti,---)  CC™
A.
For example,
A generic fibre of X O(X,)
(3) {(t.t, 1)} Q[y, w9, w3] /(11 = w2 = 3 = 1)
{(t1,t1,t2) }
(2,1) U{(t1,t2,t1)} Clx1, z2, 3]/ (complicated)
U{(t27t17t1)}
(1°) [UsesA(to), to@), to@)} | Clas, x2, s]/{ei(@) = ei(t), i = 1,2,3)

Finally, H*(By) = Hj, (Bx)/(t:). That is,
H*(By) = O(X3),

where X9 is the zero fibre (scheme theoretic, not reduced). Geometri-
cally,

Xg X)\ (ﬁbre)red (O
{0} Ct™ stratum of A — C"/S,,.

Let us denote graded ring with S,,-action
RA(x) = O(XY), i.e. SpecRy(x) = X},
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Then
Frobenius character of R,(x) € span(sy : A > pu).

9.4. Haiman Theory. Now we consider the two dimensional analogy.
We need Hilbert schemes. Let H, be the Hilbert schemes of n points
over C2. That is

H, = {ideal I C C[z,y] : dim Clz,y]/I = n}.

For 1  n, and generic (a,b) € C*™ x C**) (ie. a;’s and b;’s
are distinct), we construct n different points in C%. We illustrate the
definition by an example.

(as, b1)
(662, bl) ((12, bz)
| ] (a1,b1) (ai,ba) (a1,b2) (a1,bo)

The ideal for these n points defines an ideal, i.e. defines a point of H,,.
Let us consider C,, C H,, the closure of all points constructed in this
way. Note that the monomial ideal I, defined by the diagram of p is
in C),. For example, I, is given by

v’
y [ry = (@', 2%, 2y’ ).
1|2 x2|x3\
Let us consider
fibre,, — fibre X, c?
]
{1} C, H, C*/8,.

The notations will be explained one by one:

o We view
C?" = {n-tuples of points over C?}:
C*"/S,, = {n-multi-sets of points over C?}.
We write the S,-orbit of (Py,...,P,) € C*" by
[P] 4 -+ [P,] € C*"/S,.
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e Here H, — C*"/S,, is given by
I — the 0-cycle defined by I
Z multp(C[z,y]/I) € C*"/S,.

PeC?
For example, if I is the ideal for n-distinct points Pi,..., P,,
then I — [Py] + -+ [P,]. If I = I, defined by a partition,
I, — n[0].
e Here X, is the reduced fibre product, called isospectral Hilbert
scheme. Say,

_ the 0-cycle defined by I
KXo = {(I’Pl’ oo ) over C?is [P|+---+[P, ]}

Note that at each point, the fibre is a closed subscheme of C2.
At the generic points, i.e. ideals I € H,, defined by n distinct
points, the fibre is reduced and is S,,-orbit of those n-tuple in

C2.
Let us define
R, (x,y) = O(fibre,), i.e. SpecR,(x,y) = fibre,.

Since I, is a (C*)*-fixed point, R,(x,y) is a bigraded ring with an
S,-action. The ring R, (x,y) is the two dimensional analogy of R)(x)
above.

Denote the bigraded Frobenius character by x : €@,,-q K (S,-Rep)q: —
Ag:. We are going to show yg,[Z] € Ag, satisfies the following char-

acterization of transformed Macdonald polynomials H, A
(1) (s(uys Hu) = 1, where n = |p;
(2) H[Z(1— q)) € span(sy : A > p);
(3) H,[Z(1 —1)] € span(sy : A > ).

Haiman proved the map p: X,, — H, is flat, i.e.

‘ p«Ox, is a vector bundle of rank n!. (%)

As a result,
R, (x,y) = fibre of p,Ox, at I,,.
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Now we can prove (1). Since generically the fibre is an S,-orbit of
n distinct points, thus the fibre of Oy, is the regular representation
C[S,] at generic points. By (x), all the fibre of Oy, is the regular
representation. Say, the multiplicity sheaf

Hom(irry, p.Ox,)
is a vector bundle. In particular, we have R, ~ C[S,] the regular
representation. Thus R,‘j" = Rff’gzo, SO (s(n), X Ru> =1.

Let us prove (2). The proof of (3) is similar. We need to notice that
the first projection of points reduces to dimension 1 case. For example:

(03, bl) as
(ag, bl) (CLQ, bg) = Qg Q9
(al, bl) ((11, bz) ((11, bz) ((11, bz) a; aip ap a
Thus
RM(Xv Y)/<y> = RM(Xa y)/<y17 s 7yn> = RM(X)'

Denote @), the only point over 1, i.e. @, = ({,,0,---,0) € X,,. Let
us consider the diagram

R/m
S = OXn,QM - R,U«(Xa y)
|

R = OHqu R/m = C

Here S and R are just local rings at (), and I, respectively, and m is
the maximal ideal of I, € H,,. By (%), the ring S is free over R, from
the diagram, we have

xslZ] = xr. 2] - xr.

Since R has trivial S, action, xgr[Z] € Qg+, so we denote it just by
Xr- It was proved by Haiman that yq,...,y, form a regular sequence
of Ox, ou- By Koszul complex (see below), we get

Xs/w) 2] = xslZ(1 = q)] = xr,[Z(1 - q)] - X&r.
Now we have

S/y) 25 R(x,y)/(y) = Ru(x).
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Since m has trivial §,-action, by Nakayama lemma,
XR,.(x) € span(sy : A > 1) == Xs/(y)[Z] € span(sy : A > p).
Thus
Xr.[Z(1 = q)] € span(sy : A = p).
This proves (2).

Appendix: Koszul complex. Let V be a §,, x C*-representation.
Then
xvlZ(1—gq)] = Z(—Q)kXV@vAkcn [Z].
k
Actually it suffices to check the right hand side is a ring homomorphism
(i.e. well-behaved under induction), and it is true for tri.
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