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2 NOTES ON MACDONALD POLYNOMIALS

1. Double affine Hecke Algebras

1.1. Affine Weyl groups. Let us fix a finite root system. The affine
Weyl group is

Ŵ = Q∨ oW = W nQ∨
Q∨ = coroot lattice

W = Weyl group

The group Ŵ acts

on Q∨ = Ŵ/W affinely :

(wtλ) · µ = w(λ+ µ).

on Q̂ = Q⊕ Zδ linearly :

(wtλ) · (α + kδ) = wα + (k−〈λ, α〉)δ.
The set of (positive) real roots is

∆̂ =

{
α + kδ :

α ∈ ∆
k ∈ Z

}
, ∆̂+ =

{
α + kδ :

k > 0 or
k = 1, α > 0

}
.

For any α̂ = α + kδ, we can define the reflection

rα̂ = rαtkαv = t--kαvrα.

Assume the Dynkin diagram of R is connected, then there is a highest
root θ. We denote

s0 = r−θ+δ = rθt−θv = tθvrθ.

Then Ŵ is Coxeter system with Î = I ∪ {0}. For x = wtλ ∈ Ŵ , the
length is

`(x) = # Inv(x), where
Inv(x) = ∆̂+ ∩ x--1∆̂−

= {α̂ ∈ ∆̂+ : x α̂ ∈ ∆̂−}
We have a very famous formula

`(wtλ) =
∑
α∈∆+

∣∣∣∣〈α, λ〉+ [wα < 0]

∣∣∣∣.
Actually, if we denote for α > 0, the set

Invα(x) = {±α + kδ ∈ Inv(x)},
we have

Invα(wtλ) =

{
{α + kδ}0≤k<〈α,λ〉+[wα<0], 〈α, λ〉 ≥ 0,

{−α + kδ}0<k≤−〈α,λ〉−[wα<0], 〈α, λ〉 < 0,
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1.2. Affine Hecke Algebras. Let Ĥt(W ) be the Hecke algebra for

the Coxeter system Ŵ . We have

Ĥt(W ) =
⊕
x∈Ŵ

Qt · Tx,
TxTy = Txy if

`(x) + `(y) = `(xy).

Let us denote Y λ for λ ∈ Q∨ as follows. For dominant λ, we define
Y λ = t−〈λ,ρ〉Ttλ ; for general λ, we define Y λ = Y λ1(Yλ2)

−1 if we can
write λ = λ1 − λ2 with λ1, λ2 dominant. This is well-defined since for
dominant λ ∈ Q∨

`(tλ) =
∑
α>0

|〈α, λ〉| = 2〈ρ, λ〉.

Denote

Ht(W ) =
⊕
w∈W

Qt · Tw = Hecke algebra for W

Qt[Y ] =
⊕
λ∈Qv

Qt · Y λ = group ring of Q∨.

Then Ĥt(W ) contains them as subalgebras and

Ĥt(W ) = Qt[Y ]⊗Ht(W ) (as a vector space),

with intertwine

TiY
λ − Y siλTi = (t− 1)

Y siλ − Y λ

Y −α
v
i − 1

.

Here our convention of quadratic relation for Hecke algebras is

(T − t)(T + 1) = 0.

We will check this relation soon after introducing extended affine Hecke
algebras.

Consider the Bernstein representation of Ĥt(W ) on Qt[Y ]:

Ti 7→ Demazure–Lusztig operator = t si + (t− 1)
si − 1

Y −α
v
i − 1

Y λ 7→ multiplication by Y λ.

It defines a faithful representation of Ĥt(W ). Actually, it is isomorphic

to Ĥt(W )⊗Ht(W ) Qt with Ti 7→ t on Qt (i ∈ I).
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1.3. Extended affine Hecke algebras. Define extended affine Weyl
group

Ŵe = W n P∨ = P∨ oW.

It acts on P∨ and Q̂ = Q⊕Zδ. We can extend the length function to

Ŵe using the same expression. We have

Ŵe = Ŵ o Ω = Ω n Ŵ .

Ω = {x ∈ Ŵe : `(x) = 0} = Aut(affine Dynkin
diagram ).

Define the extended affine Hecke algebra

Ht(Ŵe) = Ω nHt(Ŵ )
as v.s.

======== Qt[Ω]⊗Ht(Ŵ ).

Then we have

Ht(Ŵe) =
⊕
x∈Ŵe

Qt · Tx,
TxTy = Txy if

`(x) + `(y) = `(xy).

We can define Y λ in the same manner. To check the intertwine, it
suffices to check for fundamental coweights ∈ P∨ since it is true for
λ − µ if it is true for λ and µ. It reduces to check the following (λ is
dominant)

〈λ, αi〉 = 0 〈λ, αi〉 = 1

HiY
λ = Y λHi HiY

siλHi = Y λ

Hw = t−`(w)/2Tw
(Hi − t1/2)(Hi + t1/2) = 0.

Sketch for the second case. Denote λ′ = siλ. Then λ′+λ is dominant.
Using the length formula, we can check

tλ′+λ = (tλ′si)(sitλ)

is a reduced decomposition i.e. `(tλ′+λ) = `(tλ′si) + `(sitλ). Then

Y λ′+λ = Htλ′+λ
= (Htλ′

H−1
i )(H−1

i Htλ) = (Htλ′
H−1
i )(H−1

i Y λ).

Thus Y λ′ = Ttλ′H
−2
i , so

HiY
λ′Hi = HiTtλ′H

−1
i = Htλ = Y λ.
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1.4. Double affine Hecke algebras. Let us denote Qq,t = Q(q, t)

for short. Let us denote Qq,t[X] =
⊕

α∈QQq,t ·Xα. For α+ kδ ∈ Q̂ =
Q⊕ Zδ, we denote

Xα+kδ = qkXα.

i.e. q = Xδ. So we can identify

Qq,t[X] = a localization of the group ring of Q̂ = Q⊕ Zδ.
We define double affine Hecke algebras

Ḧq,t(W ) = Qq,t[X]⊗ Ĥt(W )

with intertwine for i ∈ I ∪ {0}

TiX
λ −XsiλTi = (t− 1)

Xsiλ −Xλ

Xαi − 1
.

Here, Xα0 = qX --θ. Note that there is no minus. Note that q is
central, thus we can just record it in the base field.

We define the following Cherednik’s representation of Ḧq,t(W ) on
Qq,t[X] by

Ti 7→ Demazure–Lusztig operator = tsi + (t− 1)
si − 1

Xαi − 1

Xλ 7→ multiplication by Xλ

It is a faithful representation isomorphic to Ḧq,t(W )⊗Ĥq,t(W )Qq,t with

Ti 7→ t on Qq,t (i ∈ I ∪ {0}).
It is clear that Ti (i ∈ i) and Xλ (λ ∈ Q) generate the affine Hecke

algebra Ĥt(W
∨) of the dual root system. Let us denote T∨i = Ti for i ∈

I. Denote T∨0 such that for anti -dominant weight λ, Xλ = t--〈ρ
v,λ〉T∨tλ .

Then T∨i (i ∈ I ∪ {0}) generate Ĥq,t(W
∨).

In summary, we have

Ḧq,t(W )

Ĥq,t(W )

⊂
Ĥq,t(W

∨)

⊂

Qq,t[Y ]

⊂
Hq,t(W )

⊂⊂
Qq,t[X]

⊂
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Actually, the following is an isomorphism

Ḧq,t(W ) −→ Ḧq,t(W
∨),


Ti 7→ T∨ --1

i ,

q 7→ q--1, t 7→ t--1,

Xµ 7→ Y µ, Y λ 7→ Xλ,

Proof is technical and can be found in [Mac2, §3.5-3.7] and [Hai, §4].
The duality switches two copies of affine Hecke algebra induced from
the bar-involution.

Compare:

Y µ = t〈ρ,µ〉Ttµ (µ ∈ Q∨ dominant),

Xλ = t−〈ρ
v,λ〉T∨tλ (λ ∈ Q anti-dominant).

where φ ∈ R is the root with the coroot φ∨ highest. Let θ be the
highest root, and φ the root such that φ∨ is the highest coroot. Note
that φ = θ if and only if the Dynkin diagram is simply connected.
Then

T0 = t〈ρ,θ〉Y θv

T --1
rθ

(tθv = s0rθ),

T∨0 = t〈ρ
v,φ〉T --1

rφ
X−φ (t−φ = rφs0).

2. Macdonald Polynomials

2.1. Cherednik’s representation. Let P be the weight lattice. Let
us denote

R =
⊕
λ∈P

Qq,t · eλ, eδ = q.

We twist the Cherednik’s representation Ĥt(W ) on R by

Ti 7→ Demazure–Lusztig operator = tsi + (t− 1)
si − 1

eαi − 1

Recall that eα0 = q e--θ. Note that

Qt[Y ] ⊂ Ĥt(W )

is a family of commutative operators over R, thus can be upper trian-
gulated simultaneously. Actually, we are going to prove the eigenvalues
are different and thus can be diagonalized simultaneously.
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Let us define an order over P . We denote ≺ the dominant order.

λ < µ ⇐⇒ λ+ ≺ µ+ or
λ+ = µ+, µ ≺ λ.

Here λ+ stands the dominant weight in the W -orbit of λ. We are going
to show

Y µeλ = t−〈ρλ,µ〉q−〈λ,µ〉eλ + (lower terms),

where ρλ =
1

2

∑
α>0

{
α, 〈λ, α〉 > 0,

−α, 〈λ, α〉 ≤ 0.
. We remark that if w ∈ W is the

maximal element such that λ = wλ+, then wρ = ρλ.
The proof goes as follows. Denote for any root α̂ an operator

G(α̂) = t+ (t− 1)
1− rα
e−α − 1

.

Note that Ti 7→ siG(αi) and wG(α)w−1 = G(wα). For any x ∈ Ŵ , if
we pick a reduced word x = si1si2 · · · si` ,

Tx = Ti1Ti2 · · ·Ti`
7→ si1G(αi1)si2G(αi2) · · · si`G(αi`)

= si1si2G(si2αi1)G(αi2) · · · si`G(αi`)

= xG(si` · · · si2αi1)G(si` · · · si3αi2) · · ·G(αi`).

Note that

{si` · · · si2αi1 , si` · · · si3αi2 , · · · , αi`} = Inv(x).

Thus for x = tµ with µ dominant, we have

Y µ = t−〈µ,ρ〉Ttµ 7→ t−〈µ,ρ〉tµG(β1)G(β2) · · ·G(β`)

such that

{β1, β2, . . . , β`} = Inv(tµ).

Note that any positive root of Inv(tµ) is of the form α+ kδ for α > 0.
Let us study G(α) for α mod δ > 0. We can compute obtain directly

G(α)eλ =

{
eλ + (lower terms), 〈λ, α〉 > 0,

t eλ + (lower terms), 〈λ, α〉 ≤ 0.
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Here is an example in A1, we have

〈α, λ〉 --2 --1 0 1 2
eλ 1

G(α)eλ t t--1 t--1

〈α, λ〉 --2 --1 0 1 2
eλ 1

G(α)eλ 0 1--t 1

Thus

Y µeλ = t−〈ρλ,µ〉e−λ−〈µ,λ〉δ + (lower terms)

= t−〈ρλ,µ〉q−〈λ,µ〉eλ + (lower terms).

By definition of Y µ, this extends to all µ ∈ Q∨. This shows Qq,t[Y ]
has different eigenvalues.

2.2. Nonsymmetric Macdonald polynomials. By above, there ex-
ists a unique Eλ ∈ R called non-symmmetric Macdonald polynomials
such that

(1) Eλ = eλ + (lower terms);
(2) Y µEλ = t−〈ρλ,µ〉q−〈λ,µ〉Eλ.

Actually, Eλ can be constructed by the standard diagonalization trick.
Since (2) determines Eλ up to a scalar, the condition of (1) by requiring
the coefficient of eλ is 1:

(1’) [eλ]Eλ = 1.

For example:

• E0 = 1
• for a minuscule weight λ, we have Eλ = eλ.
• for any weight λ, we have Eλ = eλ mod (t− 1).

Next, let us describe an induction formula for Eλ. If siλ > λ for
some i ∈ I, i.e. 〈λ, α∨i 〉 > 0, then

Esiλ =

(
Ti +

t− 1

t〈ρλ,α
v
i〉q〈λ,α

v
i〉 − 1

)
Eλ.

Let us check the two conditions. (1’) is obvious by direct computa-
tion. Let us check (2). Let us denote

τi = Ti +
t− 1

Y −α
v
i − 1

∈ a localization of Ĥt(W ).
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Note that the right-hand side is nothing but τiEλ. The key observation
is

τiY
µ = Y siµτi ∈ a localization of Ĥt(W ).

Actually, it suffices to check this under the Bernstein representation:

τi 7→ t si + (t− 1)
si − 1

Y −α
v
i − 1

+
t− 1

Y −α
v
i − 1

=
tY −α

v
i − 1

Y −α
v
i − 1

si.

The standard trick tells

Y µ(τiEλ) = τiY
siµEλ = τit

−〈ρλ,siµ〉q−〈λ,siµ〉Eλ

= t−〈ρsiλ,µ〉q−〈siλ,µ〉(τiEλ).

The proof is complete.
We can extend the induction formula to i = 0 by introducing a

similar operator τ0. But for type A, it is simpler to make use of the
symmetry of the affine root system, see [Hai §2].

2.3. Center characters. The argument above tells for any λ, we still
have

Esiλ ∈ Qq,t ·
(
Ti +

t− 1

t〈ρλ,α
v
i〉q〈λ,α

v
i〉 − 1

)
Eλ.

Note that t 6= 1, so that the denominator never vanishes. This implies

A(λ) =
⊕
λ′∈Wλ

Qq,t · Eλ′

is closed under actions of Ti. Since Eλ’s are eigenvalues of Qt[Y ], A(λ)

is a representation of Ĥt(W ). So this gives the composition

R =
⊕

dom λ

A(λ) (as a Ĥq,t(W )-module).

Actually A(λ) can be characterized by center characters. Note that

Z(Ĥt(W )) = Qt[Y ]W .

We have

A(λ) =

{
g ∈ R :

∀f(Y ) ∈ Qt[Y ]W

f(Y )g = f(t−ρq−λ)g

}
.
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Recall that

Y µEλ′ = t−〈ρλ′ ,µ〉q−〈λ
′,µ〉Eλ′

f(Y )Eλ′ = f(t−ρλ′q−λ
′
)Eλ′

for f(Y ) ∈ Qt[Y ]W , Note that we can always find w ∈ W such
that uρλ = ρuλ, thus f(t−ρλ′q−λ

′
) does not depend on the choice of

λ′ ∈ Wλ. Then the easiest choice is λ′ = w0λ and f(t−ρw0λq−w0λ) =
f(tρq−w0λ) = f(t−ρq−λ), as desired.

Let us consider RW , the ring of symmetric polynomials over Qq,t.
We have

Qq,t[Y ]
&&
R

Qq,t[Y ]W
((

⊂

RW

⊂
Firstly, we can rewrite the condition of being symmetric in terms of
DL operators:

sif = f ⇐⇒ Tif = tsif + (t− 1)
sif − f
eαi − 1

= tf.

RW = {f ∈ R : ∀i ∈ I, Tif = tf} =
⋂
i∈I

ker(Ti − t).

Secondly, since Qt[Y ]W is the center of Ĥt(W ), so RW is Qt[Y ]W -
equivariant.

Let us denote for a dominant weight λ the monomial symmetric
polynomials

mλ =
∑
λ′∈Wλ

eλ
′
=
∑
w∈Wλ

ewλ ∈ RW .

Note that by assumption

mλ = ew0λ + (lower terms)

Y µmλ = t〈ρ,µ〉q〈−w0λ,µ〉ew0λ + (lower terms)

f(Y )mλ = f(t−ρq−λ)mλ + (lower terms)

for f ∈ Qt[Y ]W .
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2.4. Symmetric Macdonald polynomials. By above, there exists
a unique Pλ ∈ RW called symmmetric Macdonald polynomials such
that

(1) Pλ = mλ + (lower terms);
(2) f(Y )Pλ = f(t−ρq−λ)Pλ for any symmetric f(Y ) ∈ Qt[Y ]W .

Let us state the relation between Eλ and Pλ. We have

Pλ =
1

Wλ(t)

∑
w∈W

TwEλ =
1

Wλ(t)

∑
w∈W

w

(
Eλ
∏
α>0

eα − t
eα − 1

)

where Wλ(t) =
∑

w∈Wλ
t`(w).

Let us denote the symmetrizer Π =
∑

w∈W Tw. Since Π = (Ti +
1)
∑

siw>w
Tw, we have TiΠ = tΠ. It defines an operator R → RW . It

acts as the following operator

Πf =
∑
w

w

(
f
∏
α>0

eα − t
eα − 1

)
.

For example, for A1,

Πf = Tf + f = tsf + f + (t− 1)
sf − f
eα − 1

=

(
1− t− 1

eα − 1

)
f + s

(
t+

(t− 1)

e−α − 1

)
sf

=
eα − t
eα − 1

+ s
te−α − 1

e−α − 1
= (1 + s)

(
eα − t
eα − 1

f

)
.

By direct computation, we see SEλ satisfies (2). Thus it suffices to
prove the property (1). It suffices to

[ew0λ]
(
Πeλ

)
= Wλ(t).
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The trick is polarization.

∑
w∈W

w

(
eµ
∏ Xα − t

Xα − 1

)
=
∑
u∈Wλ

u

(∑
w∈Wλ

w

(
eµ
∏
α>0

eα − t
eα − 1

))

=
∑
u∈Wµ

u

eµ ∑
w∈Wµ

w

(∏
α>0

eα − t
eα − 1

)
(∗)
= Wµ(t)

∑
u∈Wµ

u

eµ ∏
α∈∆+\∆+

µ

eα − t
eα − 1

 .

Here (∗) is a very famous identity on the Poincaré polynomial of a
Weyl group, we will prove it in the appendix. Let us denote R+ be the
polynomial ring generated by eα for α > 0. Then for α > 0,

eα − t
eα − 1

=
t− eα

1− eα
= (t− eα)(1 + eα + e2α + · · · ) ∈ completion of R+;

for α < 0,

eα − t
eα − 1

=
1− te−α

1− e−α
= (1−te−α)(1+e−α+e−2α+· · · ) ∈ completion of R+.

Then

∑
u∈Wµ

u

eµ ∏
α∈∆\∆µ

eα − t
eα − 1

 = ew0µ(1 +R+
>0).

An identity on Poincaré polynomials. Let us prove

∑
w∈W

w
∏
α>0

1− te−α

1− e−α
=
∑
w∈W

t`(w).
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Actually,

LHS =
1∏

α>0(eα/2 − e−α/2)

∑
w∈W

(−1)`(w)
∏
α>0

(eα/2 − te−α/2)

=
1∏

α>0(eα/2 − e−α/2)

∑
w∈W

(−1)`(w)
∑
u∈W

(−t)`(u)euρ

=
∑
u∈W

t`(u) = RHS.

In the second equality,
∏

α>0(eα/2 − teα/2) is supported over weights
in the convex hull of {uρ}u∈W . For any such weight λ, if eλ is not
killed by

∑
(−1)`(w), then it has to be uρ for some u ∈ W . The third

equality follows from Weyl character formula.

3. Cheridnik Pairing

3.1. Analogy of Discriminant. Recall the pairing over Rep(G) is

〈U, V 〉 = dim HomG(U, V ) =
the multiplicity of the

trivial component of V ⊗ U∨.

If G is reductive, then by Weyl character formula

χ(V(λ)) =
1

∆

∑
w∈W

(−1)`(w)ew(λ+ρ)−ρ, ∆ =
∏
α>0

(1− e−α).

In particular, for any representation V , the multiplicity of the trivial
component is

[e0]
(

char(V )∆
)

= constant term of char(V )∆.

Thus the Hom-pairing induces the following pairing over Rep(G)

〈f, g〉 = [e0](∆fg), 〈U, V 〉 = 〈char(U), char(V )〉.

Here is the example for SL2:

dim 1 2 3 · · ·
χ 1 e+ e−1 e2 + 1 + e−2 · · ·

(1− e−2)χ 1− e−2 e− e−3 e2 − e−4 · · ·
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We are going to construct the t-analogy and affine analogy of ∆.
Define

∆◦q,t =
∏
α∈∆̂+

1− eα

1− t eα
=
∏
α>0

∞∏
k=1

(1− qk−1eα)(1− qke−α)

(1− tqk−1eα)(1− tqke−α)
.

We shall understand it as an element in∑
λ∈P

Q[[q, t]] · eλ (possibly infinite sum).

We normalize the constant term to be

∆q,t = ∆◦q,t/([e
0]∆◦q,t).

We will show that [eλ]∆q,t ∈ Qq,t.
For any i ∈ I ∪ {0}

si∆q,t = 1
[e0]∆◦q,t

∏
α∈∆̂+

1−esiα
1−t esiα

= 1
[e0]∆◦q,t

1−e−αi
1−t e−αi

1−t eαi
1−eαi

∏
α∈∆̂+

1−eα
1−t eα

= 1−t eαi
t−eαi ∆q,t.

This relation can be expressed as a system of linear equations over Qq,t
in [eλ]∆q,t. Since we already have a solution in Q[[q, t]], it has a solution
in Qq,t. Let ∆′ be the solution over Qq,t. We can assume [e0]∆′ = 1

by normalization. Then ∆′/∆q,t is Ŵ -invariant. But

tµe
λ = eλ−〈λ,µ〉δ = q−〈λ,µ〉eλ.

This shows ∆′/∆q,t = 1.

3.2. Non-symmetric case. Define the Cherednik’s inner product on
R by

〈f, g〉q,t = [e0](fg∆q,t)

where · is the involution eλ 7→ e--λ, q 7→ q--1, t 7→ t--1. Note that
∆q,t = ∆q,t So we have 〈g, f〉q,t = 〈f, g〉q,t. Actually, we showed ∆q,t

is the unique element in∑
λ∈P

Qq,t · eλ (possibly infinite sum).
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such that

si∆q,t =
1− t eαi
t− eαi

∆q,t, ∀i ∈ I ∪ {0}, [e0]∆q,t = 1.

The conditions are bar-invariant.
Let us compute the adjoint of several operators

〈sif, g〉q,t = [e0](sif g∆q,t) = [e0](f sigsi∆q,t)

= [e0]

(
f sig

1− t eαi
t− eαi

∆q,t

)
= [e0]

(
f

1− t eαi
t− eαi

sig∆q,t

)
=

〈
f,

1− t eαi
t− eαi

sig

〉
q,t

Thus the adjoint of

Ti = tsi + (t− 1)
si − 1

eαi − 1
=
t eαi − 1

eαi − 1
si +

1− t
eαi − 1

is

1− t e--αi

t− e--αi
si
t--1 e--α − 1

e--αi − 1
+

1− t--1

e--αi − 1

=
1− t--1 e--αi

t--1 − e--αi

t--1 eαi − 1

eαi − 1
si +

1− t--1

e--αi − 1

=
t--1 e--αi − 1

e--αi − 1
si +

1− t--1

e--αi − 1
= T−1

i .

As a result, 〈Tif, g〉q,t = 〈f, T−1
i g〉q,t, i.e. 〈Tif, Tig〉q,t = 〈f, g〉q,t. As a

result,

〈Y µf, Y µg〉q,t = 〈f, g〉q,t.
As a result, nonsymmetric Macdonald polynomials can be character-
ized by

(1) Eλ = eλ + (lower terms)
(2’) 〈Eλ, Eµ〉q,t = 0 if λ 6= µ.

3.3. Symmetric case. Similarly, symmetric Macdonald polynomials
can be characterized by

(1) Pλ = mλ + (lower terms)
(2’) 〈Pλ, Pµ〉q,t = 0 if λ 6= µ.
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But we can simplify 〈·, ·〉q,t.
Here is a useful trick when doing computation. Note that for f ∈

Qq,t = Q(q, t),

f(q, t) = 0 ⇐⇒ f(q, qκ) = 0 for κ = 1, 2, 3, 4, . . . .

Thus assuming t = qκ is harmless. For example,

∆◦q,t =
∏
α∈∆̂+

1− eα

1− t eα
=
∏
α>0

∞∏
k=1

(1− qk−1eα)(1− qke−α)

(1− tqk−1eα)(1− tqke−α)

=
∏
α>0

1≤k<κ

(1− qk−1eα)(1− qke−α)

=
∏
α>0

1− qκe−α

1− e−α
∏
α>0

0≤k<κ

(1− qkeα)(1− qke−α).

Since ∑
w∈W

w

(∏
α>0

1− qκe−α

1− e−α

)
= W (qκ) is a constant

and

∆′◦q,t =
∏
α>0

∏
k≥0

1− tqkeα

1− qkeα
1− tqke−α

1− qke−α
=
∏
α>0

0≤k<κ

(1− qkeα)(1− qke−α)

is W -invariant. By denoting ∆′q,t := ∆′◦q,t/[e
0]∆′◦q,t, we have

〈f, g〉q,t = [e0]
(
f g∆′q,t

)
.

We remark that in type A, for f, g ∈ Λ, we have

lim
n→∞
〈f [Xn], g[Xn]〉q,t = 〈f, g〉q,t.

(If we want to extend to Λq,t, we need to replace g by g|q 7→q−1,t 7→t−1)
This is proved by the computation of 〈Pλ, Pλ〉q,t and 〈Pλ[Xn], Pλ[Xn]〉q,t.
The computation shows the left-hand side is not a constant when t 6= q,
even for n� 0, see [Mac3].
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4. Specializations

Recall that

The Demazure–Lusztig operator

Ti = tsi + (t− 1)
si − id

eαi − 1
.

When 〈λ, α∨i 〉 > 0,

Esiλ =

(
Ti +

t− 1

t〈ρλ,α
v
i〉q〈λ,α

v
i〉 − 1

)
Eλ.

For dominant λ,

Pλ =
1

Wλ(t)

∑
w∈W

w

(
Eλ
∏
α>0

eα − t
eα − 1

)
(∗)

4.1. The limit q → 0. The result is

q → 0,

{
when λ is domiannt Eλ = eλ

if 〈α∨i , λ〉 > 0 Esiλ = tT−1
i Eλ.

Actually, when q → 0, the Cherednik pairing

∆◦q,t =
∏
α

1− eα

1− teα
∈

∑
positive β

Q[t]eβ.

So for dominant λ, and any µ < λ (that is, µ+ <dom λ)

[e0]
(
eλe−µ∆◦q,t

)
= [eµ]

(
eλ∆◦q,t

)
= 0.

From the fact that

Eµ = eµ + (lower term),

we see Eλ = eλ (from the construction, Eλ was constructed when Eµ
for all µ < λ are constructed).

By (∗), when specialize q → 0, we get

Esiλ = (Ti − (t− 1))Eλ = tT−1
i Eλ

=

(
si + (1− t) si − id

e−αi − 1

)
Eλ.

Thus Eλ|q=0 essentially gives the Iwahori–Whittaker functions.
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In particular, if we specialize q → 0, t→ 0, we will get

Esiλ =

(
si +

si − id

e−αi − 1

)
Eλ =

si − e−αi
1− e−αi

Eλ.

Thus Eλ|q=0,t=0 gives the Demazure character of finite Lie algebra g∨.
Now we have

Pλ =
1

Wλ(t)

∑
w∈W

w

(
eλ
∏
α>0

eα − t
eα − 1

)
.

This is known as Hall–Littlewood polynomials. The representation
theoretic explanation is

t〈ρ,λ〉Pλ|t 7→t−1,q=0

gives the spherical funtion in the dual group.
To explain the relation, we need an algebraic version of Satake

equivalence. Let G be a reductive group. As usual, let K be a non-
Archmedean local field with ring of integers O and residue field k.
Since GO is compact, we take the Haar measure µ with µ(GO) = 1.
We have

GK =
⊔

λ∈P v
dom

GOt
λGO =

⊔
λ∈P v

dom

O(λ).

We can define a convolution product over

Fun(GO
\GK/GO

) :=
⊕

λ∈P v
dom

1O(λ)

with convolution product

(f ∗ g)(x) =

∫
GO

f(xy−1)g(y)dy.

Explicitly, 1λ ∗ 1µ =
∑

ν c
ν
λµ1ν with

cνλµ =

∫
G

[tνy−1 ∈ O(λ)] · [y ∈ O(µ)] dx

= #{y ∈ O(µ) : tνy−1 ∈ O(λ)}/GO

= #{(x, y) ∈ O(λ)×O(µ) : xy = tν}/(x, gy) ∼ (xg, y), g ∈ Gø

= # fibre of O(λ) ×
GO

O(µ)→ GK ⊃ O(ν).
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It is well known that this algebra is isomorphic to the spherical Hecke
algebra:

HG
∼= eĤt(W )e

∣∣
t=#k

with e =
1

W (t)

∑
w∈WtλW

Tw.

Under the isomorphism,

1O(λ) 7−→
1

W (t)
e

( ∑
w∈WtλW

Tw

)
e.

Note that

WtλW =
⊔

λ′∈Wλ

tλ′W.

We write tλ′ = uλ′vλ′ with uλ′ minimal representative of tλ′W , and
vλ′ ∈ W . It is known that vλ′ is the minimal element such that vλ′λ =
λ′. Thus ⊔

λ′∈Wλ

tλ′W =
⊔

λ′∈Wλ

tλ′v
−1
λ′ W.

So any element w ∈ WtλW can be uniquely written as w = vtλu
with v ∈ W λ, u ∈ W and `(w) = −`(v) + `(tλ) + `(u). Recall that
Y λ = t−〈ρ,λ〉Ttλ for λ dominant. As a result,

1O(λ) 7→
1

W (t)
e

( ∑
w∈WtλW

Tw

)
e

= e

(∑
v∈Wλ

T−1
v

)
Ttλ

(∑
u∈W

Tu

)
e = t〈ρ,λ〉

W (t−1)

Wλ(t−1)
eY λe

= t〈ρ,λ〉
W (t−1)

Wλ(t−1)
e

(
1

W (t)

∑
w∈W

w

(
Y λ
∏
α>0

Y −α − t
Y −α − 1

))
e

= e

(
t〈ρ,λ〉

Wλ(t−1)

∑
w∈W

w

(
Y λ
∏
α>0

1− t−1Y −α

1− Y −α

))
e.
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That is, under the identification eĤte(W ) = Qt[Y ]W , 1O(λ) is the
function

Kλ :=
t〈ρ,λ〉

Wλ(t−1)

∑
w∈W

w

(
Y λ
∏
α>0

1− t−1Y −α

1− Y −α

)
.

Denote

χλ =
∑
w∈W

w

(
Y λ
∏
α>0

Y α

Y α − 1

)
the Weyl character. By direct computation,

Kλ ∈ t〈ρ,λ〉χλ +
∑
µ<λ

Q[t]χµ.

Let us describe the bar-involution over eĤt(W )e. Recall that Ttλ =
T−1
t−λ

. So

1

W (t)
e

( ∑
w∈WtλW

Tw

)
e =

1

W (t)
e

( ∑
w∈WtλW

T−1
w−1

)
e = const · eY w0λe.

Do the same computation as above, we will see Kλ = Kλ|t 7→t−1 . In
particular, for a symmetric f ∈ Q[Y ]W , f = f . As a result, the

Kazhdan–Lusztig basis of eĤt(W )e is Weyl characters.
Perhaps let us state them in term of sheaves (geometric Satake).

Denote

Σ◦λ := GOt
λGO/GO ⊂ GrG := GK/GO.

Note that dim Σ◦λ = 2〈ρ, λ〉. We have

Kλ ←→ 1Σ◦λ
∈ DGO

(GrG),

χλ ←→ ICΣ◦λ
∈ SSPerv(GrG),

where the intersection complex is normalized such that IC(λ)|Σ◦λ =
Q[dim Σ◦λ].
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4.2. The limit t → 0. In this case, Eλ ∈ R is the character of level
1 affine Demazure module. Let g be a semisimple Lie algebra. Recall
that the untwisted affine Kac–Moody algebra is

ĝ = Lg⊕ C∂ ⊕ Cc, Lg = g[t±1] = g⊗ C[t±1]

with ∂ = t ∂
∂t

and c central. We are working in

ĥ = Cc

coroots︷ ︸︸ ︷
⊕ h

coweights︷ ︸︸ ︷
⊕ C∂

l l l
ĥ∗ = CΛ0 ⊕︸ ︷︷ ︸

weights

h∗ ⊕︸ ︷︷ ︸
roots

Cδ

〈c,Λ0〉 = 〈∂, δ〉 = 1
〈c, δ〉 = 〈∂,Λ〉 = 0

simple roots simple coroots
{αi} ∪ {α0 = δ − θ} {α∨i } ∪ {α∨0 = c− θ∨}

Note that the central element c can be written as a positive sum of
simple coroots

c ∈ α0 +
∑
〈θ∨, ωi〉αi.

Note that 〈θ∨, ωi〉 is always positive. The fundamental weight Λi for
i ∈ I ∪{0} is normalized such that the coefficient of δ is zero. In other
word,

Λi =

{
Λ0, i = 0,

ωi + 〈θ∨, ωi〉Λ0, i 6= 0.

For an affine weight λ ∈ ZΛ0 ⊕ P ⊕ Zδ, we call the coefficient of Λ0,
i.e. 〈c, λ〉, the level of λ.

• If λ is a dominant affine weight of level 0, then

λ ∈ Zδ.

Then the dimension of V(λ̂) is one.
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• If λ is a dominant affine weight of level 1, then

λ ∈ Λi + Zδ
with 〈θ∨, ωi〉 = 1. This happens exactly when i is miniscule,
equivalently, conjugate to the affine node under graph auto-
morphism of the Dynkin diagram.

If λ has level `, then the action of c on the irreducible integrable
module V(λ) is always `, thus to compute the character, specialization
of eΛ0 = 1 does not loss any generality if level is known.

Denote
b̂ = b⊕⊕C∂ ⊕ Cc⊕ tLg.

For an affine dominant weight λ and affine Weyl group element w ∈ Ŵ ,
the Demazure module

Vw(λ) = the b̂-submodule generated by w · vhighest.

We have the following formula for its character

charVid(λ) = eλ,

charVw(λ) = πw
(
charVid(λ)

)
.

Here πw is the Demazure operators

πi =
id−e−αisi
1− e−αi

.

Since πi satisfies the Braid relation, it is well-defined to denote πw.

Now let us describe the level 1 action of Ŵ on Λ0 +P mod δ. For a
finite weight λ,

si(Λ0+λ) = Λ0+λ+ 〈α∨i ,Λ0+λ〉αi

=

{
Λ0+siλ, i ∈ I,
Λ0+(rθλ− θ) + δ, i = 0.

Let us denote for a level one weight λ = Λ0 + λ0 + kδ,

Eλ = qkEλ0 .

The result is, for type ADE, we have

charVw(λ) = eΛ0Ewλ|t=0,

for an affine domiant weight λ of level 1.
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By (∗), when specializing t→ 0,

Esiλ =

(
− si − id

eαi − 1
+ 1

)
Eλ =

(
−si + eαi id

eαi − 1
+ 1

)
Eλ

=

(
id−e−αisi
1− e−αi

)
Eλ = πiEλ.

There are two methods of proving i = 0.

• By the Dynkin diagram automorphisms, we can transform affine
node to a finite node, this proves for type A, D and E6.
• In general, we need the i = 0 analogy of the induction formula

(Cherednik intertwine theory).

We mention that the non-simply laced cases, we cannot apply the
Dynkin diagram automorphisms since the affine Dynkin diagram of
dual type are different. We remark that when λ is anti-dominant,
Pλ = Eλ. This follows from the fact π2

i = πi.
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5. Degeneration of DAHA

5.1. Degeneration of Hecke Algebra. Let u, v, β be three vari-
ables. Let us consider the Hecke algebra defined by

(Ti − u)(Ti + v) = 0.

Note that Ti/v satisfies the usual Hecke algebra relation with t = u/v:

(Ti/v − u/v)(Ti/v + 1) = 0.

Let us denote R = Q[eβλ]λ∈P the group algebra of P . We should
understand the symbol

eβλ = 1 + βλ+
β2

2
λ2 +

β3

3!
λ3 + · · · ∈ O(t)[[β]].

https://arxiv.org/abs/math/0105061
https://arxiv.org/abs/math/0105061
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Denote cherednik representation on R

Tif = usi + (u− v)
sif − f
eβαi − 1

,

Xif = eβxif.

Then

TiX
λ −XsiλTi = (u− v)

Xsiλ −Xλ

Xαi − 1
.

Note that Ti is the unique operator such that Ti’s satisfy the relations
of Hecke algebra and Ti1 = u.

Group algebra. Let us take u = v = β = 1. We see Ti = si, and
Xλ = mult by eλ. The relations are

T 2
i = 1, XλX−µ = Xλ−µ,

TiX
λ −XsiλTi = 0.

It gives the group algebra.

Degenerate Group algebra. Let us take u = v = 1 but set β → 0.
Then

Ti = si, xλ = lim
β→0

Xλ − 1

β
= mult by λ

. The relations are

T 2
i = 1, xλ − xµ = xλ−µ,

Tixλ − xsiλTi = 0.

It gives the group algebra.

Zero Hecke algebra. Let us take u = −β and v = 0, i.e. (Ti−β)Ti =
0. Then

Ti = −βsi − β
si − 1

eβαi − 1
=

1− eβαisi
−(1− eβαi)/β

.

If we specialize further β = −1, we get

Ti =
1− e−αisi
1− e−αi

, Xλ = mult-by e−λ.
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The operator is originally found by Demazure. The relations are

T 2
i = Ti, XλX−µ = Xλ−µ

TiX
λ −XsiλTi =

Xsiλ −Xλ

Xαi − 1

Nil-Hecke algebra. If we specialize β = 0 in stead, we get

Ti =
1− si
αi

, lim
β→0

Xλ − 1

β
= xλ = mult by λ.

The operator is the BGG Demazure operator. The relations are

T 2
i = 0, xλ − xµ = xλ−µ

Tixλ − xsiλTi = 〈α∨i , λ〉.
Note that by induction, it is not hard to prove

Twxλ = xwλTw +
∑

α>0,w=urα
`(w)=`(u)+1

〈α∨, λ〉Tu.

Graded Hecke algebra. Let us take u = e−β, and v = 1. We have

Ti = e−βsi + (e−β − 1)
si − 1

eβαi − 1
.

Let β → 0, we get

Ti = si +
1− si
αi

, lim
β→0

Xλ − 1

e−β − 1
= xλ = mult by λ.

This operator appears in the study of homology of Springer resolution.
The relations are

T 2
i = 1, xλ − xµ = xλ−µ

Tixλ − xsiλTi = 〈α∨i , λ〉.
By induction, it is not hard to prove

Twxλ = xwλTw +
∑

α>0,w=urα
`(w)≥`(u)+1

〈α∨, λ〉Tu.

Note that the sum is over Inv(w) = {α > 0 : wα < 0}. Moreover, we
can rewrite Tu = TwTrα .
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5.2. Degeneration of DAHA. Recall that a half of Ḧq,t(W ) is Ĥq,t(W )

and another half is Ĥq,t(W
∨). We can degenerate both of them.

Double affine Weyl group. We degenerate

Ĥq,t(W )−→ Group algebra,

Ĥq,t(W
∨)−→ Group algebra.

In this case, we have

Y µXλ = q−〈µ,λ〉XλY µ.

Actually, we can view Y µ as the q-difference operator

eλ 7−→ q−〈λ,µ〉eλ.

Trigonometric degeneration. We degenerate

Ĥq,t(W )−→ Group algebra,

Ĥq,t(W
∨)−→ Degenerate Hecke algebra.

Let us denote ~ = xδ. Then

Y µxλ = (xλ − ~〈λ, µ〉)Y µ +
∑
α>0

0≤k<〈αv,µ〉

〈λ, α〉Y µTrα+kδ

= (xλ − ~〈λ, µ〉)Y µ +
∑
α>0

〈λ, α〉Y µ1− Y −〈αv,µ〉αv
i

1− Y −αv
i

Trα

= (xλ − ~〈λ, µ〉)Y µ +
∑
α>0

〈λ, α〉Y
µ − Y rαµ

1− Y −αv
i
Trα .

Thus

xλY
µ = Y µxλ − ~〈λ, µ〉Y µ −

∑
α>0

〈λ, α〉Y
µ − Y rαµ

1− Y −αv
i
Trα .

Now let us consider

Ĥq,t(W )−→ Degenerate Hecke algebra,

Ĥq,t(W
∨)−→ Group algebra.

We have

yµX
λ = Xλyµ + ~〈λ, µ〉Xλ −

∑
α>0

〈µ, α〉X
λ −Xrαλ

1−X−αi
Trα .
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Recall that Xλ acts by product with eλ; Trα acts by rα. In this case,
yλ is given by the trigonometric Dunkl operator

yλf = ~ ∂µf −
∑
α>0

〈µ, α〉f − rαf
1− e−α

.

Let us explain ∂µ.

• Let us denote the differential operator,

(∂µf)(x) = lim
t→0

f(x+ µt)− f(x)

t
.

Note that f ∈ R are viewed as function over t, say eλ are viewed
as x 7→ e〈λ,x〉. For example, ∂µe

λ = 〈µ, λ〉eλ. We have Leibiniz
rule

∂µ(fg) = (∂µf)g + f(∂µg).

In particular,

~∂µXλ = Xλ~∂µ + ~〈λ, µ〉eλ.

• Let us denote the operator

Gαf =
f − rαf
1− e−α

.

Then we can check directly that

Gα(fg) =
fg − (rαf)(rαg)

1− e−α

=
f(rαg)− (rαf)(rαg)

1− e−α
+
fg − f(rαg)

1− e−α
= (Gαf)(rαg) + f(Gαg).

In particular,

GαX
λ −XλGα =

Xλ −Xrαλ

1−X−α
Trα

From the above discussion, yλ is given by the operator above.
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Rational degeneration. Now let us consider

Ĥq,t(W )−→ Degenerate Hecke algebra

Ĥq,t(W
∨)−→ Degenerate group algebra.

It can be computed by taking limit above,

yµxλ = xλyµ + ~〈λ, µ〉 −
∑
α>0

〈µ, α〉xλ − xrαλ
xαi

rα

= xλyµ + ~〈λ, µ〉 −
∑
α>0

〈µ, α〉〈λ, α∨〉rα.

That is,

[yµ, xλ] = ~〈λ, ν〉 −
∑
α>0

〈µ, α〉〈λ, α∨〉rα.

Moreover, yµ is given by the rational Dunkl operator

yµf = ~ ∂µf −
∑
α>0

〈λ, α〉f − rαf
α

.
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6. Macdonald functions

6.1. Symmetric functions. In type A, the Weyl group W = Sn, we
should deal with

RW = Q[z±1
1 , . . . , z±1

n ]Sn .

We have a smaller subring

Λn = Q[z1, . . . , zn]Sn = symmetric functions.

We define

Λ = lim←−[· · · zn=0←− Λn
zn+1=0←− · · · ].

Each element of Λ can be viewed as a function over the space

{(zi)∞i=0 : zi = 0 for almost all i}
and thus is called a symmetric function. Recall the following functions:

mλ(z) =
∑

λ′∈Snλ

zλ
′
,

monomial
symmetric functions;

pr(z) =
∑
i

zri , (Newton’s) power sum;

er(z) =
∑

i1<···<ir

zi1 · · · zir ,
elementary

symmetric functions;

hr(z) =
∑

i1≤···≤ir

zi1 · · · zir ,
(complete) homogeneous

symmetric functions.

Note that

Λ = Q[e1, e2, . . .] = Q[h1, h2, . . .] = Q[p1, p2, . . .].

Let us include q, t: Λq,t = Qq,t ⊗ Λ.

6.2. Plethysm. Let us define plethysm. Roughly speaking, plethysm
is a notation for generalized substitution, i.e. for f ∈ Λq,t, we can
write

f(�,♦,♥,4, · · · ) = f [�+♦+♥+4+ · · · ].
Since f is symmetric, the order does not matter. For example,

f [2x+ y + 4] = f(x, x, y, 1, 1, 1, 1, 0, 0, · · · ).
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To define it properly, we note that

pr(�,♦,♥,4, · · · ) = �r +♦r +♥r +4r + · · ·
= (�+♦+♥+4+ · · · )|?7→?r .

Now we give the strict definition.

For f, A ∈ Λq,t, we define f 7→ f [A] to be the unique map Λq,t → Λq,t
with the following preperties

(A) (cf + gh)[A] = cf [A] + g[A]h[A] for c ∈ Qq,t;
(P) pr[A] = A|zi 7→zri ,q 7→qr,t7→tr for any r ∈ Z>0.

That is f 7→ f [A] is an Qq,t-algebra homomorphism.
In general, ifA = A(z, y, q, x, . . .) is any function and f = f(z, y, q, x, · · · )

is any function symmetric in z, we define f [A] by

(A) (cf + gh)[A] = cf [A] + g[A]h[A], where c does not contain z;
(P) pr[A] = A(zr, y2, qr, xr, . . .).

Note that under this notation, z is the special in the condition (A).
Let us denote

Z = p1(z) = z1 + z2 + · · · .
Then clearly, Z[f ] = f by (P). We actually have

f [Z] = f, since


(P) pr[Z] = (z1 + z2 + · · · )|zi 7→zri ,q 7→qr,t 7→tr

= zr1 + zr2 + · · · = pr.

(A) f 7→ f is an algebra homomorphism

Let us give some examples to see the flavor of plethysm.

Example 1. For any f ,

f [pk] = f |zi 7→zki .
Since

(A) f 7→ RHS is an algebra homomorphism

(P) pr[pk] = (zk1 + zk2 + · · · )|zi 7→zri ,q 7→qr,t7→tr
= zkr1 + zkr2 + · · ·
= (zr1 + zr2 + · · · )|zi 7→zki = RHS when f = pr.

Compare with:
pk[f ] = f |xi 7→xki ,q 7→qk,t7→tk .
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We remind this is the property (P). They coincides when f ∈ Λ i.e.
f only involving x1, x2, . . ..

Example 2. For any f ,

f [x1 + . . .+ xn] = f(x1, · · · , xn, 0, · · · ).

Here x1, . . . , xn are viewed as variables, by default. Since

(A) f 7→ RHS is an algebra homomorphism

(P) LHS = (x1 + · · ·+ xn)|xi 7→xri
= zr1 + · · ·+ zrn = RHS when f = pr.

Example 3. Recall that the coproduct Λ→ Λ⊗Λ is defined as follows.
We can always write

f(xy) := f(x1, x2, . . . , y1, y2, . . .)

=
∑

f1(x1, x2, . . .)f2(y1, y2, . . .)

Note that the substitution makes sense by picking a bijection Z>0

between Z>0 t Z>0. Then we define ∆f =
∑
f1 ⊗ f2. Following the

same principle as above examples, we have

f [X + Y ] = f(x1, x2, . . . , y1, y2, . . .)

=
∑

f1[X]f2[Y ] =
∑

f1(x1, x2, . . .)f2(y1, y2, . . .),

where X = x1 + x2 + · · · , Y + y1 + y2 + · · · .

Example 4. Much generally, if we can expand A =
∑

a cax
a with

ca ∈ Z>0, then

f [A] = f(· · · ,
ca︷ ︸︸ ︷

xa, . . . , xa, · · · )
the substitution of f by the multiset [A] such that multiplicity of xa

is ca. Since

(A) f 7→ RHS is an algebra homomorphism

(P) LHS =
(∑

cax
a
)
|xi 7→xri =

∑
cax

ra

= · · ·+ xar + · · ·+ xar︸ ︷︷ ︸
ca

+ · · · = RHS when f = pr.
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We basically achieve the goal in the motivation. For our purpose,
we need to make sense of “substitution of negative many variables”,
e.g. f [x− y]. We first f [−Y ].

Example 5. Note that the power sum pr is very special since

pr[X ± Y ] = pr[X]± pr[Y ].

pr[XY ] = pr[X]pr[Y ].

Both of them can be checked directly by (P). In particular (or direct
computation),

pr[−Z] = (−z1 − z2 − · · · )|zi 7→zri ,q 7→qr,t7→tr
= −zr1 − zr2 − · · · = −pr.

Example 6. Let

Ω : =
∏
i

1

1− zi
= 1 + h1 + h2 + · · ·

= exp
(
p1 + 1

2
p2 + 1

3
p3 + · · ·

)
.

We remark that even the sum is infinite, but we understand Ω as a
formal sum of each degree component, which of them is in Λ. Note
that by (A)

Ω[A] = 1 + h1[A] + h2[A] + h3[A] + · · ·
= exp

(
p1[A] + 1

2
p2[A] + 1

3
p3[A] + · · ·

)
.

Then

Ω[−Z] = exp
(
− p1 − 1

2
p2 − 1

3
p3 − · · ·

)
= Ω−1

=
∏
i

(1− zi) = 1− e1 + e2 − · · · .

This shows hr[−Z] = (−1)rer = er(−z1,−z2, . . .).
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Example 7. Denote ω : Λ → Λ the ω-involution. It is an algebra
homomorphism given by pr ↔ −(−1)rpr. It is also characterized by
hr ↔ er. Then by the above computation, we have

f [−Z] = (ωf)(−z1,−z2, . . .).

Recall that ωsλ = sλ′ for Schur functions.
Now we can compute f [X − Y ]. This follows from a more general

associativity.

Example 8. We have associativity

f
[
g[A]

]
= (f [g])[A].

Since:

(A) f 7→LHS or RHS are both algebra homomorphism

(P) LHS = pr[g[A]] = g[A]|? 7→?r

RHS = (pr[g])[A] = (g|?7→?r)[A] when f = pr.

Note that ? 7→ ?r is a ring homomorphism but in general not linear:

(cf + gh)|?7→?r = (c|? 7→?r)(f |?7→?r) + (g|?7→?r)(h|?7→?r)

6= c(f |?7→?r) + (g|?7→?r)(h|?7→?r).

As c would contain variables other than z. Therefore, we need to check
two cases, g = pk and g = c for c not relating to z. When g = pk,

LHS = pk[A]|? 7→?r = (A|?7→?r)|?7→?k = A|?7→?rk

RHS = (pk|?7→?r)[A] = pkr[A] = A|?7→?rk .

When g = c,

LHS = c[A]|?7→?r = c|?7→?r

RHS = (c|?7→?r)[A] = c|?7→?r .

So LHS = RHS.
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Example 9. Assume ∆f =
∑
f1 ⊗ f2, then

f [X − Y ] =
∑

f1[X]f2[−Y ]

=
∑

f1(x1, x2, . . .)(ωf2)(−y1,−y2, . . .).

Of course, this can be checked directly by setting f = pr. But let us
mention the following proof. We know

f [X + Y ] =
∑

f1[X]f2[Y ],

equivalently,

f [X + Z] =
∑

f1[X]f2.

We apply [−Y ] on both sides, we get

f [X − Y ] = f
[
(X + Z)[−Y ]

]
=
∑

f1[X]f2[−Y ].

This makes sense of “replacing Y by −Y ”.
Forget the next sentence if it looks confusing. Theoretically speak-

ing, plethysm should be denoted by f [Z 7→ A], and “replacing Y by
−Y ” should be denoted by f [Y ] 7→ f [Y 7→ −Y ].

Example 10. More generally, if we can expand A =
∑

a cax
a, then

f [A] =
∑

f1(· · · ,
ca>0︷ ︸︸ ︷

xa, . . . , xa, · · · )(ωf2)(· · · ,
--ca>0︷ ︸︸ ︷

--xa, . . . , --xa, · · · ).

Let A = A+−A− in the obvious sense. Denote (ωf2)(−z1,−z2, . . .) =
f ′2.

f [X − Y ] =
∑
f1[X]f ′2[Y ]

⇐⇒ f [Z − Y ] =
∑
f1[Z]f ′2[Y ]

=⇒ f [A+ − Y ] =
∑
f1[A+]f ′2[Y ]

⇐⇒ f [A+ − Z] =
∑
f1[A+]f ′2[Z]

⇐⇒ f [A] =
∑
f1[A+]f ′2[A−].
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Example 11. It follows from the computation that

Ω[X + Y ] = exp
(
p1[X + Y ] + 1

2
p2[X + Y ] + 1

3
p3[X + Y ] + · · ·

)
= exp

(
(p1[X] + p1[Y ]) + 1

2
(p2[X] + p2[Y ]) + · · ·

)
= Ω[X]Ω[Y ]

and similarly

Ω[X − Y ] = exp
(
p1[X − Y ] + 1

2
p2[X − Y ] + 1

3
p3[X − Y ] + · · ·

)
= exp

(
(p1[X]− p1[Y ]) + 1

2
(p2[X]− p2[Y ]) + · · ·

)
= Ω[X]/Ω[Y ].

We thus have

Ω[A] =
∏
a

1

(1− xa)ca
,

if we can expand A =
∑

a cax
a.

Example 12. Let us finally mention more useful computation.

Ω[XY ] =
∏
i,j

1

1− xiyj
.

Ω
[
X 1

1−q

]
=
∏
i

∏
k≥0

1

1− qkxi
.

Note that

f
[
X 1

1−q

]
= f

[
X(1 + q + q2 + · · · )

]
= f(x1, x2, . . . , qx1, qx2, . . . , q

2x1, q
2x2, . . . , . . .)

= f [XY ]|yi 7→qi .

But since we expand 1
1−q with |q| < 1, it would be a few words to say.

The result of f
[
Z 1

1−q

]
must be with rational coefficients in q. It gives

the same answer as that over the ring of power series, this proves the
validity of the expansion.

Ω[X(1− t)] = Ω[X(1− t)]− Ω[tX] =
∏
i

1− txi
1− xi

.



NOTES ON MACDONALD POLYNOMIALS 37

Ω
[
X 1−t

1−q

]
=
∏
i

∏
k≥0

1− tqkxi
1− qkxi

.

6.3. Macdonald functions. Recall the Hall inner product 〈·, ·〉 is
given by 〈sλ, sµ〉 = 1λ=µ. The kernel of the inner product is∑

λ

sλ(x)sλ(y) =
∏
i,j

1

1− xiyj
= Ω[XY ].

Let us denote for partition λ

pλ := pm1
1 pm2

2 · · · , zλ = 1m1m1!2m2m2! · · ·
for mj = #{j : λj = i}. Recall

Ω = exp
(
p1 + 1

2
p2 + 1

3
p3 + · · ·

)
= exp(p1) exp

(
p2
2

)
exp

(
p3
3

)
· · · =

∑
λ

1
zλ
pλ.

Since pλ[XY ] = pλ[X]pλ[Y ], Ω[XY ] =
∑

λ
1
zλ
pλ(x)pλ(y). So 〈·, ·〉 is

characterized by
〈pλ, pµ〉 = 1λ=µzλ.

Let us equip Λq,t a new inner product

〈f, g〉q,t :=
〈
f, g
[
Z 1−q

1−t

]〉
.

Then the kernel is

Ω
[
XY 1−t

1−q

]
=
∏
i,j

∏
k≥0

1− tqkxiyj
1− qkxiyj

and is characterized by

〈pλ, pµ〉q,t = 1λ=µzλ(q, t)

where
zλ(q, t) = pλ

[
1−q
1−t

]
=
(

1−q
1−t

)m1
(

1−q2
1−t2

)m2 · · · .
We define Macdonald functions {Pλ}λ ⊂ Λq,t by

(1) Pλ = mλ + (lower terms);
(2) 〈Pλ, Pµ〉q,t = 0 for λ 6= µ.

This definition is actually compatible with the definition of Macdonald
polynomials in type A.
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7. Difference operators

Now let us restrict to type A. Now the Weyl group W = Sn. The
convention of the root system is weird:

P = P∨= {(x1, . . . , xn) ∈ Zn}/Z(1, . . . , 1)
� �

Zn = Zn
∪ ∪
Q = Q∨= {(x1, . . . , xn) ∈ Zn : x1 + · · ·+ xn = 0}.

The identification is

Ŵe = S̃n/〈t(1,...,1)〉, recall: t(1,...,1)(a) = a+ n.

�

S̃n = {bijection f : Z→ Z : f(a+ n) = f(a) + n}
∪
Ŵ = {f ∈ S̃n : f(1) + · · ·+ f(n) = 0}

The action is given by

wtλ(i) = w(i) + nλi, i = 1, 2, . . . , n.

We will use the Hecke algebra for S̃n.

7.1. Diagramatics. We denote

Hw = t`(w)/2Tw.

The Hecke algebra Ĥn can be defined by

• (Hi − t1/2)(Hi + t1/2) = 0 for all i ∈ Z/n;
• HiHj = HjHi for j 6= i−1, i, i+1 and HiHi+1Hi = Hi+1HiHi+1;
• ωHiω

−1 = Hi−1.

Note that Ĥt(W ) = Ĥn/〈ωn = 1〉. It has Bernstein’s presentation

• (Hi − t1/2)(Hi + t1/2) = 0 for 1 ≤ i ≤ n− 1;
• HiHj = HjHi for i 6= i−1, i, i+1 and HiHi+1Hi = Hi+1HiHi+1;
• YiYj = YjYi;
• HiYj = YjHi for j 6= i, i+ 1 and H−1

i YiH
−1
i = Yi+1.

where

Yi = Hi · · ·Hn−1ωH
−1
1 · · ·H−1

i−1.



NOTES ON MACDONALD POLYNOMIALS 39

We can use a diagram on a cylinder to illustrate them

Hi = · · · · · · ,

ω = · · · ,

Yi = · · · · · · .

For example, when n = 3,

ωH2ω
−1 = = = H1.

H2ωH
−1
1 = = = H2.

ωY2ω
−1 = = = Y1.

H−1
1 Y1H

−1
1 = = = Y2.

Y1Y2 = = = Y2Y1.

7.2. Computation. Let us consider Qq,t[x1, . . . , xn]. Note that our
convention is eαi = xi/xi+1. Then the Weyl group action is

wtλ :xi 7→ q−λixw(i),

ω :xn 7→ xn−1 7→ · · · 7→ x2 7→ x1 7→ qxn,

s0 :x1 7→ qxn, xn 7→ q−1x1.

Recall that

Qq,t[Y ±1
1 , . . . , Y ±1

n ]Sn y Qq,t[x±1
1 , . . . , x±1

n ]Sn .

We will see that

Qq,t[Y1, . . . , Yn]Sn y Qq,t[x1, . . . , xn]Sn := Λn.

Let us describe the action for the elementary symmetric polynomials
er(Y ) in RW .
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Let e = 1
Sn(t)

∑
Tw be the symmetrizer. We have Hie = t1/2e.

Step 1. We have the following identity

eYn−r+1 · · ·Yne =
Sr(t)Sn−r(t)
Sn(t)

· er(Y ) · e ∈ Ĥn.

Since the Bernstein representation on Ĥn ⊗Hn 1 is faithful, we check
this by considering it as an operator over Qq,t[Y1, . . . , Yn]. Since e is a
symmetrizer, we have

e((Yn−r+1 · · ·Yn)ef) = (eYn−r+1 · · ·Yn)(ef).

Note that, as an operator,

ef =
1

Sn(t)

∑
w∈Sn

w

(
f
∏
i<j

Yj/Yi − t
Yj/Yi − 1

)
.

For example, when n = 2,

ef =
1

1 + t

(
1 + tsif + (t− 1)

sif − 1

Y2/Y1 − 1

)
=

1

1 + t

(
Y2/Y1 − t
Y2/Y1 − 1

f +
tY2/Y1 − 1

Y2/Y1 − 1
sif

)
=

1

1 + t

(
Y2/Y1 − t
Y2/Y1 − 1

f + si

(
f
tY1/Y2 − 1

Y1/Y2 − 1

))
.

Since the r-th fundamental weight is minuscule, we get immediately
that

eYn−r+1 · · ·Yn =
1

Sn(t)

∑
w∈W

Tw(Yn−r+1 · · ·Yn) =
Sr(t)Sn−r(t)
Sn(t)

er(Y ).

For example, when n = 2,

eY2 =
1

1 + t

(
Y 2

2 − tY1Y2

Y2 − Y1

+
Y 2

1 − tY1Y2

Y1 − Y2

)
=

1

1 + t
(Y1 + Y2).
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Step 2. We have the following identity

eYn−r+1 · · ·Yne = t−k(n−k)/2eωre ∈ Ĥn.

This can be proven quickly by diagrammatics.

Y4Y5 = =

= = = ω2H−1
···

This can also be proven by definition. For example, when n = 3

eY2Y3e = e(H2ωH
−1
1 )(ωH−1

1 H−1
2 )e

= e(H2ω
2H−1

2 H−1
1 H−1

2 ))e.

We thus have

er(Y ) · e = e · er(Y ) · e = t−r(n−r)/2
Sn(t)

Sr(t)Sn−r(t)
eωre ∈ Ĥn.

In general, such simplification can be done for any minuscule weight.
Let us consider the Cherednik representation. Let f ∈ Qq,t[x1, . . . , xn]Sn .

Then

wωrf = wf(qxn−r+1, · · · , qxn, x1, x2, . . .)

= wf(x1, x2, . . . , xn−r, qxn−r+1, · · · , qxn)

= f(xw(1), xw(2), . . . , xw(n−r), qxw(n−r+1), · · · , qxw(n)

= f(qθ1x1, . . . , q
θnxn)
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where θi = 1 if i ∈ wI0 = w{n-r+1, . . . , n} and θi = 0 otherwise. Now
we can compute

eωrf =
1

Sn(t)

∑
w∈Sn

w

(
ωrf

∏
i<j

xi/xj − t
xi/xj − 1

)

=
Sr(t)Sn−r(t)
Sn(t)

∑
w∈Sn/(Sn−r×Sr)

f |xi 7→qxi,∀i∈wI0
∏

1≤i≤n-r
n-r<j≤n

xw(i)/xw(j) − t
xw(i)/xw(j) − 1

=
Sr(t)Sn−r(t)
Sn(t)

∑
I∈([n]

r )

∏
i/∈I
j∈I

xi − txj
xi − xj

 f |xi 7→qxi,∀i∈I

=
Sr(t)Sn−r(t)
Sn(t)

∑
I∈([n]

r )

∏
i∈I
j /∈I

txi − xj
xi − xj

 f |xi 7→qxi,∀i∈I .

We can finally conclude that

e · er(Y ) · e = t−r(n−r)/2
∑
I∈([n]

r )

∏
i∈I
j /∈I

txi − xj
xi − xj

 f |xi 7→qxi,∀i∈I

=
∑
I∈([n]

r )

∏
i∈I
j /∈I

t1/2xi − t−1/2xj
xi − xj

 f |xi 7→qxi,∀i∈I .

Thus this action gives the action of er(Y ) on Qq,t[x1, . . . , xn]Sn .

7.3. Compatibility. To check

Pλ(x1, . . . , xn, 0, . . .)
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is the symmetric Macdonald polynomial for the root system An−1, it
suffices to check

Dr : f 7→
∑
I∈([n]

r )

∏
i∈I
j /∈I

txi − xj
xi − xj

 f |xi 7→qxi,∀i∈I

is unitary with respect to the truncation of inner product 〈·, ·〉q,t. It
suffices to show for Xn = x1 + · · ·+ xn and Yn = xn + · · ·+ yn that

Dr
x · Ω

[
XnYn

1−t
1−q

]
= Dr

y · Ω
[
XnYn

1−t
1−q

]
.

Note that

Ω
[
XnYn

1−t
1−q

]
=

∏
1≤i,j≤n

0≤k

1− tqkxiyj
1− qkxiyj

.

So

Ω
[
XnYn

1−t
1−q

]
|xi 7→qxi,i∈I = Ω

[
XnYn

1−t
1−q

] ∏
i∈I

1≤j≤n

1− xiy
1− txiy

.

So
LHS = Ω

[
XnY

1−t
1−q

]
(expression only depend on t).

Similarly,

RHS = Ω
[
XnY

1−t
1−q

]
(expression only depend on t).

Thus it suffices to show when q = t, i.e. 〈·, ·〉q,t = 〈·, ·〉. Then if we
denote ∆ =

∏
i<j(1− xj/xi), we can rewrite∑

I∈([n]
r )

1

∆
(∆f)xi 7→qxi,i∈I = n!

1

∆

∑
w∈W

(−1)`(w)(∆f)xi 7→qxw(i)
.

When f = sλ, then each term ∆sλ gives a multiple of sλ.

8. Origin of Plethysm

8.1. K-theory. Note that the topological K-group

K(X) = Z{vector bundles over X}/∼=,⊕ = +

= π0(X,BGL∞ × Z).
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But let us use the more classic definition. That is, K(X) is the
Grothendieck group of

K+(X) = {vector bundles over X}/∼=.
That is, the element in K(X) is a formal difference U − V for U, V ∈
K+(X) with

U − V = U ′ − V ′ ⇐⇒

{
U ⊕ Y ∼= U ′ ⊕ Z
V ⊕ Z ∼= V ′ ⊕ Y

for some Y, Z ∈ K+(X).

We can take Y and Z to be trivial bundles.
We would like to consider

Endset(K(−))
Yoneda Lemma

=================== K(BGL∞ × Z) ⊃ ΛZ.

Plethysm is the composition of this endomorphism ring.

Let us state it in a more concrete way. For a vector bundle V , we
define

StV =
∑∞

k=0 t
kSkV ∈ K(X)[[t]],

ΛtV =
∑∞

k=0(−t)kΛkV ∈ K(X)[[t]].

Note that

St(U ⊕ V ) = (StU)(StV ), Λt(U ⊕ V ) = (ΛtU)(ΛtV ).

This extends to an operator over K(X). That is

St(U − V ) := St(U)
St(V )

, Λt(U − V ) := Λt(U)
Λt(V )

.

Note that these operators are not additive.
Now let us make it additive. To do this, we have to work over

K(X)Q. We have

ln(St(U ⊕ V )) = ln(StU) + ln(StV ),

ln(Λt(U ⊕ V )) = ln(ΛtU) + ln(ΛtV ).

Now we define Adams operation ψr : K(X) → K(X)Q by the coeffi-
cients of ln(StV ):

ln(StV ) = tψ1(V ) +
t2

2
ψ2(V ) +

t3

3
ψ3(V ) + · · · .
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Actually, we have − ln(ΛtV ) = ln(StV ), but we will not use it. Note
that

ψr(U ⊕ V ) = ψr(U) + ψ(V ).

We extend ψr : K(X)Q → K(X)Q by linearity. Actually, if we expand
ψr in terms of coefficients of St, it is not hard to see Adams operation
is defined over K(X).

Let us compute for line bundle L

StL = 1 + Lt+ L⊗2t2 + · · · = 1

1− Lt
.

ln(StL) = − ln(1− Lt) = Lt+ L⊗2 t
2

2
+ L⊗3 t

3

3
+ · · ·

This shows

ψr(L) = L⊗r.

Now let us compute ψr(U⊗V ). By splitting principle, we can assume
U and V are both direct sums of line bundles. Then immediately, we
have

ψr(U ⊗ V ) = ψr(U)ψr(V ).

As a result, ψr is not only additive but also multiplicative. Similarly,
using the splitting principle again, we have

ψr(ψk(V )) = ψrk(V ).

Note that we can use ΛtV =
∑∞

k=0(−t)kΛkV . Then

ln(ΛtV ) = −tφ1(V )− t
2

2
φ2(V )− t

3

3
φ3(V ) + · · · .

8.2. Character. Let us find the Adams operation in terms of charac-
ters. That is,

KG(pt) = Rep(G)
χ−→ Fun(G,C×),

where (∗) is given by V 7→ χ(V ) = [g 7→ Tr(g;V )]. Actually, the
case G = GLn and V = Cn is the universal case. The restriction to a
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maximal torus is enough.

Cn ∈OO

_

Rep(T )
OO

res

χ // Fun(T,C×)
OO

res

Cn ∈_

��

Rep(GLn)

res

��

χ // Fun(GLn,C×)

res

��
V ∈ Rep(G)

χ // Fun(G,C×)

Thus finally, it suffices to deal with G = GL1 and V = C whose
character is id = [z 7→ z]. Then direct computation shows

χ(ψr(V )) = [z 7→ zr].

As a result, if we define for χ ∈ Fun(G,C×)

ψr(χ) : [z 7→ χ(zr)]

Then we have the following commutative diagram

Rep(G)Q
χ //

ψr
��

Fun(G,C×)

ψr
��

Rep(G)Q
χ // Fun(G,C×).

8.3. Lambda-ring. A lambda ring is a commutative ring R with a
family of operators λr for r ∈ Z≥0 with certain properties. Let R
be a commutative algebra containing Q. Then lambda-ring can be
equivalently defined by a family of ring homomorphisms pr : R→ R for
r ∈ Z>0 with p1 = id and pr ◦pk = prk. We say ϕ : R1 → R2 a lambda-
ring homomorphism if ϕ is a ring homomorphism and ϕ ◦ pr = pr ◦ ϕ.

For a lambda-ring R, we have a ring homomorphism

Λ −→ Endset(R), by pr 7−→ pr.

Namely, it is extended to Λ by

(cf + gh)(x) = cf(x) + g(x)h(x).

Note that
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• if ϕ ∈ Homλ-Ring(R1, R2), then ϕ(f(x)) = f(ϕ(x)) for any f ,
since we assume ϕ is a ring homomorphism.
• since pr ◦ pk = pk ◦ pr, we have pr ∈ Endλ-Ring(R) so that
pr ◦ f = f ◦ pr for any f ∈ Λ.

I claim that

f ◦ g = f [g] : K(X) −→ K(X).

Firstly, by construction,

f 7→

{
LHS = f ◦ g ∈ End(R)

RHS = f [g] ∈ Λ

are both algebra homomorphisms. Thus it suffices to check when f =
pr. In this case,

g 7→

{
LHS = ψr ◦ g = g ◦ ψr ∈ End(K(X))

RHS = pk[g] = g[pk] ∈ Λ

is also an algebra homomorphism.
Note that Λ itself is a lambda-ring with pk : A 7→ pk[A]. We claim

that

(Λ, Z = p1)

is the universal lambda-ring in the following sense.

For any lambda-ring R ⊇ Q and
any x ∈ R, there exists a unique
lambda ring homomorphism ϕ :
Λ→ R such that ϕ(Z) = x.

Z∈

� // x∈

Λ ϕ
// R

That is, for any x ∈ R, we define ϕ : Λ→ R be f 7→ f(x). Since

(pr ◦ ϕ)(f) = pr(f(x)) = (pr[f ])(x) = (ϕ ◦ pr)[f ],

this is a lambda-ring homomorphism. Conversely, for any lambda-
ring homomorphism ϕ : Λ → R, we take x = ϕ(Z) ∈ R. Then
ϕ(f) = ϕ(f [p1]) = fϕ(p1) = f(x).

For two lambda rings R1, R2, their tensor product is naturally a
lambda ring by

pk(x⊗ y) = pk(x)⊗ pk(y).
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Since pk(1) = 1, the natural map Ri → R1 ⊗R2 is lambda-ring homo-
morphism for i = 1, 2. It has the universal property

R1

&&��
R1 ⊗R2

// R

R2

88??

Homλ-Ring(R1, R)
×Homλ-Ring(R2, R)
= Homλ-Ring(R1 ⊗R2, R).

We claim if f [X + Y ] =
∑
f1[X]f2[Y ], then

f(a+ b) =
∑

f1(a)f2(b).

This follows directly from the universal property — we can replace X
by a and Y by b. Namely, we have the following diagram

Λ
Z 7→X+Y //

Z 7→a+b
&&

Λ⊗ Λ

Z 7→a
��
Z 7→b
��
R

Similarly, if f [XY ] =
∑
f1[X]f2[Y ], then f(ab) =

∑
f1(a)f2(b).

8.4. Return to K-theory. Now, for V ∈ K+(X) or V ∈ Rep(G),

hr(V ) = SrV, er(V ) = ΛrV

from the construction:

1 + h1(V )t+ h2(V )t2 + · · ·
= (1 + h1t+ h2t

2 · · · )(V )

= exp

(
p1t+ p2

t2

2
+ p3

t3

3
+ · · ·

)
(V )

= exp

(
p1(V )t+ p2(V )

t2

2
+ p3(V )

t3

3
+ · · ·

)
= 1 + S1(V )t+ S2(V )t2 + · · · .

Similar computation for er(V ). We also have hr(−V ) = −(−1)rer(V ).
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Recall that for any partition λ ` n, there is an idempotent eλ ∈
Q[Sn], such that the irreducible representation of GLm of highest
weight λ is

V(λ) = eλ(Cm)⊗n.

Here, if λ cannot be viewed as a weight of GLm, i.e. the length of λ
is more than m, we take the convention that V(λ) = 0. We claim that
for any V ∈ K(X) or Rep(G)

sλ(V ) = eλV
⊗n.

This is known as Schur functor. For example,

• when λ = (1r), eλ =
∑

w∈Sn(−1)`(w)w then eλV
⊗n = ΛrV ;

• when λ = (r), eλ =
∑

w∈Sn w then eλV
⊗n = SrV .

For any V ∈ Rep(G) of dimension m, we define

ϕ : Rep(GLm) −→ Rep(G)

by restriction. For any V ∈ K(X) of rank m, we define

ϕ(U) = FX(V )×GLm U,

where

FX(V ) = {(x, v1, . . . , vm) : x ∈ X, span(v1, . . . , vm) = Vx}.

Since both construction is a functor, we have

ϕ((Cm)⊗n) = V ⊗m, ϕ(eλ(Cm)⊗n) = eλV
⊗m.

In particular, ϕ commutes with Λk thus is a lambda ring homomor-
phism.

So it reduces to check the universal case, i.e. when V = Cm ∈
Rep(GLm), this follows from the fact that the ring homomorphism
Λ→ Rep(GLm) sending er 7→ ΛrCm sends sλ to V(λ).
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Remark. Note that it is not obvious that Λr extends to K(X)Q, the
existence of the extension follows from the construction of Adams op-
erators. Moreover, there is no direct meaning of er for any elements.
For example,

e2(1
2
V ) =

(
p2

1 − p2

2

)
(1

2
V ) =

p1(1
2
V )2 − p2(1

2
V )

2

=
1
4
p1(V )2 − 1

2
p2(V )

2
= −1

8
p1(V )2 +

1

2

p1(V )2 − p2(V )

2

= −1

8
V ⊗2 +

1

2
Λ2V.

But if V = 2U , then

−1

8
V ⊗2 +

1

2
Λ2V = −1

2
U⊗2 +

1

2
(Λ2U + U ⊗ U + Λ2U) = Λ2U.
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9. Haiman Theory

9.1. Springer theory. Let B = G/B be the flag variety. Let

π : T ∗B = Ñ −→ N ⊂ gln

be the Springer resolution of type A. For a nilpotent matrix of Jordan
type λ ` n, we denote the Springer fibre by Bλ. Let us consider

Bλ //

��

fibre //

��

Ñ

��
any point // Oλ

// N .

It was computed

EndPerv(N )(π∗1Ñ ) = Q[Sn]

thus the (co)homology of Bλ has an Sn action. Note that all represen-
tation of Sn are isomorphic to its dual, thus

H•(Bλ) ' H•(Bλ) as Sn-reprsentations.

We will study the cohomology of Bλ. We have (up to graded shifting)
at the level of K-group

π∗1Ñ =
∑
λ`n

t?H•(Bλ)⊗ 1Oλ ∈ K(Sn-Rep)⊗K(N )[t±1].

Here 1Oλ = i!1Oλ . By decomposition theorem, we also have

π∗1Ñ =
⊕
λ`n

Htop(Bλ)⊗ ICOλ .

Here the top degree can be compute explicitly, it is

n(λ) :=
∑
i≥1

(i− 1)λi =
∑
j≥1

(
λ′j
2

)
= 〈ρ, w0λ〉.

For example, for n = 3,

λ Bλ dim H•
(3) a point 0 tri

(2, 1) union of two P1’s 1 tri⊕ std
(13) full flag variety 3 tri⊕ std⊕ std⊕ alt
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It was known that

Hn(λ)(Bλ) ' irrλ, as an Sn-representation.

Later, we will see

H•(Bλ) ' IndSnSλ tri, as an Sn-representation.

9.2. Lusztig embedding. Recall affine Grassmannian for GLn is

Gr =

{
O-lattices in K⊕n

}
= GK/GO.

Denote Λ0 the standard lattice O⊕n. Recall the Schubert cell

Σ◦λ =

{
Λ ⊆ Λ0 : Λ0/Λ has type λ

}
= GOt

λ · Λ0.

A torsion O-module has type λ means it is isomorphic to O/tλ1O ⊕
O/tλ2O ⊕ · · · for t the generator of the maximal ideal. Note that

Σ(n) = Σ◦(n) =

{
Λ ⊆ Λ0 : dim Λ/Λ0 = n

}
.

Let us take O = C[[t]] and K = C((t)). Let us define

ι : N −→ Σ(n), A 7−→ (t− A)Λ0.

Then we have

(Λ0/(t− A)Λ0, t) ' (Cn, A).

This shows Oλ is mapped into Σ◦λ. Not hard to show it is an embedding,
and by dimension reason, it is open. See [Zhu, Example 2.1.8.] In this
case, we get a linear map

K(Σ(n))
ι!=ι∗−→ K(N ),

{
1Σ◦λ
7−→ 1Oλ

ICΣ◦λ
7−→ ICOλ .

Recall that the character{
1Σ◦λ
7−→ Pλ|t7→t−1 up to some power of t

ICΣ◦λ
7−→ χλ = sλ

Here Pλ is the Hall–Littlewood polynomial (i.e. Macdonald polynomial
at q = 0) in n variables. It is not hard to see the the expansion of Pλ
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to sλ does not change if we understand them as symmetric functions.
Then the identity∑
λ`n

t?H•(Bλ)⊗ 1Oλ =
∑
λ`n

Htop(Bλ)⊗ ICOλ ∈ K(Sn-Rep)⊗K(N )

reduces to∑
λ`n

t?H•(Bλ)Pλ|t7→t−1 =
∑
λ`n

Htop(Bλ)⊗ sλ ∈ K(Sn-Rep)⊗ Λt.

By applying the Frobenius character, irrλ 7→ sλ, we get∑
λ`n

t?
(

F-char of
H•(Bλ)

)
⊗ Pλ|t7→t−1 =

∑
λ`n

sλ ⊗ sλ ∈ Λt ⊗ Λt,

That is ∑
λ`n

t?
(

F-char of
H•(Bλ)

)
[X]Pλ|t7→t−1 [Y ] =

∑
λ`n

sλ[X]sλ[Y ].

The right hand side is Ω[XY ]deg=n. This implies, under the Frobenius
character,

H•(Bλ) 7→ tn(λ)

(
dual basis of Pλ|t7→t−1

under the Hall pairing

)
.

Let us have a quick look at the case t = 1, i.e. if forgetting the grading.
Recall that Pλ|t=1 = mλ. This tells the Frobenuis character of H•(Bλ)
is hλ = hλ1hλ2 · · · , the same as IndSnSλ tri. So

Hn(λ)(Bλ) ' irrλ, as an Sn-representation.

Now return to the graded version. Denote

Qλ =
1

〈Pλ, Pλ〉t
Pλ dual HL polynomials

Hλ = Qλ[Z
1

1−t ] transformed HL polynomials

H̃λ = tn(λ)Hλ|t7→t−1 cocharge variant of THLP

Since Qλ is the dual basis of Pλ under 〈·, ·〉t, Hλ is the dual basis of Pλ
under 〈·, ·〉. As a result, Hλ|t7→t−1 is the dual basis of Pλ|t7→t−1 under
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〈·, ·〉. This implies

H•(Bλ) 7−→
(

F-char of
H•(Bλ)

)
= H̃λ.

Note that H̃λ can be characterized by

(1) 〈s(n), Hµ〉 = 1 for n = |µ|.
(2) H̃µ[Z] ∈ span(sλ : λ ≥ µ)

(3) H̃µ[Z(1− t)] ∈ span(sλ : λ ≥ µ′).

The proof goes as follows:
(1) Since H•(Bµ) ' IndSnSµ tri, the invariant H•(Bλ)Sn has to be

one-dimensional, thus it is H0(Bλ).
(2) This is a standard fact about IndSnSµ tri.

(3) comes from

Hµ[Z(1− t)] = Qµ =
1

〈Pµ, Pµ〉t
Pµ ∈ span(sλ, λ ≤ µ).

So

H̃µ[Z(1− t)] = H̃µ[tZ(t−1 − 1)] = t|λ|H̃µ[−Z(1− t−1)]

=
t|λ|tn(λ)

〈Pµ, Pµ〉t
Pµ[−Z]

∣∣
t7→t−1 ∈ span(sλ′ : λ ≤ µ).
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Note that the rank of the torus has rank `(λ) the number of parts of
λ. Consider the following closed variety

Xλ =

{
(t,x) :

the coordinate of x
has λi many copies of ti

}
⊆ C`(λ) × Cn.

Then O(Xλ) = H•Tλ(Xλ)C with
functions t1, . . . , t`(λ) are equivariant parameters of Tλ,

functions x1, . . . , xn are restricted from full flag variety,

grading is from the C×-action on tj, xi
Sn acts by permuting xi’s.

We will view Xλ as a variety over Cr = SpecH•Tλ(pt). Then the generic
fibre at t = (t1, . . . , t`(λ)) is

Sn-orbit of (· · · , ti, · · · , ti︸ ︷︷ ︸
λi

, · · · ) ⊆ Cn.

For example,

λ generic fibre of Xλ O(Xλ)
(3) {(t, t, t)} Q[x1, x2, x3]/〈x1 = x2 = x3 = t〉

(2, 1)
{(t1, t1, t2)}
∪{(t1, t2, t1)}
∪{(t2, t1, t1)}

C[x1, x2, x3]/〈complicated〉

(13)
⋃
σ∈S3{(tσ(1), tσ(2), tσ(3))} C[x1, x2, x3]/〈ei(x) = ei(t), i = 1, 2, 3〉

Finally, H•(Bλ) = H•Tλ(Bλ)/〈ti〉. That is,

H•(Bλ) = O(X0
λ),

where X0
λ is the zero fibre (scheme theoretic, not reduced). Geometri-

cally,

X0
λ

//

��

Xλ
//

��

(fibre)red //

��

Cn

��
{0} // C`(λ) // stratum of λ // Cn/Sn.

Let us denote graded ring with Sn-action

Rλ(x) = O(X0
λ), i.e. SpecRλ(x) = X0

λ.
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Then

Frobenius character of Rµ(x) ∈ span(sλ : λ ≥ µ).

9.4. Haiman Theory. Now we consider the two dimensional analogy.
We need Hilbert schemes. Let Hn be the Hilbert schemes of n points
over C2. That is

Hn = {ideal I ⊂ C[x, y] : dimC[x, y]/I = n}.
For µ ` n, and generic (a,b) ∈ C`(λ) × C`(λ′) (i.e. ai’s and bi’s

are distinct), we construct n different points in C2. We illustrate the
definition by an example.

(a3, b1)
(a2, b1) (a2, b2)
(a1, b1) (a1, b2) (a1, b2) (a1, b2)

The ideal for these n points defines an ideal, i.e. defines a point of Hn.
Let us consider Cµ ⊂ Hn the closure of all points constructed in this
way. Note that the monomial ideal Iµ defined by the diagram of µ is
in Cµ. For example, Iµ is given by

y2

y xy
1 x x2 x3

= 〈x4, x3y2, xy3, y3〉.

Let us consider

fibreµ //

��

fibre //

��

Xn
//

ρ

��

C2n

��
{Iµ} // Cµ // Hn

// C2n/Sn.

The notations will be explained one by one:

• We view

C2n = {n-tuples of points over C2};
C2n/Sn = {n-multi-sets of points over C2}.

We write the Sn-orbit of (P1, . . . , Pn) ∈ C2n by

[P1] + · · ·+ [Pn] ∈ C2n/Sn.
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• Here Hn → C2n/Sn is given by

I 7−→ the 0-cycle defined by I

=
∑
P∈C2

multP (C[x, y]/I) ∈ C2n/Sn.

For example, if I is the ideal for n-distinct points P1, . . . , Pn,
then I 7→ [P1] + · · · + [Pn]. If I = Iµ defined by a partition,
Iµ 7−→ n[0].
• Here Xn is the reduced fibre product, called isospectral Hilbert

scheme. Say,

Xµ =

{
(I, P1, . . . , Pn) :

the 0-cycle defined by I
over C2 is [P1]+ · · ·+[Pn]

}
.

Note that at each point, the fibre is a closed subscheme of C2.
At the generic points, i.e. ideals I ∈ Hn defined by n distinct
points, the fibre is reduced and is Sn-orbit of those n-tuple in
C2.

Let us define

Rµ(x,y) = O(fibreµ), i.e. SpecRµ(x,y) = fibreµ.

Since Iµ is a (C∗)2-fixed point, Rµ(x,y) is a bigraded ring with an
Sn-action. The ring Rµ(x,y) is the two dimensional analogy of Rλ(x)
above.

Denote the bigraded Frobenius character by χ :
⊕

n≥0K(Sn-Rep)q,t →
Λq,t. We are going to show χRµ [Z] ∈ Λq,t satisfies the following char-

acterization of transformed Macdonald polynomials H̃µ

(1) 〈s(n), H̃µ〉 = 1, where n = |µ|;
(2) H̃µ[Z(1− q)] ∈ span(sλ : λ ≥ µ);

(3) H̃µ[Z(1− t)] ∈ span(sλ : λ ≥ µ′).

Haiman proved the map ρ : Xn → Hn is flat, i.e.

ρ∗OXn is a vector bundle of rank n!. (∗)

As a result,

Rµ(x,y) = fibre of ρ∗OXn at Iµ.
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Now we can prove (1). Since generically the fibre is an Sn-orbit of
n distinct points, thus the fibre of OXn is the regular representation
C[Sn] at generic points. By (∗), all the fibre of OXn is the regular
representation. Say, the multiplicity sheaf

Hom(irrλ, ρ∗OXn)

is a vector bundle. In particular, we have Rµ ' C[Sn] the regular
representation. Thus RSnµ = Rdeg=0

µ , so 〈s(n), χRµ〉 = 1.
Let us prove (2). The proof of (3) is similar. We need to notice that

the first projection of points reduces to dimension 1 case. For example:

(a3, b1)
(a2, b1) (a2, b2)
(a1, b1) (a1, b2) (a1, b2) (a1, b2)

7→
a3

a2 a2

a1 a1 a1 a1

Thus

Rµ(x,y)/〈y〉 = Rµ(x,y)/〈y1, . . . , yn〉 = Rµ(x).

Denote Qµ the only point over Iµ, i.e. Qµ = (Iµ,0, · · · ,0) ∈ Xn. Let
us consider the diagram

S = OXn,Qµ

��

R/m
// Rµ(x,y)

��
R = OHn,Iµ

R/m
// R/m = C

Here S and R are just local rings at Qµ and Iµ respectively, and m is
the maximal ideal of Iµ ∈ Hn. By (∗), the ring S is free over R, from
the diagram, we have

χS[Z] = χRµ [Z] · χR.

Since R has trivial Sn action, χR[Z] ∈ Qq,t, so we denote it just by
χR. It was proved by Haiman that y1, . . . , yn form a regular sequence
of OXn,Qµ. By Koszul complex (see below), we get

χS/〈y〉[Z] = χS[Z(1− q)] = χRµ [Z(1− q)] · χR.

Now we have

S/〈y〉 R/m−→ Rµ(x,y)/〈y〉 = Rµ(x).
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Since m has trivial Sn-action, by Nakayama lemma,

χRµ(x) ∈ span(sλ : λ ≥ µ) =⇒ χS/〈y〉[Z] ∈ span(sλ : λ ≥ µ).

Thus
χRµ [Z(1− q)] ∈ span(sλ : λ ≥ µ).

This proves (2).

Appendix: Koszul complex. Let V be a Sn × C∗-representation.
Then

χV [Z(1− q)] =
∑
k

(−q)kχV⊗ΛkCn [Z].

Actually it suffices to check the right hand side is a ring homomorphism
(i.e. well-behaved under induction), and it is true for tri.
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