NOTES ON MACDONALD POLYNOMIALS

CONTENTS

1. Double affine Hecke Algebras

1.1. Affine Weyl groups. Let us fix a finite root system. The *affine* Weyl group is

$$
\widehat{W} = Q^{\vee} \rtimes W = W \ltimes Q^{\vee} \qquad \begin{array}{c} Q^{\vee} = \text{coroot lattice} \\ W = \text{Weyl group} \end{array}
$$

The group \widehat{W} acts

on
$$
Q^{\vee} = \widehat{W}/W
$$
 affinely: $\begin{vmatrix} \text{on } \widehat{Q} = Q \oplus \mathbb{Z} \delta \text{ linearly:} \\ (wt_{\lambda}) \cdot \mu = w(\lambda + \mu). \end{vmatrix}$ $(wt_{\lambda}) \cdot (\alpha + k\delta) = w\alpha + (k - \langle \lambda, \alpha \rangle)\delta.$
The set of (positive) real roots is

$$
\widehat{\Delta} = \left\{ \alpha + k\delta : \begin{array}{l} \alpha \in \Delta \\ k \in \mathbb{Z} \end{array} \right\}, \qquad \widehat{\Delta}^+ = \left\{ \alpha + k\delta : \begin{array}{l} k > 0 \text{ or } \\ k = 1, \alpha > 0 \end{array} \right\}.
$$

For any $\hat{\alpha} = \alpha + k\delta$, we can define the *reflection*

$$
r_{\widehat{\alpha}} = r_{\alpha} t_{k\alpha^{\vee}} = t_{-k\alpha^{\vee}} r_{\alpha}.
$$

Assume the Dynkin diagram of R is connected, then there is a highest root θ. We denote

$$
s_0 = r_{-\theta+\delta} = r_{\theta}t_{-\theta^{\vee}} = t_{\theta^{\vee}}r_{\theta}.
$$

Then \widehat{W} is Coxeter system with $\widehat{I} = I \cup \{0\}$. For $x = wt_{\lambda} \in \widehat{W}$, the length is

$$
\ell(x) = \# \operatorname{Inv}(x), \qquad \text{where } \frac{\operatorname{Inv}(x) = \hat{\Delta}^+ \cap x^{-1} \hat{\Delta}^-}{\hat{\alpha} \in \hat{\Delta}^+ : x \hat{\alpha} \in \hat{\Delta}^- }
$$

We have a very famous formula

$$
\ell(wt_{\lambda}) = \sum_{\alpha \in \Delta^{+}} \left| \langle \alpha, \lambda \rangle + [w\alpha < 0] \right|.
$$

Actually, if we denote for $\alpha > 0$, the set

$$
\mathrm{Inv}_{\alpha}(x) = \{\pm \alpha + k\delta \in \mathrm{Inv}(x)\},\
$$

we have

$$
\text{Inv}_{\alpha}(wt_{\lambda}) = \begin{cases} \{\alpha + k\delta\}_{0 \le k < \langle \alpha, \lambda \rangle + [w\alpha < 0]}, & \langle \alpha, \lambda \rangle \ge 0, \\ \{-\alpha + k\delta\}_{0 < k \le -\langle \alpha, \lambda \rangle - [w\alpha < 0]}, & \langle \alpha, \lambda \rangle < 0, \end{cases}
$$

1.2. Affine Hecke Algebras. Let $\widehat{H}_{t}(W)$ be the Hecke algebra for the Coxeter system \widehat{W} . We have

$$
\widehat{H}_t(W) = \bigoplus_{x \in \widehat{W}} \mathbb{Q}_t \cdot T_x, \qquad \begin{array}{c} T_x T_y = T_{xy} \text{ if} \\ \ell(x) + \ell(y) = \ell(xy). \end{array}
$$

Let us denote Y^{λ} for $\lambda \in Q^{\vee}$ as follows. For dominant λ , we define $Y^{\lambda} = t^{-\langle \lambda, \rho \rangle} T_{t_{\lambda}}$; for general λ , we define $Y^{\lambda} = Y^{\lambda_1}(Y_{\lambda_2})^{-1}$ if we can write $\lambda = \lambda_1 - \lambda_2$ with λ_1, λ_2 dominant. This is well-defined since for dominant $\lambda \in Q^{\vee}$

$$
\ell(t_{\lambda}) = \sum_{\alpha > 0} |\langle \alpha, \lambda \rangle| = 2\langle \rho, \lambda \rangle.
$$

Denote

$$
H_{t}(W) = \bigoplus_{w \in W} \mathbb{Q}_{t} \cdot T_{w} = \text{Hecke algebra for } W
$$

$$
\mathbb{Q}_{t}[Y] = \bigoplus_{\lambda \in Q^{\vee}} \mathbb{Q}_{t} \cdot Y^{\lambda} = \text{group ring of } Q^{\vee}.
$$

Then $\widehat{H}_t(W)$ contains them as subalgebras and

$$
\widehat{H}_t(W) = \mathbb{Q}_t[Y] \otimes H_t(W) \qquad \text{(as a vector space)},
$$

with intertwine

$$
T_iY^{\lambda} - Y^{s_i\lambda}T_i = (\boldsymbol{t} - 1)\frac{Y^{s_i\lambda} - Y^{\lambda}}{Y^{-\alpha_i} - 1}.
$$

Here our convention of quadratic relation for Hecke algebras is

$$
(T-t)(T+1)=0.
$$

We will check this relation soon after introducing extended affine Hecke algebras.

Consider the Bernstein representation of $\widehat{H}_{t}(W)$ on $\mathbb{Q}_{t}[Y]$:

$$
T_i \mapsto
$$
 Demazure-Lusztig operator = $\boldsymbol{t} s_i + (\boldsymbol{t} - 1) \frac{s_i - 1}{Y^{-\alpha_i^{\mathsf{v}}} - 1}$

$$
Y^{\lambda} \mapsto \text{multiplication by } Y^{\lambda}.
$$

It defines a faithful representation of $\widehat{H}_{t}(W)$. Actually, it is isomorphic to $\widehat{H}_t(W) \otimes_{H_t(W)} \mathbb{Q}_t$ with $T_i \mapsto t$ on \mathbb{Q}_t $(i \in I)$.

1.3. Extended affine Hecke algebras. Define extended affine Weyl group

$$
\widehat{W}_e = W \ltimes P^\vee = P^\vee \rtimes W.
$$

It acts on P^{\vee} and $\widehat{Q} = Q \oplus \mathbb{Z} \delta$. We can extend the length function to \widehat{W}_{e} using the same expression. We have

$$
\widehat{W}_e = \widehat{W} \rtimes \Omega = \Omega \ltimes \widehat{W}.
$$

$$
\Omega = \{ x \in \widehat{W}_e : \ell(x) = 0 \} = \text{Aut}(\text{affine Dynkin}_{\text{diagram}}).
$$

Define the extended affine Hecke algebra

$$
H_{t}(\widehat{W}_{e}) = \Omega \ltimes H_{t}(\widehat{W}) \stackrel{\text{as v.s.}}{\longrightarrow} \mathbb{Q}_{t}[\Omega] \otimes H_{t}(\widehat{W}).
$$

Then we have

$$
H_{t}(\widehat{W}_{e}) = \bigoplus_{x \in \widehat{W}_{e}} \mathbb{Q}_{t} \cdot T_{x}, \qquad \begin{array}{c} T_{x}T_{y} = T_{xy} \text{ if} \\ \ell(x) + \ell(y) = \ell(xy). \end{array}
$$

We can define Y^{λ} in the same manner. To check the intertwine, it suffices to check for fundamental coweights $\in P^{\vee}$ since it is true for $\lambda - \mu$ if it is true for λ and μ . It reduces to check the following (λ is dominant)

$$
\frac{\langle \lambda, \alpha_i \rangle = 0 \qquad \langle \lambda, \alpha_i \rangle = 1}{H_i Y^{\lambda} = Y^{\lambda} H_i \qquad H_i Y^{s_i \lambda} H_i = Y^{\lambda}} \qquad H_w = t^{-\ell(w)/2} T_w
$$
\n
$$
(H_i - t^{1/2})(H_i + t^{1/2}) = 0.
$$

Sketch for the second case. Denote $\lambda' = s_i \lambda$. Then $\lambda' + \lambda$ is dominant. Using the length formula, we can check

$$
t_{\lambda'+\lambda} = (t_{\lambda'}s_i)(s_it_\lambda)
$$

is a reduced decomposition i.e. $\ell(t_{\lambda'+\lambda}) = \ell(t_{\lambda'}s_i) + \ell(s_it_\lambda)$. Then

$$
Y^{\lambda'+\lambda} = H_{t_{\lambda'+\lambda}} = (H_{t_{\lambda'}} H_i^{-1})(H_i^{-1} H_{t_{\lambda}}) = (H_{t_{\lambda'}} H_i^{-1})(H_i^{-1} Y^{\lambda}).
$$

Thus $Y^{\lambda'} = T_{t_{\lambda'}} H_i^{-2}$ i^{-2} , so

$$
H_i Y^{\lambda'} H_i = H_i T_{t_{\lambda'}} H_i^{-1} = H_{t_{\lambda}} = Y^{\lambda}.
$$

1.4. Double affine Hecke algebras. Let us denote $\mathbb{Q}_{q,t} = \mathbb{Q}(q,t)$ for short. Let us denote $\mathbb{Q}_{q,t}[X] = \bigoplus_{\alpha \in Q} \mathbb{Q}_{q,t} \cdot X^{\alpha}$. For $\alpha + k\delta \in \widehat{Q} =$ $Q \oplus \mathbb{Z}\delta$, we denote

$$
X^{\alpha+k\delta} = \boldsymbol{q}^k X^{\alpha}.
$$

i.e. $q = X^{\delta}$. So we can identify

 $\mathbb{Q}_{q,t}[X] =$ a localization of the group ring of $\widehat{Q} = Q \oplus \mathbb{Z}\delta$.

We define double affine Hecke algebras

$$
\ddot{H}_{q,t}(W) = \mathbb{Q}_{q,t}[X] \otimes \widehat{H}_t(W)
$$

with intertwine for $i \in I \cup \{0\}$

$$
T_i X^{\lambda} - X^{s_i \lambda} T_i = (t - 1) \frac{X^{s_i \lambda} - X^{\lambda}}{X^{\alpha_i} - 1}.
$$

Here, $X^{\alpha_0} = q X^{-\theta}$. Note that there is no minus. Note that q is central, thus we can just record it in the base field.

We define the following *Cherednik's representation* of $\ddot{H}_{q,t}(W)$ on $\mathbb{Q}_{q,t}[X]$ by

 $T_i \mapsto$ Demazure–Lusztig operator = $ts_i + (t-1)\frac{s_i - 1}{X^{\alpha_i} - 1}$ $X^{\lambda} \mapsto$ multiplication by X^{λ}

It is a faithful representation isomorphic to $\ddot{H}_{q,t}(W) \otimes_{\widehat{H}_{q,t}(W)} \mathbb{Q}_{q,t}$ with $T_i \mapsto t$ on $\mathbb{Q}_{q,t}$ $(i \in I \cup \{0\}).$

It is clear that T_i $(i \in i)$ and X^{λ} $(\lambda \in Q)$ generate the affine Hecke algebra $\hat{H}_{t}(W^{\vee})$ of the dual root system. Let us denote $T_{i}^{\vee} = T_{i}$ for $i \in$ *I*. Denote T_0^{\vee} such that for *anti*-dominant weight λ , $X^{\lambda} = t^{-\langle \rho^{\vee}, \lambda \rangle} T_{t_{\lambda}}^{\vee}$. Then T_i^{\vee} $(i \in I \cup \{0\})$ generate $\hat{H}_{q,t}(W^{\vee}).$

In summary, we have

$$
\begin{array}{ccc}\n\ddot{H}_{q,t}(W) \\
&\circ & \searrow \\
\widehat{H}_{q,t}(W) & \widehat{H}_{q,t}(W^{\vee}) \\
&\circ & \circ & \searrow \\
\mathbb{Q}_{q,t}[Y] & H_{q,t}(W) & \mathbb{Q}_{q,t}[X]\n\end{array}
$$

Actually, the following is an isomorphism

$$
\ddot{H}_{q,t}(W) \longrightarrow \ddot{H}_{q,t}(W^{\vee}), \qquad \begin{cases} T_i \mapsto T_i^{\vee - 1}, \\ q \mapsto q^{-1}, t \mapsto t^{-1}, \\ X^{\mu} \mapsto Y^{\mu}, Y^{\lambda} \mapsto X^{\lambda}, \end{cases}
$$

Proof is technical and can be found in [Mac2, §3.5-3.7] and [Hai, §4]. The duality switches two copies of affine Hecke algebra induced from the bar-involution.

Compare:

$$
Y^{\mu} = \mathbf{t}^{\langle \rho, \mu \rangle} T_{t_{\mu}} \quad (\mu \in Q^{\vee} \text{ dominant}),
$$

$$
X^{\lambda} = \mathbf{t}^{-\langle \rho^{\vee}, \lambda \rangle} T_{t_{\lambda}}^{\vee} \quad (\lambda \in Q \text{ anti-dominant}).
$$

where $\phi \in R$ is the root with the coroot ϕ^{\vee} highest. Let θ be the highest root, and ϕ the root such that ϕ^{\vee} is the highest coroot. Note that $\phi = \theta$ if and only if the Dynkin diagram is simply connected. Then

$$
T_0 = \mathbf{t}^{\langle \rho, \theta \rangle} Y^{\theta^{\vee}} T_{r_{\theta}}^{-1} \quad (t_{\theta^{\vee}} = s_0 r_{\theta}),
$$

$$
T_0^{\vee} = \mathbf{t}^{\langle \rho^{\vee}, \phi \rangle} T_{r_{\phi}}^{-1} X^{-\phi} \quad (t_{-\phi} = r_{\phi} s_0).
$$

2. MACDONALD POLYNOMIALS

2.1. Cherednik's representation. Let P be the weight lattice. Let us denote

$$
R = \bigoplus_{\lambda \in P} \mathbb{Q}_{q,t} \cdot e^{\lambda}, \qquad e^{\delta} = q.
$$

We twist the *Cherednik's representation* $\widehat{H}_{\text{I}}(W)$ on R by

$$
T_i \mapsto
$$
 Demazure-Lusztig operator = $ts_i + (t-1)\frac{s_i-1}{e^{\alpha_i}-1}$

Recall that $e^{\alpha_0} = \mathbf{q} e^{-\theta}$. Note that

$$
\mathbb{Q}_{t}[Y] \subset \widehat{H}_{t}(W)
$$

is a family of commutative operators over R , thus can be upper triangulated simultaneously. Actually, we are going to prove the eigenvalues are different and thus can be diagonalized simultaneously.

Let us define an order over P . We denote \prec the dominant order.

$$
\lambda < \mu \iff \begin{array}{l} \lambda^+ \prec \mu^+ \text{ or } \\ \lambda^+ = \mu^+, \mu \prec \lambda. \end{array}
$$

Here λ^+ stands the dominant weight in the W-orbit of λ . We are going to show

$$
Y^{\mu}e^{\lambda} = \boldsymbol{t}^{-\langle \rho_{\lambda}, \mu \rangle} \boldsymbol{q}^{-\langle \lambda, \mu \rangle} e^{\lambda} + \text{(lower terms)},
$$

where $\rho_{\lambda} =$ 1 2 \sum α $>$ 0 $\int \alpha, \quad \langle \lambda, \alpha \rangle > 0,$ $-\alpha$, $\langle \lambda, \alpha \rangle \leq 0$. . We remark that if $w \in W$ is the

maximal element such that $\lambda = w\lambda^+$, then $w\rho = \rho_{\lambda}$.

The proof goes as follows. Denote for any root $\hat{\alpha}$ an operator

$$
G(\widehat{\alpha}) = \boldsymbol{t} + (\boldsymbol{t} - 1) \frac{1 - r_{\alpha}}{e^{-\alpha} - 1}.
$$

Note that $T_i \mapsto s_i G(\alpha_i)$ and $wG(\alpha)w^{-1} = G(w\alpha)$. For any $x \in W$, if we pick a reduced word $x = s_{i_1} s_{i_2} \cdots s_{i_\ell}$,

$$
T_x = T_{i_1} T_{i_2} \cdots T_{i_\ell}
$$

\n
$$
\rightarrow s_{i_1} G(\alpha_{i_1}) s_{i_2} G(\alpha_{i_2}) \cdots s_{i_\ell} G(\alpha_{i_\ell})
$$

\n
$$
= s_{i_1} s_{i_2} G(s_{i_2} \alpha_{i_1}) G(\alpha_{i_2}) \cdots s_{i_\ell} G(\alpha_{i_\ell})
$$

\n
$$
= x G(s_{i_\ell} \cdots s_{i_2} \alpha_{i_1}) G(s_{i_\ell} \cdots s_{i_3} \alpha_{i_2}) \cdots G(\alpha_{i_\ell}).
$$

Note that

$$
\{s_{i_{\ell}}\cdots s_{i_2}\alpha_{i_1}, s_{i_{\ell}}\cdots s_{i_3}\alpha_{i_2}, \cdots, \alpha_{i_{\ell}}\} = Inv(x).
$$

Thus for $x = t_{\mu}$ with μ dominant, we have

$$
Y^{\mu} = \boldsymbol{t}^{-\langle \mu, \rho \rangle} T_{t_{\mu}} \mapsto \boldsymbol{t}^{-\langle \mu, \rho \rangle} t_{\mu} G(\beta_1) G(\beta_2) \cdots G(\beta_{\ell})
$$

such that

$$
\{\beta_1,\beta_2,\ldots,\beta_\ell\}=\mathrm{Inv}(t_\mu).
$$

Note that any positive root of $\text{Inv}(t_\mu)$ is of the form $\alpha + k\delta$ for $\alpha > 0$. Let us study $G(\alpha)$ for α mod $\delta > 0$. We can compute obtain directly

$$
G(\alpha)e^{\lambda} = \begin{cases} e^{\lambda} + \text{(lower terms)}, & \langle \lambda, \alpha \rangle > 0, \\ \mathbf{t} e^{\lambda} + \text{(lower terms)}, & \langle \lambda, \alpha \rangle \leq 0. \end{cases}
$$

Thus

$$
Y^{\mu}e^{\lambda} = \boldsymbol{t}^{-\langle \rho_{\lambda}, \mu \rangle} e^{-\lambda - \langle \mu, \lambda \rangle \delta} + \text{(lower terms)}
$$

$$
= \boldsymbol{t}^{-\langle \rho_{\lambda}, \mu \rangle} \boldsymbol{q}^{-\langle \lambda, \mu \rangle} e^{\lambda} + \text{(lower terms)}.
$$

By definition of Y^{μ} , this extends to all $\mu \in Q^{\vee}$. This shows $\mathbb{Q}_{q,t}[Y]$ has different eigenvalues.

2.2. Nonsymmetric Macdonald polynomials. By above, there exists a unique $E_{\lambda} \in R$ called non-symmmetric Macdonald polynomials such that

(1)
$$
E_{\lambda} = e^{\lambda} +
$$
 (lower terms);

(2) $Y^{\mu}E_{\lambda} = t^{-\langle \rho_{\lambda}, \mu \rangle} q^{-\langle \lambda, \mu \rangle} E_{\lambda}.$

Actually, E_{λ} can be constructed by the standard diagonalization trick. Since (2) determines E_{λ} up to a scalar, the condition of (1) by requiring the coefficient of e^{λ} is 1:

$$
(1') [e^{\lambda}]E_{\lambda} = 1.
$$

For example:

- $E_0 = 1$
- for a minuscule weight λ , we have $E_{\lambda} = e^{\lambda}$.
- for any weight λ , we have $E_{\lambda} = e^{\lambda} \text{ mod } (t-1)$.

Next, let us describe an induction formula for E_λ . If $s_i \lambda > \lambda$ for some $i \in I$, i.e. $\langle \lambda, \alpha_i^{\vee} \rangle > 0$, then

$$
E_{s_i\lambda}=\left(T_i+\frac{\boldsymbol t-1}{\boldsymbol t^{\langle\rho_{\lambda},\alpha_i^\vee\rangle}\boldsymbol q^{\langle\lambda,\alpha_i^\vee\rangle}-1}\right)E_\lambda.
$$

Let us check the two conditions. $(1')$ is obvious by direct computation. Let us check (2). Let us denote

$$
\tau_i = T_i + \frac{\boldsymbol{t} - 1}{Y^{-\alpha_i^{\mathsf{v}}} - 1} \in \text{a localization of } \widehat{H}_{\boldsymbol{t}}(W).
$$

Note that the right-hand side is nothing but $\tau_i E_\lambda$. The key observation is

$$
\tau_i Y^{\mu} = Y^{s_i \mu} \tau_i \in \text{a localization of } \widehat{H}_t(W).
$$

Actually, it suffices to check this under the Bernstein representation:

$$
\tau_i \mapsto t s_i + (t-1) \frac{s_i - 1}{Y^{-\alpha_i} - 1} + \frac{t-1}{Y^{-\alpha_i} - 1} = \frac{t Y^{-\alpha_i^{\vee}} - 1}{Y^{-\alpha_i^{\vee}} - 1} s_i.
$$

The standard trick tells

$$
Y^{\mu}(\tau_i E_{\lambda}) = \tau_i Y^{s_i \mu} E_{\lambda} = \tau_i t^{-\langle \rho_{\lambda}, s_i \mu \rangle} q^{-\langle \lambda, s_i \mu \rangle} E_{\lambda}
$$

= $t^{-\langle \rho_{s_i \lambda}, \mu \rangle} q^{-\langle s_i \lambda, \mu \rangle} (\tau_i E_{\lambda}).$

The proof is complete.

We can extend the induction formula to $i = 0$ by introducing a similar operator τ_0 . But for type A, it is simpler to make use of the symmetry of the affine root system, see [Hai §2].

2.3. Center characters. The argument above tells for any λ , we still have

$$
E_{s_i\lambda} \in \mathbb{Q}_{q,t} \cdot \left(T_i + \frac{t-1}{t^{\langle \rho_\lambda, \alpha_i^\vee \rangle} q^{\langle \lambda, \alpha_i^\vee \rangle} - 1}\right) E_{\lambda}.
$$

Note that $t \neq 1$, so that the denominator never vanishes. This implies

$$
\mathcal{A}(\lambda) = \bigoplus_{\lambda' \in W\lambda} \mathbb{Q}_{q,t} \cdot E_{\lambda'}
$$

is closed under actions of T_i . Since E_λ 's are eigenvalues of $\mathbb{Q}_t[Y]$, $\mathcal{A}(\lambda)$ is a representation of $\widehat{H}_{t}(W)$. So this gives the composition

$$
R = \bigoplus_{\text{dom }\lambda} \mathcal{A}(\lambda) \quad \text{(as a } \widehat{H}_{q,t}(W)\text{-module)}.
$$

Actually $A(\lambda)$ can be characterized by center characters. Note that

$$
Z(\widehat{H}_{t}(W)) = \mathbb{Q}_{t}[Y]^{W}.
$$

We have

$$
\mathcal{A}(\lambda) = \left\{ g \in R : \begin{array}{l} \forall f(Y) \in \mathbb{Q}_t[Y]^W \\ f(Y)g = f(\mathbf{t}^{-\rho}\mathbf{q}^{-\lambda})g \end{array} \right\}.
$$

Recall that

$$
Y^{\mu}E_{\lambda'} = \mathbf{t}^{-\langle \rho_{\lambda'}, \mu \rangle} \mathbf{q}^{-\langle \lambda', \mu \rangle} E_{\lambda'}
$$

$$
f(Y)E_{\lambda'} = f(\mathbf{t}^{-\rho_{\lambda'}} \mathbf{q}^{-\lambda'}) E_{\lambda'}
$$

for $f(Y) \in \mathbb{Q}_t[Y]^W$, Note that we can always find $w \in W$ such that $u\rho_{\lambda} = \rho_{u\lambda}$, thus $f(\mathbf{t}^{-\rho_{\lambda'}} \mathbf{q}^{-\lambda'})$ does not depend on the choice of $\lambda' \in W\lambda$. Then the easiest choice is $\lambda' = w_0\lambda$ and $f(\mathbf{t}^{-\rho_{w_0\lambda}}\mathbf{q}^{-w_0\lambda}) =$ $f(\boldsymbol{t}^{\rho}\boldsymbol{q}^{-w_0\lambda})=f(\boldsymbol{t}^{-\rho}\boldsymbol{q}^{-\lambda}),$ as desired.

Let us consider R^W , the ring of symmetric polynomials over $\mathbb{Q}_{q,t}$. We have

Firstly, we can rewrite the condition of being symmetric in terms of DL operators:

$$
s_i f = f \iff T_i f = \mathbf{t} s_i f + (\mathbf{t} - 1) \frac{s_i f - f}{e^{\alpha_i} - 1} = \mathbf{t} f.
$$

$$
R^W = \{ f \in R : \forall i \in I, T_i f = \mathbf{t} f \} = \bigcap_{i \in I} \ker(T_i - \mathbf{t}).
$$

Secondly, since $\mathbb{Q}_t[Y]^W$ is the center of $\widehat{H}_t(W)$, so R^W is $\mathbb{Q}_t[Y]^W$ equivariant.

Let us denote for a dominant weight λ the monomial symmetric polynomials

$$
m_{\lambda} = \sum_{\lambda' \in W\lambda} e^{\lambda'} = \sum_{w \in W^{\lambda}} e^{w\lambda} \in R^W.
$$

Note that by assumption

$$
m_{\lambda} = e^{w_0 \lambda} + (\text{lower terms})
$$

$$
Y^{\mu} m_{\lambda} = \mathbf{t}^{\langle \rho, \mu \rangle} \mathbf{q}^{\langle -w_0 \lambda, \mu \rangle} e^{w_0 \lambda} + (\text{lower terms})
$$

$$
f(Y) m_{\lambda} = f(\mathbf{t}^{-\rho} \mathbf{q}^{-\lambda}) m_{\lambda} + (\text{lower terms})
$$

for $f \in \mathbb{Q}_t[Y]^W$.

2.4. Symmetric Macdonald polynomials. By above, there exists a unique $P_{\lambda} \in R^{W}$ called *symmmetric Macdonald polynomials* such that

(1)
$$
P_{\lambda} = m_{\lambda} + \text{(lower terms)};
$$

(2) $f(Y)P_{\lambda} = f(\mathbf{t}^{-\rho}\mathbf{q}^{-\lambda})P_{\lambda}$ for any symmetric $f(Y) \in \mathbb{Q}_{t}[Y]^{W}$.

Let us state the relation between E_{λ} and P_{λ} . We have

$$
P_{\lambda} = \frac{1}{W_{\lambda}(\boldsymbol{t})} \sum_{w \in W} T_w E_{\lambda} = \frac{1}{W_{\lambda}(\boldsymbol{t})} \sum_{w \in W} w \left(E_{\lambda} \prod_{\alpha > 0} \frac{e^{\alpha} - \boldsymbol{t}}{e^{\alpha} - 1} \right)
$$

where $W_{\lambda}(\boldsymbol{t}) = \sum_{w \in W_{\lambda}} \boldsymbol{t}^{\ell(w)}$.

Let us denote the symmetrizer $\Pi = \sum_{w \in W} T_w$. Since $\Pi = (T_i +$ $1) \sum_{s_i w > w} T_w$, we have $T_i \Pi = t \Pi$. It defines an operator $R \to R^W$. It acts as the following operator

$$
\Pi f = \sum_{w} w \left(f \prod_{\alpha > 0} \frac{e^{\alpha} - t}{e^{\alpha} - 1} \right).
$$

For example, for A_1 ,

$$
\Pi f = Tf + f = \mathbf{t} \cdot f + f + (\mathbf{t} - 1) \frac{\mathbf{s}f - f}{e^{\alpha} - 1}
$$
\n
$$
= \left(1 - \frac{\mathbf{t} - 1}{e^{\alpha} - 1}\right) f + s \left(\mathbf{t} + \frac{(\mathbf{t} - 1)}{e^{-\alpha} - 1}\right) s f
$$
\n
$$
= \frac{e^{\alpha} - \mathbf{t}}{e^{\alpha} - 1} + s \frac{\mathbf{t} e^{-\alpha} - 1}{e^{-\alpha} - 1} = (1 + s) \left(\frac{e^{\alpha} - \mathbf{t}}{e^{\alpha} - 1}f\right).
$$

By direct computation, we see SE_{λ} satisfies (2). Thus it suffices to prove the property (1). It suffices to

$$
[e^{w_0\lambda}](\Pi e^{\lambda})=W_{\lambda}(\boldsymbol{t}).
$$

The trick is polarization.

$$
\sum_{w \in W} w\left(e^{\mu} \prod \frac{X^{\alpha} - t}{X^{\alpha} - 1}\right) = \sum_{u \in W^{\lambda}} u\left(\sum_{w \in W_{\lambda}} w\left(e^{\mu} \prod_{\alpha > 0} \frac{e^{\alpha} - t}{e^{\alpha} - 1}\right)\right)
$$

$$
= \sum_{u \in W^{\mu}} u\left(e^{\mu} \sum_{w \in W_{\mu}} w\left(\prod_{\alpha > 0} \frac{e^{\alpha} - t}{e^{\alpha} - 1}\right)\right)
$$

$$
\stackrel{(*)}{=} W_{\mu}(t) \sum_{u \in W^{\mu}} u\left(e^{\mu} \prod_{\alpha \in \Delta^{+} \setminus \Delta_{\mu}^{+}} \frac{e^{\alpha} - t}{e^{\alpha} - 1}\right).
$$

Here $(*)$ is a very famous identity on the Poincaré polynomial of a Weyl group, we will prove it in the appendix. Let us denote R^+ be the polynomial ring generated by e^{α} for $\alpha > 0$. Then for $\alpha > 0$,

$$
\frac{e^{\alpha}-t}{e^{\alpha}-1}=\frac{t-e^{\alpha}}{1-e^{\alpha}}=(t-e^{\alpha})(1+e^{\alpha}+e^{2\alpha}+\cdots)\in\text{completion of }R^{+};
$$

for $\alpha < 0$,

$$
\frac{e^{\alpha} - t}{e^{\alpha} - 1} = \frac{1 - te^{-\alpha}}{1 - e^{-\alpha}} = (1 - te^{-\alpha})(1 + e^{-\alpha} + e^{-2\alpha} + \dots) \in \text{completion of } R^+.
$$

Then

$$
\sum_{u \in W^{\mu}} u \left(e^{\mu} \prod_{\alpha \in \Delta \setminus \Delta_{\mu}} \frac{e^{\alpha} - t}{e^{\alpha} - 1} \right) = e^{w_0 \mu} (1 + R_{>0}^+).
$$

An identity on Poincaré polynomials. Let us prove

$$
\sum_{w \in W} w \prod_{\alpha > 0} \frac{1 - t e^{-\alpha}}{1 - e^{-\alpha}} = \sum_{w \in W} t^{\ell(w)}.
$$

Actually,

$$
LHS = \frac{1}{\prod_{\alpha>0} (e^{\alpha/2} - e^{-\alpha/2})} \sum_{w \in W} (-1)^{\ell(w)} \prod_{\alpha>0} (e^{\alpha/2} - te^{-\alpha/2})
$$

=
$$
\frac{1}{\prod_{\alpha>0} (e^{\alpha/2} - e^{-\alpha/2})} \sum_{w \in W} (-1)^{\ell(w)} \sum_{u \in W} (-t)^{\ell(u)} e^{u\rho}
$$

=
$$
\sum_{u \in W} t^{\ell(u)} = RHS.
$$

In the second equality, $\prod_{\alpha>0} (e^{\alpha/2} - t e^{\alpha/2})$ is supported over weights in the convex hull of $\{u\rho\}_{u\in W}$. For any such weight λ , if e^{λ} is not killed by $\sum (-1)^{\ell(w)}$, then it has to be $u\rho$ for some $u \in W$. The third equality follows from Weyl character formula.

3. Cheridnik Pairing

3.1. Analogy of Discriminant. Recall the pairing over $\text{Rep}(G)$ is

$$
\langle U, V \rangle = \dim \operatorname{Hom}_G(U, V) = \begin{array}{c} \text{the multiplicity of the} \\ \text{trivial component of } V \otimes U^{\vee}. \end{array}
$$

If G is reductive, then by Weyl character formula

$$
\chi(\mathbb{V}(\lambda)) = \frac{1}{\Delta} \sum_{w \in W} (-1)^{\ell(w)} e^{w(\lambda + \rho) - \rho}, \qquad \Delta = \prod_{\alpha > 0} (1 - e^{-\alpha}).
$$

In particular, for any representation V , the multiplicity of the trivial component is

$$
[e^0] (\text{char}(V)\Delta) = \text{constant term of char}(V)\Delta.
$$

Thus the Hom-pairing induces the following pairing over $\text{Rep}(G)$

$$
\langle f, g \rangle = [e^0](\Delta f \overline{g}), \qquad \langle U, V \rangle = \langle \text{char}(U), \text{char}(V) \rangle.
$$

Here is the example for SL_2 :

We are going to construct the **t**-analogy and affine analogy of Δ . Define

$$
\Delta_{\boldsymbol{q},\boldsymbol{t}}^{\circ}=\prod_{\alpha\in\widehat{\Delta}_+}\frac{1-e^{\alpha}}{1-\boldsymbol{t}\,e^{\alpha}}=\prod_{\alpha>0}\prod_{k=1}^{\infty}\frac{(1-\boldsymbol{q}^{k-1}e^{\alpha})(1-\boldsymbol{q}^{k}e^{-\alpha})}{(1-\boldsymbol{t}\boldsymbol{q}^{k-1}e^{\alpha})(1-\boldsymbol{t}\boldsymbol{q}^{k}e^{-\alpha})}.
$$

We shall understand it as an element in

$$
\sum_{\lambda \in P} \mathbb{Q}[q, t] \cdot e^{\lambda} \qquad \text{(possibly infinite sum)}.
$$

We normalize the constant term to be

$$
\Delta_{q,t} = \Delta_{q,t}^{\circ} / ([e^0] \Delta_{q,t}^{\circ}).
$$

We will show that $[e^{\lambda}]\Delta_{q,t} \in \mathbb{Q}_{q,t}$.

For any $i \in I \cup \{0\}$

$$
s_i \Delta_{q,t} = \frac{1}{[e^0] \Delta_{q,t}^{\circ}} \prod_{\alpha \in \widehat{\Delta}_+} \frac{1 - e^{s_i \alpha}}{1 - t e^{s_i \alpha}}
$$

=
$$
\frac{1}{[e^0] \Delta_{q,t}^{\circ}} \frac{1 - e^{-\alpha_i}}{1 - t e^{-\alpha_i}} \frac{1 - t e^{\alpha_i}}{1 - e^{\alpha_i}} \prod_{\alpha \in \widehat{\Delta}_+} \frac{1 - e^{\alpha_i}}{1 - t e^{\alpha_i}}
$$

=
$$
\frac{1 - t e^{\alpha_i}}{t - e^{\alpha_i}} \Delta_{q,t}.
$$

This relation can be expressed as a system of linear equations over $\mathbb{Q}_{q,t}$ in $[e^{\lambda}]\Delta_{q,t}$. Since we already have a solution in $\mathbb{Q}[q,t]$, it has a solution in $\mathbb{Q}_{q,t}$. Let Δ' be the solution over $\mathbb{Q}_{q,t}$. We can assume $[e^0]\Delta' = 1$ by normalization. Then $\Delta'/\Delta_{q,t}$ is \widetilde{W} -invariant. But

$$
t_{\mu}e^{\lambda} = e^{\lambda - \langle \lambda, \mu \rangle \delta} = \mathbf{q}^{-\langle \lambda, \mu \rangle} e^{\lambda}.
$$

This shows $\Delta'/\Delta_{a,t} = 1$.

3.2. Non-symmetric case. Define the Cherednik's inner product on R by

$$
\langle f, g \rangle_{q,t} = [e^0](f\overline{g}\Delta_{q,t})
$$

where $\overline{\cdot}$ is the involution $e^{\lambda} \mapsto e^{-\lambda}$, $q \mapsto q^{-1}$, $t \mapsto t^{-1}$. Note that $\Delta_{q,t} = \Delta_{q,t}$ So we have $\langle g, f \rangle_{q,t} = \langle f, g \rangle_{q,t}$. Actually, we showed $\Delta_{q,t}$ is the unique element in

$$
\sum_{\lambda \in P} \mathbb{Q}_{q,t} \cdot e^{\lambda} \qquad \text{(possibly infinite sum)}.
$$

such that

$$
s_i \Delta_{q,t} = \frac{1 - t e^{\alpha_i}}{t - e^{\alpha_i}} \Delta_{q,t}, \,\forall i \in I \cup \{0\}, \qquad [e^0] \Delta_{q,t} = 1.
$$

The conditions are bar-invariant.

Let us compute the adjoint of several operators

$$
\langle s_i f, g \rangle_{q,t} = [e^0](s_i f \overline{g} \Delta_{q,t}) = [e^0](f \overline{s_i g} s_i \Delta_{q,t})
$$

$$
= [e^0] \left(f \overline{s_i g} \frac{1 - t e^{\alpha_i}}{t - e^{\alpha_i}} \Delta_{q,t} \right) = [e^0] \left(f \frac{\overline{1 - t e^{\alpha_i}}}{t - e^{\alpha_i}} s_i g \Delta_{q,t} \right)
$$

$$
= \left\langle f, \frac{1 - t e^{\alpha_i}}{t - e^{\alpha_i}} s_i g \right\rangle_{q,t}
$$

Thus the adjoint of

$$
T_i = \mathbf{t}s_i + (\mathbf{t} - 1)\frac{s_i - 1}{e^{\alpha_i} - 1} = \frac{\mathbf{t}e^{\alpha_i} - 1}{e^{\alpha_i} - 1}s_i + \frac{1 - \mathbf{t}}{e^{\alpha_i} - 1}
$$

is

$$
\frac{1 - t e^{-\alpha_i}}{t - e^{-\alpha_i}} s_i \frac{t^{-1} e^{-\alpha_i} - 1}{e^{-\alpha_i} - 1} + \frac{1 - t^{-1}}{e^{-\alpha_i} - 1}
$$
\n
$$
= \frac{1 - t^{-1} e^{-\alpha_i}}{t^{-1} - e^{-\alpha_i}} \frac{t^{-1} e^{-\alpha_i} - 1}{e^{\alpha_i} - 1} s_i + \frac{1 - t^{-1}}{e^{-\alpha_i} - 1}
$$
\n
$$
= \frac{t^{-1} e^{-\alpha_i} - 1}{e^{-\alpha_i} - 1} s_i + \frac{1 - t^{-1}}{e^{-\alpha_i} - 1} = T_i^{-1}.
$$

As a result, $\langle T_i f, g \rangle_{q,t} = \langle f, T_i^{-1} g \rangle_{q,t}$, i.e. $\langle T_i f, T_i g \rangle_{q,t} = \langle f, g \rangle_{q,t}$. As a result,

$$
\langle Y^{\mu}f, Y^{\mu}g\rangle_{\mathbf{q},\mathbf{t}} = \langle f, g\rangle_{\mathbf{q},\mathbf{t}}.
$$

As a result, nonsymmetric Macdonald polynomials can be characterized by

(1) $E_{\lambda} = e^{\lambda} +$ (lower terms) $(2') \langle E_{\lambda}, E_{\mu} \rangle_{a,t} = 0$ if $\lambda \neq \mu$.

3.3. Symmetric case. Similarly, symmetric Macdonald polynomials can be characterized by

(1) $P_{\lambda} = m_{\lambda} +$ (lower terms)

(2')
$$
\langle P_{\lambda}, P_{\mu} \rangle_{q,t} = 0
$$
 if $\lambda \neq \mu$.

But we can simplify $\langle \cdot, \cdot \rangle_{q,t}$.

Here is a useful trick when doing computation. Note that for $f \in$ $\mathbb{Q}_{q,t} = \mathbb{Q}(q,t),$

$$
f(\mathbf{q}, \mathbf{t}) = 0 \iff f(\mathbf{q}, \mathbf{q}^{\kappa}) = 0 \text{ for } \kappa = 1, 2, 3, 4, \dots
$$

Thus assuming $t = q^{\kappa}$ is harmless. For example,

$$
\Delta_{q,t}^{\circ} = \prod_{\alpha \in \widehat{\Delta}_+} \frac{1 - e^{\alpha}}{1 - t e^{\alpha}} = \prod_{\alpha > 0} \prod_{k=1}^{\infty} \frac{(1 - q^{k-1} e^{\alpha})(1 - q^k e^{-\alpha})}{(1 - t q^{k-1} e^{\alpha})(1 - t q^k e^{-\alpha})}
$$
\n
$$
= \prod_{\substack{\alpha > 0 \\ 1 \le k < \kappa}} (1 - q^{k-1} e^{\alpha})(1 - q^k e^{-\alpha})
$$
\n
$$
= \prod_{\alpha > 0} \frac{1 - q^{\kappa} e^{-\alpha}}{1 - e^{-\alpha}} \prod_{\substack{\alpha > 0 \\ 0 \le k < \kappa}} (1 - q^k e^{\alpha})(1 - q^k e^{-\alpha}).
$$

Since

$$
\sum_{w \in W} w \left(\prod_{\alpha > 0} \frac{1 - \boldsymbol{q}^{\kappa} e^{-\alpha}}{1 - e^{-\alpha}} \right) = W(\boldsymbol{q}^{\kappa})
$$
 is a constant

and

$$
\Delta_{\boldsymbol{q},\boldsymbol{t}}'^{\circ} = \prod_{\alpha>0} \prod_{k\geq 0} \frac{1 - t q^k e^\alpha}{1 - q^k e^\alpha} \frac{1 - t q^k e^{-\alpha}}{1 - q^k e^{-\alpha}} = \prod_{\substack{\alpha>0\\0\leq k<\kappa}} (1 - q^k e^\alpha)(1 - q^k e^{-\alpha})
$$

is W-invariant. By denoting $\Delta'_{q,t} := \Delta'^{\circ}_{q,t}/[e^0] \Delta'^{\circ}_{q,t}$, we have

$$
\langle f, g \rangle_{q,t} = [e^0] \big(f \, \overline{g} \, \Delta_{q,t}' \big).
$$

We remark that in type A, for $f, g \in \Lambda$, we have

$$
\lim_{n\to\infty} \langle f[X_n], g[X_n] \rangle_{\mathbf{q},\mathbf{t}} = \langle f, g \rangle_{\mathbf{q},\mathbf{t}}.
$$

(If we want to extend to $\Lambda_{q,t}$, we need to replace g by $g|_{q \mapsto q^{-1}, t \mapsto t^{-1}}$) This is proved by the computation of $\langle P_\lambda, P_\lambda \rangle_{q,t}$ and $\langle P_\lambda[X_n], P_\lambda[X_n]\rangle_{q,t}$. The computation shows the left-hand side is not a constant when $t \neq q$, even for $n \gg 0$, see [Mac3].

References.

- [Mac1] [Affine Hecke algebras and orthogonal polynomials](http://www.numdam.org/article/SB_1994-1995__37__189_0.pdf) (Bourbaki seminar), by I.G. Macdonald.
- [Mac2] Affine Hecke algebras and orthogonal polynomials (Cambridge University Press), by I.G. Macdonald.
	- [Kir] [Lectures on the affine Hecke algebras and Macdonald conjec](https://arxiv.org/abs/math/9501219)[tures,](https://arxiv.org/abs/math/9501219) by A.A. Kirillov. Jr
	- [Hai] [Cherednik algebras, Macdonald polynomials and combinatorics,](https://math.berkeley.edu/~mhaiman/ftp/icm-2006/comb-mac-chered.pdf) by M. Haiman

4. Specializations

Recall that

The Demazure-Lusztig operator
\n
$$
T_i = \mathbf{t}s_i + (\mathbf{t} - 1)\frac{s_i - \mathrm{id}}{e^{\alpha_i} - 1}.
$$
\nWhen $\langle \lambda, \alpha_i^{\vee} \rangle > 0$,
\n
$$
E_{s_i\lambda} = \left(T_i + \frac{\mathbf{t} - 1}{\mathbf{t}^{\langle \rho_{\lambda}, \alpha_i^{\vee} \rangle} \mathbf{q}^{\langle \lambda, \alpha_i^{\vee} \rangle} - 1} \right) E_{\lambda}.
$$
\nFor dominant λ ,\n
$$
\left(\begin{array}{c} \lambda & \lambda_i \\ \lambda_i & \lambda_i \end{array}\right) = \left(\begin{array}{c} \lambda_i & \lambda_i \\ \lambda_i & \lambda_i \end{array}\right) \tag{*}
$$

$$
P_{\lambda} = \frac{1}{W_{\lambda}(t)} \sum_{w \in W} w\left(E_{\lambda} \prod_{\alpha > 0} \frac{e^{\alpha} - t}{e^{\alpha} - 1}\right)
$$

4.1. The limit $q \to 0$. The result is

$$
\mathbf{q} \to 0, \qquad \begin{cases} \text{ when } \lambda \text{ is dominant} & E_{\lambda} = e^{\lambda} \\ \text{if } \langle \alpha_i^{\vee}, \lambda \rangle > 0 \end{cases} \quad E_{s_i\lambda} = \mathbf{t} T_i^{-1} E_{\lambda}.
$$

Actually, when $q \to 0$, the Cherednik pairing

$$
\Delta_{q,\boldsymbol{t}}^{\circ} = \prod_{\alpha} \frac{1 - e^{\alpha}}{1 - \boldsymbol{t} e^{\alpha}} \in \sum_{\text{positive } \beta} \mathbb{Q}[\boldsymbol{t}] e^{\beta}.
$$

So for dominant λ , and any $\mu < \lambda$ (that is, $\mu^+ <_{dom} \lambda$)

$$
[e^0] \left(e^{\lambda} e^{-\mu} \Delta_{q,t}^{\circ} \right) = [e^{\mu}] \left(e^{\lambda} \Delta_{q,t}^{\circ} \right) = 0.
$$

From the fact that

$$
E_{\mu} = e^{\mu} + (\text{lower term}),
$$

we see $E_{\lambda} = e^{\lambda}$ (from the construction, E_{λ} was constructed when E_{μ} for all $\mu < \lambda$ are constructed).

By $(*)$, when specialize $q \to 0$, we get

$$
E_{s_i\lambda} = (T_i - (\boldsymbol{t} - 1))E_{\lambda} = \boldsymbol{t} T_i^{-1} E_{\lambda}
$$

$$
= \left(s_i + (1 - \boldsymbol{t}) \frac{s_i - \mathrm{id}}{e^{-\alpha_i} - 1}\right) E_{\lambda}.
$$

Thus $E_{\lambda}|_{q=0}$ essentially gives the *Iwahori–Whittaker functions*.

In particular, if we specialize $q \to 0, t \to 0$, we will get

$$
E_{s_i\lambda} = \left(s_i + \frac{s_i - \mathrm{id}}{e^{-\alpha_i} - 1}\right) E_{\lambda} = \frac{s_i - e^{-\alpha_i}}{1 - e^{-\alpha_i}} E_{\lambda}.
$$

Thus $E_{\lambda}|_{q=0,t=0}$ gives the Demazure character of finite Lie algebra \mathfrak{g}^{\vee} . Now we have

$$
P_{\lambda} = \frac{1}{W_{\lambda}(\boldsymbol{t})} \sum_{w \in W} w \left(e^{\lambda} \prod_{\alpha > 0} \frac{e^{\alpha} - \boldsymbol{t}}{e^{\alpha} - 1} \right).
$$

This is known as Hall–Littlewood polynomials. The representation theoretic explanation is

$$
\boldsymbol{t}^{\langle\rho,\lambda\rangle}P_\lambda|_{\boldsymbol{t}\mapsto\boldsymbol{t}^{-1},\boldsymbol{q}=0}
$$

gives the spherical funtion in the dual group.

To explain the relation, we need an algebraic version of Satake equivalence. Let G be a reductive group. As usual, let \bf{K} be a non-Archmedean local field with ring of integers O and residue field k. Since $G_{\mathbf{O}}$ is compact, we take the Haar measure μ with $\mu(G_{\mathbf{O}}) = 1$. We have

$$
G_{\mathbf{K}} = \bigsqcup_{\lambda \in P_{\text{dom}}^{\mathsf{v}}} G_{\mathbf{O}} t^{\lambda} G_{\mathbf{O}} = \bigsqcup_{\lambda \in P_{\text{dom}}^{\mathsf{v}}} O(\lambda).
$$

We can define a convolution product over

$$
\operatorname{\mathsf{Fun}}\nolimits_{(G_{{\mathbf O}}}\backslash G_{{\mathbf K}}/_{G_{{\mathbf O}}}) := \bigoplus_{\lambda \in P^{\sf v}_{\text{dom}}} \mathbf{1}_{O(\lambda)}
$$

with convolution product

$$
(f * g)(x) = \int_{G_{\mathbf{O}}} f(xy^{-1})g(y)dy.
$$

Explicitly, $\mathbf{1}_{\lambda} * \mathbf{1}_{\mu} = \sum_{\nu} c_{\lambda \mu}^{\nu} \mathbf{1}_{\nu}$ with

$$
c_{\lambda\mu}^{\nu} = \int_{G} [t^{\nu}y^{-1} \in O(\lambda)] \cdot [y \in O(\mu)] dx
$$

= $\#\{y \in O(\mu) : t^{\nu}y^{-1} \in O(\lambda)\}/G_{\mathbf{O}}$
= $\#\{(x, y) \in O(\lambda) \times O(\mu) : xy = t^{\nu}\}/(x, gy) \sim (xg, y), g \in G_{\emptyset}$
= $\#\text{ fibre of } O(\lambda) \times O(\mu) \to G_{\mathbf{K}} \supset O(\nu).$

It is well known that this algebra is isomorphic to the spherical Hecke algebra:

$$
\mathcal{H}_G \cong e\widehat{H}_t(W)e\big|_{t=\#\mathbf{k}} \quad \text{with} \quad e = \frac{1}{W(t)} \sum_{w \in Wt_\lambda W} T_w.
$$

Under the isomorphism,

$$
\mathbf{1}_{O(\lambda)} \longmapsto \frac{1}{W(\boldsymbol{t})} e\left(\sum_{w \in W t_{\lambda}W} T_w\right) e.
$$

Note that

$$
Wt_{\lambda}W = \bigsqcup_{\lambda' \in W\lambda} t_{\lambda'}W.
$$

We write $t_{\lambda'} = u_{\lambda'}v_{\lambda'}$ with $u_{\lambda'}$ minimal representative of $t_{\lambda'}W$, and $v_{\lambda'} \in W$. It is known that $v_{\lambda'}$ is the minimal element such that $v_{\lambda'}\lambda =$ λ' . Thus

$$
\bigsqcup_{\lambda' \in W\lambda} t_{\lambda'} W = \bigsqcup_{\lambda' \in W\lambda} t_{\lambda'} v_{\lambda'}^{-1} W.
$$

So any element $w \in W t_{\lambda} W$ can be uniquely written as $w = vt_{\lambda} u$ with $v \in W^{\lambda}$, $u \in W$ and $\ell(w) = -\ell(v) + \ell(t_{\lambda}) + \ell(u)$. Recall that $Y^{\lambda} = t^{-\langle \rho, \lambda \rangle} T_{t_{\lambda}}$ for λ dominant. As a result,

$$
1_{O(\lambda)} \mapsto \frac{1}{W(t)} e\left(\sum_{w \in Wt_{\lambda}W} T_w\right) e
$$

= $e\left(\sum_{v \in W^{\lambda}} T_v^{-1}\right) T_{t_{\lambda}} \left(\sum_{u \in W} T_u\right) e = t^{\langle \rho, \lambda \rangle} \frac{W(t^{-1})}{W_{\lambda}(t^{-1})} eY^{\lambda} e$
= $t^{\langle \rho, \lambda \rangle} \frac{W(t^{-1})}{W_{\lambda}(t^{-1})} e\left(\frac{1}{W(t)} \sum_{w \in W} w\left(Y^{\lambda} \prod_{\alpha > 0} \frac{Y^{-\alpha} - t}{Y^{-\alpha} - 1}\right)\right) e$
= $e\left(\frac{t^{\langle \rho, \lambda \rangle}}{W_{\lambda}(t^{-1})} \sum_{w \in W} w\left(Y^{\lambda} \prod_{\alpha > 0} \frac{1 - t^{-1}Y^{-\alpha}}{1 - Y^{-\alpha}}\right)\right) e$.

That is, under the identification $e\widehat{H}_t e(W) = \mathbb{Q}_t[Y]^W$, $\mathbf{1}_{O(\lambda)}$ is the function

$$
K_{\lambda} := \frac{\boldsymbol{t}^{\langle \rho, \lambda \rangle}}{W_{\lambda}(\boldsymbol{t}^{-1})} \sum_{w \in W} w \left(Y^{\lambda} \prod_{\alpha > 0} \frac{1 - \boldsymbol{t}^{-1} Y^{-\alpha}}{1 - Y^{-\alpha}} \right).
$$

Denote

$$
\chi_{\lambda} = \sum_{w \in W} w \left(Y^{\lambda} \prod_{\alpha > 0} \frac{Y^{\alpha}}{Y^{\alpha} - 1} \right)
$$

the Weyl character. By direct computation,

$$
K_{\lambda} \in \boldsymbol{t}^{\langle \rho, \lambda \rangle} \chi_{\lambda} + \sum_{\mu < \lambda} \mathbb{Q}[\boldsymbol{t}] \chi_{\mu}.
$$

Let us describe the bar-involution over $e\widehat{H}_{t}(W)e$. Recall that $\overline{T_{t_{\lambda}}}$ = $T_{t_{-\lambda}}^{-1}$. So

$$
\overline{\frac{1}{W(\boldsymbol{t})}e\left(\sum_{w\in Wt_{\lambda}W}T_w\right)e}=\frac{1}{W(\boldsymbol{t})}e\left(\sum_{w\in Wt_{\lambda}W}T_{w^{-1}}^{-1}\right)e=\mathrm{const}\cdot eY^{w_0\lambda}e.
$$

Do the same computation as above, we will see $\overline{K_{\lambda}} = K_{\lambda}|_{t\mapsto t^{-1}}$. In particular, for a symmetric $f \in \mathbb{Q}[Y]^W$, $\overline{f} = f$. As a result, the Kazhdan–Lusztig basis of $e\widehat{H}_{t}(W)e$ is Weyl characters.

Perhaps let us state them in term of sheaves (geometric Satake). Denote

$$
\Sigma_{\lambda}^{\circ} := G_{\mathbf{O}} t^{\lambda} G_{\mathbf{O}} / G_{\mathbf{O}} \subset \mathrm{Gr}_G := G_{\mathbf{K}} / G_{\mathbf{O}}.
$$

Note that $\dim \Sigma^{\circ}_{\lambda} = 2\langle \rho, \lambda \rangle$. We have

$$
K_{\lambda} \longleftrightarrow \mathbf{1}_{\Sigma_{\lambda}^{\circ}} \in D_{G_{\mathbf{O}}}(\text{Gr}_G),
$$

$$
\chi_{\lambda} \longleftrightarrow \mathbf{IC}_{\Sigma_{\lambda}^{\circ}} \in \mathbf{SSPerv}(\text{Gr}_G),
$$

where the intersection complex is normalized such that $\mathbf{IC}(\lambda)|_{\Sigma_{\lambda}^{\circ}} =$ $\mathbb{Q}[\dim \Sigma_\lambda^\circ].$

References.

- [Mac] Symmetric functions and Hall polynomials (Oxford Science Publication), by I.G. Macdonald.
- [Ach] Perverse sheaves and applications to representation theory, by P. N. Achar.

4.2. The limit $t \to 0$. In this case, $E_{\lambda} \in R$ is the character of level 1 affine Demazure module. Let g be a semisimple Lie algebra. Recall that the untwisted affine Kac–Moody algebra is

$$
\widehat{\mathfrak{g}} = L\mathfrak{g} \oplus \mathbb{C}\partial \oplus \mathbb{C}c, \qquad L\mathfrak{g} = \mathfrak{g}[t^{\pm 1}] = \mathfrak{g} \otimes \mathbb{C}[t^{\pm 1}]
$$

with $\partial = t \frac{\partial}{\partial t}$ and c central. We are working in

$$
\widehat{\mathfrak{h}} = \begin{matrix}\n\text{coroots} \\
\text{Cc} \\
\text{C} \\
\text
$$

simple roots
\n
$$
\{\alpha_i\} \cup \{\alpha_0 = \delta - \theta\}
$$
 { α_i^{\vee} } $\cup \{\alpha_0^{\vee} = c - \theta^{\vee}\}$

Note that the central element c can be written as a positive sum of simple coroots

$$
c \in \alpha_0 + \sum \langle \theta^\vee, \omega_i \rangle \alpha_i.
$$

Note that $\langle \theta^{\vee}, \omega_i \rangle$ is always positive. The fundamental weight Λ_i for $i \in I \cup \{0\}$ is normalized such that the coefficient of δ is zero. In other word,

$$
\Lambda_i = \begin{cases} \Lambda_0, & i = 0, \\ \omega_i + \langle \theta^\vee, \omega_i \rangle \Lambda_0, & i \neq 0. \end{cases}
$$

For an affine weight $\lambda \in \mathbb{Z}\Lambda_0 \oplus P \oplus \mathbb{Z}\delta$, we call the coefficient of Λ_0 , i.e. $\langle c, \lambda \rangle$, the level of λ .

• If λ is a dominant affine weight of level 0, then

$$
\lambda\in\mathbb{Z}\pmb{\delta}.
$$

Then the dimension of $\mathbb{V}(\widehat{\lambda})$ is one.

• If λ is a dominant affine weight of level 1, then

 $\lambda \in \Lambda_i + \mathbb{Z}\delta$

with $\langle \theta^{\vee}, \omega_i \rangle = 1$. This happens exactly when i is miniscule, equivalently, conjugate to the affine node under graph automorphism of the Dynkin diagram.

If λ has level ℓ , then the action of c on the irreducible integrable module $\mathbb{V}(\lambda)$ is always ℓ , thus to compute the character, specialization of $e^{\Lambda_0} = 1$ does not loss any generality if level is known.

Denote

$$
\widehat{\mathfrak{b}} = \mathfrak{b} \oplus \oplus \mathbb{C}\partial \oplus \mathbb{C}c \oplus tL\mathfrak{g}.
$$

For an affine dominant weight λ and affine Weyl group element $w \in W$, the Demazure module

 $\mathbb{V}_m(\lambda) = \text{the } \hat{\mathfrak{b}}$ -submodule generated by $w \cdot v_{\text{highest}}$.

We have the following formula for its character

$$
\mathbf{char} \mathbb{V}_{\mathrm{id}}(\lambda) = e^{\lambda},
$$

\n
$$
\mathbf{char} \mathbb{V}_w(\lambda) = \pi_w \big(\mathbf{char} \mathbb{V}_{\mathrm{id}}(\lambda) \big).
$$

Here π_w is the Demazure operators

$$
\pi_i = \frac{\mathrm{id} - e^{-\alpha_i} s_i}{1 - e^{-\alpha_i}}.
$$

Since π_i satisfies the Braid relation, it is well-defined to denote π_w .

Now let us describe the level 1 action of \widehat{W} on $\Lambda_0 + P$ mod δ . For a finite weight λ ,

$$
s_i(\Lambda_0 + \lambda) = \Lambda_0 + \lambda + \langle \alpha_i^{\vee}, \Lambda_0 + \lambda \rangle \alpha_i
$$

=
$$
\begin{cases} \Lambda_0 + s_i \lambda, & i \in I, \\ \Lambda_0 + (r_\theta \lambda - \theta) + \delta, & i = 0. \end{cases}
$$

Let us denote for a level one weight $\lambda = \Lambda_0 + \lambda_0 + k\delta$,

$$
E_{\lambda} = \boldsymbol{q}^k E_{\lambda_0}.
$$

The result is, for type ADE, we have

$$
\mathbf{char} \mathbb{V}_w(\lambda) = e^{\Lambda_0} E_{w\lambda}|_{t=0},
$$

for an affine domiant weight λ of level 1.

By (*), when specializing $t \to 0$,

$$
E_{s_i\lambda} = \left(-\frac{s_i - \mathrm{id}}{e^{\alpha_i} - 1} + 1\right) E_{\lambda} = \left(\frac{-s_i + e^{\alpha_i} \mathrm{id}}{e^{\alpha_i} - 1} + 1\right) E_{\lambda}
$$

$$
= \left(\frac{\mathrm{id} - e^{-\alpha_i} s_i}{1 - e^{-\alpha_i}}\right) E_{\lambda} = \pi_i E_{\lambda}.
$$

There are two methods of proving $i = 0$.

- By the Dynkin diagram automorphisms, we can transform affine node to a finite node, this proves for type A, D and E_6 .
- In general, we need the $i = 0$ analogy of the induction formula (Cherednik intertwine theory).

We mention that the non-simply laced cases, we cannot apply the Dynkin diagram automorphisms since the affine Dynkin diagram of dual type are different. We remark that when λ is anti-dominant, $P_{\lambda} = E_{\lambda}$. This follows from the fact $\pi_i^2 = \pi_i$.

References.

- [San] On the connection between Macdonald polynomials and Demazure characters by Yasmine B. Sanderson.
- [Ion] [Nonsymmetric Macdonald polynomials and Demazure charac](https://arxiv.org/abs/math/0105061)[ters](https://arxiv.org/abs/math/0105061) by Ion.

5. Degeneration of DAHA

5.1. Degeneration of Hecke Algebra. Let u, v, β be three variables. Let us consider the Hecke algebra defined by

$$
(T_i - u)(T_i + v) = 0.
$$

Note that T_i/v satisfies the usual Hecke algebra relation with $t = u/v$:

$$
(T_i/v - u/v)(T_i/v + 1) = 0.
$$

Let us denote $R = \mathbb{Q}[e^{\beta \lambda}]_{\lambda \in P}$ the group algebra of P. We should understand the symbol

$$
e^{\beta \lambda} = 1 + \beta \lambda + \frac{\beta^2}{2} \lambda^2 + \frac{\beta^3}{3!} \lambda^3 + \dots \in \mathcal{O}(\mathfrak{t})[\![\beta]\!].
$$

Denote cherednik representation on R

$$
T_i f = us_i + (u - v) \frac{s_i f - f}{e^{\beta \alpha_i} - 1},
$$

$$
X_i f = e^{\beta x_i} f.
$$

Then

$$
T_i X^{\lambda} - X^{s_i \lambda} T_i = (u - v) \frac{X^{s_i \lambda} - X^{\lambda}}{X^{\alpha_i} - 1}.
$$

Note that T_i is the unique operator such that T_i 's satisfy the relations of Hecke algebra and T_i 1 = u.

Group algebra. Let us take $u = v = \beta = 1$. We see $T_i = s_i$, and X^{λ} = mult by e^{λ} . The relations are

$$
T_i^2 = 1, \quad X^{\lambda} X^{-\mu} = X^{\lambda - \mu},
$$

$$
T_i X^{\lambda} - X^{s_i \lambda} T_i = 0.
$$

It gives the group algebra.

Degenerate Group algebra. Let us take $u = v = 1$ but set $\beta \to 0$. Then

$$
T_i = s_i
$$
, $x_{\lambda} = \lim_{\beta \to 0} \frac{X^{\lambda} - 1}{\beta} = \text{mult by } \lambda$

. The relations are

$$
T_i^2 = 1, \quad x_{\lambda} - x_{\mu} = x_{\lambda - \mu},
$$

$$
T_i x_{\lambda} - x_{s_i \lambda} T_i = 0.
$$

It gives the group algebra.

Zero Hecke algebra. Let us take $u = -\beta$ and $v = 0$, i.e. $(T_i - \beta)T_i =$ 0. Then

$$
T_i = -\beta s_i - \beta \frac{s_i - 1}{e^{\beta \alpha_i} - 1} = \frac{1 - e^{\beta \alpha_i} s_i}{-(1 - e^{\beta \alpha_i})/\beta}.
$$

If we specialize further $\beta = -1$, we get

$$
T_i = \frac{1 - e^{-\alpha_i} s_i}{1 - e^{-\alpha_i}}, \qquad X^{\lambda} = \text{mult-by } e^{-\lambda}.
$$

The operator is originally found by Demazure. The relations are

$$
T_i^2 = T_i, \qquad X^{\lambda} X^{-\mu} = X^{\lambda - \mu}
$$

$$
T_i X^{\lambda} - X^{s_i \lambda} T_i = \frac{X^{s_i \lambda} - X^{\lambda}}{X^{\alpha_i} - 1}
$$

Nil-Hecke algebra. If we specialize $\beta = 0$ in stead, we get

$$
T_i = \frac{1 - s_i}{\alpha_i}, \qquad \lim_{\beta \to 0} \frac{X^{\lambda} - 1}{\beta} = x_{\lambda} = \text{mult by } \lambda.
$$

The operator is the BGG Demazure operator. The relations are

$$
T_i^2 = 0, \qquad x_{\lambda} - x_{\mu} = x_{\lambda - \mu}
$$

$$
T_i x_{\lambda} - x_{s_i \lambda} T_i = \langle \alpha_i^{\vee}, \lambda \rangle.
$$

Note that by induction, it is not hard to prove

$$
T_w x_\lambda = x_{w\lambda} T_w + \sum_{\substack{\alpha > 0, w = ur_\alpha \\ \ell(w) = \ell(u) + 1}} \langle \alpha^\vee, \lambda \rangle T_u.
$$

Graded Hecke algebra. Let us take $u = e^{-\beta}$, and $v = 1$. We have

$$
T_i = e^{-\beta} s_i + (e^{-\beta} - 1) \frac{s_i - 1}{e^{\beta \alpha_i} - 1}
$$

.

Let $\beta \to 0$, we get

$$
T_i = s_i + \frac{1 - s_i}{\alpha_i},
$$
 $\lim_{\beta \to 0} \frac{X^{\lambda} - 1}{e^{-\beta} - 1} = x_{\lambda} = \text{mult by } \lambda.$

This operator appears in the study of homology of Springer resolution. The relations are

$$
T_i^2 = 1, \qquad x_{\lambda} - x_{\mu} = x_{\lambda - \mu}
$$

$$
T_i x_{\lambda} - x_{s_i \lambda} T_i = \langle \alpha_i^{\vee}, \lambda \rangle.
$$

By induction, it is not hard to prove

$$
T_w x_\lambda = x_{w\lambda} T_w + \sum_{\substack{\alpha > 0, w = ur_\alpha \\ \ell(w) \ge \ell(u) + 1}} \langle \alpha^\vee, \lambda \rangle T_u.
$$

Note that the sum is over $Inv(w) = {\alpha > 0 : w\alpha < 0}$. Moreover, we can rewrite $T_u = T_w T_{r_\alpha}$.

5.2. **Degeneration of DAHA.** Recall that a half of $H_{q,t}(W)$ is $\widehat{H}_{q,t}(W)$ and another half is $H_{q,t}(W^{\vee})$. We can degenerate both of them.

Double affine Weyl group. We degenerate

 $\widehat{H}_{a,t}(W) \longrightarrow \text{Group algebra},$ $\hat{H}_{q,t}(W^{\vee}) \longrightarrow$ Group algebra.

In this case, we have

$$
Y^{\mu}X^{\lambda} = \mathbf{q}^{-\langle \mu, \lambda \rangle}X^{\lambda}Y^{\mu}.
$$

Actually, we can view Y^{μ} as the q-difference operator

$$
e^{\lambda} \longmapsto \boldsymbol{q}^{-\langle \lambda,\mu \rangle} e^{\lambda}.
$$

Trigonometric degeneration. We degenerate

$$
H_{q,t}(W) \longrightarrow \text{Group algebra},
$$

 $\widehat{H}_{q,t}(W^{\vee}) \longrightarrow \text{Degenerate Hecke algebra}.$

Let us denote $\hbar = x_{\delta}$. Then

$$
Y^{\mu}x_{\lambda} = (x_{\lambda} - \hbar \langle \lambda, \mu \rangle)Y^{\mu} + \sum_{\substack{\alpha > 0 \\ 0 \le k < \langle \alpha^{\vee}, \mu \rangle}} \langle \lambda, \alpha \rangle Y^{\mu}T_{r_{\alpha+k\delta}}
$$

= $(x_{\lambda} - \hbar \langle \lambda, \mu \rangle)Y^{\mu} + \sum_{\alpha > 0} \langle \lambda, \alpha \rangle Y^{\mu} \frac{1 - Y^{-\langle \alpha^{\vee}, \mu \rangle \alpha_{i}^{\vee}}}{1 - Y^{-\alpha_{i}^{\vee}}}T_{r_{\alpha}}$
= $(x_{\lambda} - \hbar \langle \lambda, \mu \rangle)Y^{\mu} + \sum_{\alpha > 0} \langle \lambda, \alpha \rangle \frac{Y^{\mu} - Y^{r_{\alpha} \mu}}{1 - Y^{-\alpha_{i}^{\vee}}}T_{r_{\alpha}}.$

Thus

$$
x_{\lambda}Y^{\mu} = Y^{\mu}x_{\lambda} - \hbar \langle \lambda, \mu \rangle Y^{\mu} - \sum_{\alpha > 0} \langle \lambda, \alpha \rangle \frac{Y^{\mu} - Y^{r_{\alpha} \mu}}{1 - Y^{-\alpha_{i}^{\vee}}} T_{r_{\alpha}}.
$$

Now let us consider

$$
\widehat{H}_{q,t}(W) \longrightarrow \text{Degenerate Hecke algebra,}
$$

$$
\widehat{H}_{q,t}(W^{\vee}) \longrightarrow \text{Group algebra.}
$$

We have

$$
y_{\mu}X^{\lambda} = X^{\lambda}y_{\mu} + \hbar \langle \lambda, \mu \rangle X^{\lambda} - \sum_{\alpha > 0} \langle \mu, \alpha \rangle \frac{X^{\lambda} - X^{r_{\alpha} \lambda}}{1 - X^{-\alpha_i}} T_{r_{\alpha}}.
$$

Recall that X^{λ} acts by product with e^{λ} ; $T_{r_{\alpha}}$ acts by r_{α} . In this case, y_{λ} is given by the *trigonometric Dunkl operator*

$$
y_{\lambda}f = \hbar \partial_{\mu}f - \sum_{\alpha > 0} \langle \mu, \alpha \rangle \frac{f - r_{\alpha}f}{1 - e^{-\alpha}}.
$$

Let us explain ∂_{μ} .

• Let us denote the differential operator,

$$
(\partial_{\mu}f)(x) = \lim_{t \to 0} \frac{f(x + \mu t) - f(x)}{t}.
$$

Note that $f \in R$ are viewed as function over t, say e^{λ} are viewed as $x \mapsto e^{\langle \lambda, x \rangle}$. For example, $\partial_{\mu} e^{\lambda} = \langle \mu, \lambda \rangle e^{\lambda}$. We have Leibiniz rule

$$
\partial_{\mu}(fg) = (\partial_{\mu}f)g + f(\partial_{\mu}g).
$$

In particular,

$$
\hbar \partial_{\mu} X^{\lambda} = X^{\lambda} \hbar \partial_{\mu} + \hbar \langle \lambda, \mu \rangle e^{\lambda}.
$$

• Let us denote the operator

$$
G_{\alpha}f = \frac{f - r_{\alpha}f}{1 - e^{-\alpha}}.
$$

Then we can check directly that

$$
G_{\alpha}(fg) = \frac{fg - (r_{\alpha}f)(r_{\alpha}g)}{1 - e^{-\alpha}}
$$

=
$$
\frac{f(r_{\alpha}g) - (r_{\alpha}f)(r_{\alpha}g)}{1 - e^{-\alpha}} + \frac{fg - f(r_{\alpha}g)}{1 - e^{-\alpha}}
$$

=
$$
(G_{\alpha}f)(r_{\alpha}g) + f(G_{\alpha}g).
$$

In particular,

$$
G_{\alpha}X^{\lambda} - X^{\lambda}G_{\alpha} = \frac{X^{\lambda} - X^{r_{\alpha}\lambda}}{1 - X^{-\alpha}}T_{r_{\alpha}}
$$

From the above discussion, y_{λ} is given by the operator above.

Rational degeneration. Now let us consider

$$
\hat{H}_{q,t}(W) \longrightarrow \text{Degenerate Hecke algebra} \n\hat{H}_{q,t}(W^{\vee}) \longrightarrow \text{Degenerate group algebra}.
$$

It can be computed by taking limit above,

$$
y_{\mu}x_{\lambda} = x_{\lambda}y_{\mu} + \hbar \langle \lambda, \mu \rangle - \sum_{\alpha > 0} \langle \mu, \alpha \rangle \frac{x_{\lambda} - x_{r_{\alpha}\lambda}}{x_{\alpha_i}} r_{\alpha}
$$

$$
= x_{\lambda}y_{\mu} + \hbar \langle \lambda, \mu \rangle - \sum_{\alpha > 0} \langle \mu, \alpha \rangle \langle \lambda, \alpha^{\vee} \rangle r_{\alpha}.
$$

That is,

$$
[y_{\mu}, x_{\lambda}] = \hbar \langle \lambda, \nu \rangle - \sum_{\alpha > 0} \langle \mu, \alpha \rangle \langle \lambda, \alpha^{\vee} \rangle r_{\alpha}.
$$

Moreover, y_{μ} is given by the *rational Dunkl operator*

$$
y_{\mu}f = \hbar \partial_{\mu}f - \sum_{\alpha > 0} \langle \lambda, \alpha \rangle \frac{f - r_{\alpha}f}{\alpha}.
$$

References.

[Che] Double Affine Hecke Algebras by I Cherednik.

6. MACDONALD FUNCTIONS

6.1. **Symmetric functions.** In type A, the Weyl group $W = S_n$, we should deal with

$$
R^W = \mathbb{Q}[z_1^{\pm 1}, \dots, z_n^{\pm 1}]^{\mathcal{S}_n}.
$$

We have a smaller subring

$$
\Lambda_n = \mathbb{Q}[z_1,\ldots,z_n]^{S_n}
$$
 = symmetric functions.

We define

$$
\Lambda = \underleftarrow{\lim}[\cdots \stackrel{z_n=0}{\longleftarrow} \Lambda_n \stackrel{z_{n+1}=0}{\longleftarrow} \cdots].
$$

Each element of Λ can be viewed as a function over the space

$$
\{(z_i)_{i=0}^{\infty} : z_i = 0 \text{ for almost all } i\}
$$

and thus is called a symmetric function. Recall the following functions:

ial $\rm{intions};$

wer sum:

ary netions;

ogeneous ctions.

Note that

$$
\Lambda = \mathbb{Q}[e_1, e_2, \dots] = \mathbb{Q}[h_1, h_2, \dots] = \mathbb{Q}[p_1, p_2, \dots].
$$

Let us include $q, t: \Lambda_{q,t} = \mathbb{Q}_{q,t} \otimes \Lambda$.

6.2. Plethysm. Let us define plethysm. Roughly speaking, plethysm is a notation for generalized substitution, i.e. for $f \in \Lambda_{q,t}$, we can write

$$
f(\Box, \diamondsuit, \heartsuit, \triangle, \cdots) = f[\Box + \diamondsuit + \heartsuit + \triangle + \cdots].
$$

Since f is symmetric, the order does not matter. For example,

 $f[2x + y + 4] = f(x, x, y, 1, 1, 1, 1, 0, 0, \cdots).$

To define it properly, we note that

$$
p_r(\Box, \Diamond, \heartsuit, \triangle, \cdots) = \Box^r + \Diamond^r + \heartsuit^r + \triangle^r + \cdots
$$

=
$$
(\Box + \Diamond + \heartsuit + \triangle + \cdots)|_{\Box^r \rightarrow \Box^r}.
$$

Now we give the strict definition.

For $f, A \in \Lambda_{\mathbf{q},\mathbf{t}}$, we define $f \mapsto f[A]$ to be the unique map $\Lambda_{\mathbf{q},\mathbf{t}} \to \Lambda_{\mathbf{q},\mathbf{t}}$ with the following preperties

(A)
$$
(cf + gh)[A] = cf[A] + g[A]h[A]
$$
 for $c \in \mathbb{Q}_{q,t}$;

(P) $p_r[A] = A|_{z_i \mapsto z_i^r, q \mapsto q^r, t \mapsto t^r}$ for any $r \in \mathbb{Z}_{>0}$.

That is $f \mapsto f[A]$ is an $\mathbb{Q}_{q,t}$ -algebra homomorphism.

In general, if $A = A(z, y, \mathbf{q}, x, \ldots)$ is any function and $f = f(z, y, \mathbf{q}, x, \cdots)$ is any function symmetric in z, we define $f[A]$ by

(A)
$$
(cf + gh)[A] = cf[A] + g[A]h[A]
$$
, where *c* does not contain *z*;
(P) $p_r[A] = A(z^r, y^2, \mathbf{q}^r, x^r, \ldots).$

Note that under this notation, z is the special in the condition (A) .

Let us denote

$$
Z=p_1(z)=z_1+z_2+\cdots.
$$

Then clearly, $Z[f] = f$ by (P). We actually have

$$
f[Z] = f, \quad \text{since} \begin{cases} \text{(P)} & p_r[Z] = (z_1 + z_2 + \cdots)|_{z_i \mapsto z_i^r, q \mapsto q^r, t \mapsto t^r} \\ & = z_1^r + z_2^r + \cdots = p_r. \\ \text{(A)} & f \mapsto f \text{ is an algebra homomorphism} \end{cases}
$$

Let us give some examples to see the flavor of plethysm.

Example 1. For any f ,

$$
f[p_k] = f|_{z_i \mapsto z_i^k}.
$$

Since

(A) $f \mapsto \text{RHS}$ is an algebra homomorphism

(P)
$$
p_r[p_k] = (z_1^k + z_2^k + \cdots)|_{z_i \mapsto z_i^r, q \mapsto q^r, t \mapsto t^r}
$$

\t\t\t $= z_1^{kr} + z_2^{kr} + \cdots$
\t\t\t $= (z_1^r + z_2^r + \cdots)|_{z_i \mapsto z_i^k} =$ RHS when $f = p_r$.

Compare with:

$$
p_k[f] = f|_{x_i \mapsto x_i^k, \mathbf{q} \mapsto \mathbf{q}^k, \mathbf{t} \mapsto \mathbf{t}^k}.
$$

We remind this is the property (P). They coincides when $f \in \Lambda$ i.e. f only involving x_1, x_2, \ldots

Example 2. For any f ,

$$
f[x_1+\ldots+x_n]=f(x_1,\cdots,x_n,0,\cdots).
$$

Here x_1, \ldots, x_n are viewed as variables, by default. Since

(A) $f \mapsto \text{RHS}$ is an algebra homomorphism

(P) LHS =
$$
(x_1 + \cdots + x_n)|_{x_i \mapsto x_i^r}
$$

= $z_1^r + \cdots + z_n^r$ = RHS when $f = p_r$.

Example 3. Recall that the coproduct $\Lambda \to \Lambda \otimes \Lambda$ is defined as follows. We can always write

$$
f(xy) := f(x_1, x_2, \dots, y_1, y_2, \dots)
$$

= $\sum f_1(x_1, x_2, \dots) f_2(y_1, y_2, \dots)$

Note that the substitution makes sense by picking a bijection $\mathbb{Z}_{>0}$ between $\mathbb{Z}_{>0} \sqcup \mathbb{Z}_{>0}$. Then we define $\Delta f = \sum f_1 \otimes f_2$. Following the same principle as above examples, we have

$$
f[X + Y] = f(x_1, x_2, \dots, y_1, y_2, \dots)
$$

= $\sum f_1[X] f_2[Y] = \sum f_1(x_1, x_2, \dots) f_2(y_1, y_2, \dots),$

where $X = x_1 + x_2 + \cdots$, $Y + y_1 + y_2 + \cdots$.

Example 4. Much generally, if we can expand $A = \sum_a c_a x^a$ with $c_a \in \mathbb{Z}_{>0}$, then

$$
f[A] = f(\cdots, \overbrace{x^a, \ldots, x^a}^{c_a}, \cdots)
$$

the substitution of f by the multiset $[A]$ such that multiplicity of x^a is c_a . Since

(A) $f \mapsto \text{RHS}$ is an algebra homomorphism

(P) LHS =
$$
\left(\sum c_a x^a\right)|_{x_i \mapsto x_i^r} = \sum c_a x^{ra}
$$

= $\cdots + x^{ar} + \cdots + x^{ar} + \cdots =$ RHS when $f = p_r$.

We basically achieve the goal in the motivation. For our purpose, we need to make sense of "substitution of negative many variables", e.g. $f[x - y]$. We first $f[-Y]$.

Example 5. Note that the power sum p_r is very special since

$$
p_r[X \pm Y] = p_r[X] \pm p_r[Y].
$$

$$
p_r[XY] = p_r[X]p_r[Y].
$$

Both of them can be checked directly by (P). In particular (or direct computation),

$$
p_r[-Z] = (-z_1 - z_2 - \cdots)|_{z_i \mapsto z_i^r, q \mapsto q^r, t \mapsto t^r}
$$

= $-z_1^r - z_2^r - \cdots = -p_r.$

Example 6. Let

$$
\Omega := \prod_{i} \frac{1}{1 - z_i} = 1 + h_1 + h_2 + \cdots
$$

$$
= \exp (p_1 + \frac{1}{2}p_2 + \frac{1}{3}p_3 + \cdots).
$$

We remark that even the sum is infinite, but we understand Ω as a formal sum of each degree component, which of them is in Λ . Note that by (A)

$$
\Omega[A] = 1 + h_1[A] + h_2[A] + h_3[A] + \cdots
$$

= exp (p₁[A] + $\frac{1}{2}$ p₂[A] + $\frac{1}{3}$ p₃[A] + \cdots).

Then

$$
\Omega[-Z] = \exp(-p_1 - \frac{1}{2}p_2 - \frac{1}{3}p_3 - \dots) = \Omega^{-1}
$$

=
$$
\prod_i (1 - z_i) = 1 - e_1 + e_2 - \dots
$$

This shows $h_r[-Z] = (-1)^r e_r = e_r(-z_1, -z_2, \ldots).$

Example 7. Denote $\omega : \Lambda \to \Lambda$ the ω -involution. It is an algebra homomorphism given by $p_r \leftrightarrow -(-1)^r p_r$. It is also characterized by $h_r \leftrightarrow e_r$. Then by the above computation, we have

$$
f[-Z]=(\omega f)(-z_1,-z_2,\ldots).
$$

Recall that $\omega s_{\lambda} = s_{\lambda'}$ for Schur functions.

Now we can compute $f[X - Y]$. This follows from a more general associativity.

Example 8. We have associativity

$$
f[g[A]] = (f[g])[A].
$$

Since:

(A) $f \mapsto LHS$ or RHS are both algebra homomorphism

(P) LHS =
$$
p_r[g[A]] = g[A]|_{7\mapsto ?^r}
$$

RHS = $(p_r[g])[A] = (g|_{7\mapsto ?^r})[A]$ when $f = p_r$.

Note that $? \mapsto ?^r$ is a ring homomorphism but in general not linear:

$$
(cf+gh)|_{? \mapsto ?^r} = (c|_{? \mapsto ?^r})(f|_{? \mapsto ?^r}) + (g|_{? \mapsto ?^r})(h|_{? \mapsto ?^r})
$$

$$
\neq c(f|_{? \mapsto ?^r}) + (g|_{? \mapsto ?^r})(h|_{? \mapsto ?^r}).
$$

As c would contain variables other than z. Therefore, we need to check two cases, $q = p_k$ and $q = c$ for c not relating to z. When $q = p_k$,

LHS =
$$
p_k[A]|_{\gamma \mapsto \gamma r} = (A|_{\gamma \mapsto \gamma r})|_{\gamma \mapsto \gamma k} = A|_{\gamma \mapsto \gamma rk}
$$

RHS = $(p_k|_{\gamma \mapsto \gamma r})[A] = p_{kr}[A] = A|_{\gamma \mapsto \gamma rk}$.

When $q = c$,

LHS =
$$
c[A]|_{\tau \mapsto \tau^r} = c|_{\tau \mapsto \tau^r}
$$

RHS = $(c|_{\tau \mapsto \tau^r})[A] = c|_{\tau \mapsto \tau^r}$.

 $\text{So } I \text{ HS} = \text{RHS}.$

Example 9. Assume $\Delta f = \sum f_1 \otimes f_2$, then

$$
f[X - Y] = \sum f_1[X]f_2[-Y]
$$

= $\sum f_1(x_1, x_2,...)(\omega f_2)(-y_1, -y_2,...).$

Of course, this can be checked directly by setting $f = p_r$. But let us mention the following proof. We know

$$
f[X+Y] = \sum f_1[X] f_2[Y],
$$

equivalently,

$$
f[X+Z] = \sum f_1[X]f_2.
$$

We apply $[-Y]$ on both sides, we get

$$
f[X - Y] = f[(X + Z)[-Y]] = \sum f_1[X]f_2[-Y].
$$

This makes sense of "replacing Y by $-Y$ ".

Forget the next sentence if it looks confusing. Theoretically speaking, plethysm should be denoted by $f[Z \mapsto A]$, and "replacing Y by $-Y$ " should be denoted by $f[Y] \mapsto f[Y \mapsto -Y]$.

Example 10. More generally, if we can expand $A = \sum_a c_a x^a$, then

$$
f[A] = \sum f_1(\cdots, x^a, \ldots, x^a, \cdots)(\omega f_2)(\cdots, -x^a, \ldots, -x^a, \cdots).
$$

Let $A = A^+ - A^-$ in the obvious sense. Denote $(\omega f_2)(-z_1, -z_2, \ldots)$ f'_2 .

$$
f[X - Y] = \sum f_1[X]f'_2[Y]
$$

\n
$$
\iff f[Z - Y] = \sum f_1[Z]f'_2[Y]
$$

\n
$$
\iff f[A^+ - Y] = \sum f_1[A^+]f'_2[Y]
$$

\n
$$
\iff f[A^+ - Z] = \sum f_1[A^+]f'_2[Z]
$$

\n
$$
\iff f[A] = \sum f_1[A^+]f'_2[A^-].
$$

Example 11. It follows from the computation that

$$
\Omega[X+Y] = \exp (p_1[X+Y] + \frac{1}{2}p_2[X+Y] + \frac{1}{3}p_3[X+Y] + \cdots)
$$

=
$$
\exp ((p_1[X] + p_1[Y]) + \frac{1}{2}(p_2[X] + p_2[Y]) + \cdots)
$$

=
$$
\Omega[X]\Omega[Y]
$$

and similarly

$$
\Omega[X - Y] = \exp (p_1[X - Y] + \frac{1}{2}p_2[X - Y] + \frac{1}{3}p_3[X - Y] + \cdots)
$$

=
$$
\exp ((p_1[X] - p_1[Y]) + \frac{1}{2}(p_2[X] - p_2[Y]) + \cdots)
$$

=
$$
\Omega[X]/\Omega[Y].
$$

We thus have

$$
\Omega[A] = \prod_a \frac{1}{(1 - x^a)^{c_a}},
$$

if we can expand $A = \sum_a c_a x^a$.

Example 12. Let us finally mention more useful computation.

$$
\Omega[XY] = \prod_{i,j} \frac{1}{1 - x_i y_j}.
$$

$$
\Omega[X \frac{1}{1 - q}] = \prod_{i} \prod_{k \ge 0} \frac{1}{1 - q^k x_i}.
$$

Note that

$$
f[X_{\frac{1}{1-q}}] = f[X(1+q+q^{2}+\cdots)]
$$

= $f(x_{1}, x_{2}, \ldots, qx_{1}, qx_{2}, \ldots, q^{2}x_{1}, q^{2}x_{2}, \ldots, \ldots)$
= $f[XY]|_{y_{i}\mapsto q^{i}}.$

But since we expand $\frac{1}{1-q}$ with $|q| < 1$, it would be a few words to say. The result of $f\left[Z\frac{1}{1-z}\right]$ $\frac{1}{1-q}$ must be with rational coefficients in q . It gives the same answer as that over the ring of power series, this proves the validity of the expansion.

$$
\Omega[X(1-\mathbf{t})] = \Omega[X(1-\mathbf{t})] - \Omega[\mathbf{t}X] = \prod_{i} \frac{1-\mathbf{t}x_i}{1-x_i}.
$$

$$
\Omega\big[X\frac{1-t}{1-q}\big]=\prod_i\prod_{k\geq 0}\frac{1-tq^kx_i}{1-q^kx_i}.
$$

6.3. Macdonald functions. Recall the Hall inner product $\langle \cdot, \cdot \rangle$ is given by $\langle s_{\lambda}, s_{\mu} \rangle = \mathbf{1}_{\lambda=\mu}$. The kernel of the inner product is

$$
\sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y) = \prod_{i,j} \frac{1}{1 - x_i y_j} = \Omega[XY].
$$

Let us denote for partition λ

$$
p_{\lambda} := p_1^{m_1} p_2^{m_2} \cdots, \qquad z_{\lambda} = 1^{m_1} m_1! 2^{m_2} m_2! \cdots
$$

for $m_i = #\{j : \lambda_j = i\}$. Recall

$$
\Omega = \exp (p_1 + \frac{1}{2}p_2 + \frac{1}{3}p_3 + \cdots)
$$

= $\exp(p_1) \exp (\frac{p_2}{2}) \exp (\frac{p_3}{3}) \cdots = \sum_{\lambda} \frac{1}{z_{\lambda}} p_{\lambda}.$

Since $p_{\lambda}[XY] = p_{\lambda}[X]p_{\lambda}[Y], \ \Omega[XY] = \sum_{\lambda}$ 1 $\frac{1}{z_{\lambda}}p_{\lambda}(x)p_{\lambda}(y)$. So $\langle \cdot, \cdot \rangle$ is characterized by

$$
\langle p_\lambda, p_\mu \rangle = \mathbf{1}_{\lambda = \mu} z_\lambda.
$$

Let us equip $\Lambda_{a,t}$ a new inner product

$$
\langle f,g\rangle_{\mathbf{q},\mathbf{t}} := \langle f,g\big[Z\frac{1-\mathbf{q}}{1-\mathbf{t}}\big]\rangle.
$$

Then the kernel is

$$
\Omega\big[XY_{1-q}^{\underline{1-t}}\big] = \prod_{i,j} \prod_{k\geq 0} \frac{1 - tq^k x_i y_j}{1 - q^k x_i y_j}
$$

and is characterized by

$$
\langle p_\lambda, p_\mu \rangle_{\bm{q},\bm{t}} = \bm{1}_{\lambda = \mu} z_\lambda(\bm{q},\bm{t})
$$

where

$$
z_{\lambda}(\boldsymbol{q},\boldsymbol{t})=p_{\lambda} \left[\frac{1-q}{1-t}\right]=\left(\frac{1-q}{1-t}\right)^{m_1}\left(\frac{1-q^2}{1-t^2}\right)^{m_2}\cdots.
$$

We define *Macdonald functions* $\{P_{\lambda}\}_{\lambda} \subset \Lambda_{q,t}$ by

- (1) $P_{\lambda} = m_{\lambda} +$ (lower terms);
- (2) $\langle P_{\lambda}, P_{\mu} \rangle_{\boldsymbol{q},t} = 0$ for $\lambda \neq \mu$.

This definition is actually compatible with the definition of Macdonald polynomials in type A.

7. Difference operators

Now let us restrict to type A. Now the Weyl group $W = S_n$. The convention of the root system is weird:

$$
P = P^{\vee} = \{(x_1, ..., x_n) \in \mathbb{Z}^n\} / \mathbb{Z}(1, ..., 1)
$$

\n
$$
\uparrow \qquad \uparrow
$$

\n
$$
\mathbb{Z}^n = \mathbb{Z}^n
$$

\n
$$
Q = Q^{\vee} = \{(x_1, ..., x_n) \in \mathbb{Z}^n : x_1 + \dots + x_n = 0\}.
$$

The identification is

$$
\widehat{W}_e = \widetilde{S}_n / \langle t_{(1,\dots,1)} \rangle, \quad \text{recall: } t_{(1,\dots,1)}(a) = a + n.
$$

\n
$$
\widetilde{S}_n = \{\text{bijection } f : \mathbb{Z} \to \mathbb{Z} : f(a+n) = f(a) + n \}
$$

\n
$$
\widehat{W} = \{ f \in \widetilde{S}_n : f(1) + \dots + f(n) = 0 \}
$$

The action is given by

$$
wt_{\lambda}(i) = w(i) + n\lambda_i, \qquad i = 1, 2, \ldots, n.
$$

We will use the Hecke algebra for \tilde{S}_n .

7.1. Diagramatics. We denote

$$
H_w = \boldsymbol{t}^{\ell(w)/2} T_w.
$$

The Hecke algebra \widehat{H}_n can be defined by

- $(H_i t^{1/2})(H_i + t^{1/2}) = 0$ for all $i \in \mathbb{Z}/n$;
- $H_i H_j = H_j H_i$ for $j \neq i-1, i, i+1$ and $H_i H_{i+1} H_i = H_{i+1} H_i H_{i+1};$
- $\omega H_i \omega^{-1} = H_{i-1}.$

Note that $\hat{H}_{t}(W) = \hat{H}_{n}/\langle \omega^{n} = 1 \rangle$. It has Bernstein's presentation

- $(H_i t^{1/2})(H_i + t^{1/2}) = 0$ for $1 \le i \le n 1$;
- $H_i H_j = H_j H_i$ for $i \neq i-1, i, i+1$ and $H_i H_{i+1} H_i = H_{i+1} H_i H_{i+1};$ • $Y_i Y_j = Y_j Y_i;$
- $H_i Y_j = Y_j H_i$ for $j \neq i, i + 1$ and $H_i^{-1} Y_i H_i^{-1} = Y_{i+1}$.

where

$$
Y_i = H_i \cdots H_{n-1} \omega H_1^{-1} \cdots H_{i-1}^{-1}.
$$

We can use a diagram on a cylinder to illustrate them

$$
H_i = \begin{bmatrix} \cdots & \nearrow & \cdots \\ \cdots & \nearrow & \cdots \end{bmatrix} ,
$$

$$
\omega = \begin{bmatrix} \searrow & \searrow & \searrow \\ \searrow & \searrow &
$$

For example, when $n = 3$,

$$
\omega H_2 \omega^{-1} = \begin{cases} \sum_{i=1}^{N} A_i = \sum_{i=1}^{N} A_i = H_1. \\ H_2 \omega H_1^{-1} = \sum_{i=1}^{N} A_i = \frac{1}{N} - \frac{1}{N} - H_2. \end{cases}
$$

$$
\omega Y_2 \omega^{-1} = \frac{1}{N} \sum_{i=1}^{N} A_i = \frac{1}{N} - \frac{1}{N} - H_1 = Y_1.
$$

$$
Y_1 Y_2 = \frac{1}{N} \frac{1}{N} = \frac{1}{N} - \frac{1}{N} - H_2 = Y_2 Y_1.
$$

7.2. **Computation.** Let us consider $\mathbb{Q}_{q,t}[x_1,\ldots,x_n]$. Note that our convention is $e^{\alpha_i} = x_i/x_{i+1}$. Then the Weyl group action is

$$
wt_{\lambda}:x_i \mapsto q^{-\lambda_i}x_{w(i)},
$$

\n
$$
\omega:x_n \mapsto x_{n-1} \mapsto \cdots \mapsto x_2 \mapsto x_1 \mapsto qx_n,
$$

\n
$$
s_0:x_1 \mapsto qx_n, x_n \mapsto q^{-1}x_1.
$$

Recall that

$$
\mathbb{Q}_{q,t}[Y_1^{\pm 1},\ldots,Y_n^{\pm 1}]^{\mathcal{S}_n} \quad \curvearrowright \quad \mathbb{Q}_{q,t}[x_1^{\pm 1},\ldots,x_n^{\pm 1}]^{\mathcal{S}_n}.
$$

We will see that

$$
\mathbb{Q}_{q,t}[Y_1,\ldots,Y_n]^{S_n} \quad \curvearrowright \quad \mathbb{Q}_{q,t}[x_1,\ldots,x_n]^{S_n} := \Lambda_n.
$$

Let us describe the action for the elementary symmetric polynomials $e_r(Y)$ in R^W .

Let $e = \frac{1}{s_{\rm m}}$ $\frac{1}{S_n(t)} \sum T_w$ be the symmetrizer. We have $H_i e = t^{1/2} e$. Step 1. We have the following identity

$$
eY_{n-r+1}\cdots Y_ne=\frac{\mathcal{S}_r(\boldsymbol{t})\mathcal{S}_{n-r}(\boldsymbol{t})}{\mathcal{S}_n(\boldsymbol{t})}\cdot e_r(Y)\cdot e\in \widehat{H}_n.
$$

Since the Bernstein representation on $\widehat{H}_n \otimes_{H_n} 1$ is faithful, we check this by considering it as an operator over $\mathbb{Q}_{q,t}[Y_1,\ldots,Y_n]$. Since e is a symmetrizer, we have

$$
e((Y_{n-r+1}\cdots Y_n)e f) = (eY_{n-r+1}\cdots Y_n)(ef).
$$

Note that, as an operator,

$$
ef = \frac{1}{\mathcal{S}_n(\boldsymbol{t})} \sum_{w \in \mathcal{S}_n} w \left(f \prod_{i < j} \frac{Y_j/Y_i - \boldsymbol{t}}{Y_j/Y_i - 1} \right).
$$

For example, when $n = 2$,

$$
ef = \frac{1}{1+t} \left(1 + ts_i f + (t-1) \frac{s_i f - 1}{Y_2/Y_1 - 1} \right)
$$

=
$$
\frac{1}{1+t} \left(\frac{Y_2/Y_1 - t}{Y_2/Y_1 - 1} f + \frac{tY_2/Y_1 - 1}{Y_2/Y_1 - 1} s_i f \right)
$$

=
$$
\frac{1}{1+t} \left(\frac{Y_2/Y_1 - t}{Y_2/Y_1 - 1} f + s_i \left(f \frac{tY_1/Y_2 - 1}{Y_1/Y_2 - 1} \right) \right).
$$

Since the r-th fundamental weight is minuscule, we get immediately that

$$
eY_{n-r+1}\cdots Y_n=\frac{1}{\mathcal{S}_n(\boldsymbol{t})}\sum_{w\in W}T_w(Y_{n-r+1}\cdots Y_n)=\frac{\mathcal{S}_r(\boldsymbol{t})\mathcal{S}_{n-r}(\boldsymbol{t})}{\mathcal{S}_n(\boldsymbol{t})}e_r(Y).
$$

For example, when $n = 2$,

$$
eY_2 = \frac{1}{1+t} \left(\frac{Y_2^2 - tY_1Y_2}{Y_2 - Y_1} + \frac{Y_1^2 - tY_1Y_2}{Y_1 - Y_2} \right)
$$

=
$$
\frac{1}{1+t} (Y_1 + Y_2).
$$

Step 2. We have the following identity

$$
eY_{n-r+1}\cdots Y_ne = \mathbf{t}^{-k(n-k)/2}e\omega^r e \in \widehat{H}_n.
$$

This can be proven quickly by diagrammatics.

This can also be proven by definition. For example, when $n = 3$

$$
eY_2Y_3e = e(H_2\omega H_1^{-1})(\omega H_1^{-1}H_2^{-1})e
$$

= $e(H_2\omega^2 H_2^{-1}H_1^{-1}H_2^{-1}))e$.

We thus have

$$
e_r(Y) \cdot e = e \cdot e_r(Y) \cdot e = \mathbf{t}^{-r(n-r)/2} \frac{\mathcal{S}_n(\mathbf{t})}{\mathcal{S}_r(\mathbf{t}) \mathcal{S}_{n-r}(\mathbf{t})} e^{\omega^r e} \in \widehat{H}_n.
$$

In general, such simplification can be done for any minuscule weight.

Let us consider the Cherednik representation. Let $f \in \mathbb{Q}_{q,t}[x_1,\ldots,x_n]^{S_n}$. Then

$$
w\omega^{r} f = wf(\boldsymbol{q}x_{n-r+1},\cdots,\boldsymbol{q}x_{n},x_{1},x_{2},\ldots)
$$

= $wf(x_{1},x_{2},\ldots,x_{n-r},\boldsymbol{q}x_{n-r+1},\cdots,\boldsymbol{q}x_{n})$
= $f(x_{w(1)},x_{w(2)},\ldots,x_{w(n-r)},\boldsymbol{q}x_{w(n-r+1)},\cdots,\boldsymbol{q}x_{w(n)})$
= $f(\boldsymbol{q}^{\theta_{1}}x_{1},\ldots,\boldsymbol{q}^{\theta_{n}}x_{n})$

where $\theta_i = 1$ if $i \in wI_0 = w\{n-r+1, \ldots, n\}$ and $\theta_i = 0$ otherwise. Now we can compute

$$
e\omega^{r} f = \frac{1}{\mathcal{S}_{n}(t)} \sum_{w \in \mathcal{S}_{n}} w\left(\omega^{r} f \prod_{i < j} \frac{x_{i}/x_{j} - t}{x_{i}/x_{j} - 1}\right)
$$
\n
$$
= \frac{\mathcal{S}_{r}(t)\mathcal{S}_{n-r}(t)}{\mathcal{S}_{n}(t)} \sum_{w \in \mathcal{S}_{n}/(\mathcal{S}_{n-r} \times \mathcal{S}_{r})} f|_{x_{i} \mapsto qx_{i}, \forall i \in wI_{0}} \prod_{\substack{1 \leq i \leq n-r \\ n-r < j \leq n}} \frac{x_{w(i)}/x_{w(j)} - t}{x_{w(i)}/x_{w(j)} - 1}
$$
\n
$$
= \frac{\mathcal{S}_{r}(t)\mathcal{S}_{n-r}(t)}{\mathcal{S}_{n}(t)} \sum_{I \in \binom{[n]}{r}} \left(\prod_{\substack{i \notin I \\ j \in I}} \frac{x_{i} - tx_{j}}{x_{i} - x_{j}}\right) f|_{x_{i} \mapsto qx_{i}, \forall i \in I}
$$
\n
$$
= \frac{\mathcal{S}_{r}(t)\mathcal{S}_{n-r}(t)}{\mathcal{S}_{n}(t)} \sum_{I \in \binom{[n]}{r}} \left(\prod_{\substack{i \in I \\ j \notin I}} \frac{tx_{i} - x_{j}}{x_{i} - x_{j}}\right) f|_{x_{i} \mapsto qx_{i}, \forall i \in I}.
$$

We can finally conclude that

$$
e \cdot e_r(Y) \cdot e = \mathbf{t}^{-r(n-r)/2} \sum_{I \in \binom{[n]}{r}} \left(\prod_{\substack{i \in I \\ j \notin I}} \frac{\mathbf{t}x_i - x_j}{x_i - x_j} \right) f|_{x_i \mapsto qx_i, \forall i \in I}
$$

$$
= \sum_{I \in \binom{[n]}{r}} \left(\prod_{\substack{i \in I \\ j \notin I}} \frac{\mathbf{t}^{1/2}x_i - \mathbf{t}^{-1/2}x_j}{x_i - x_j} \right) f|_{x_i \mapsto qx_i, \forall i \in I}.
$$

Thus this action gives the action of $e_r(Y)$ on $\mathbb{Q}_{q,t}[x_1,\ldots,x_n]^{S_n}$.

7.3. Compatibility. To check

$$
P_{\lambda}(x_1,\ldots,x_n,0,\ldots)
$$

is the symmetric Macdonald polynomial for the root system A_{n-1} , it suffices to check

$$
D^r: f \mapsto \sum_{I \in \binom{[n]}{r}} \left(\prod_{\substack{i \in I \\ j \notin I}} \frac{tx_i - x_j}{x_i - x_j} \right) f|_{x_i \mapsto qx_i, \forall i \in I}
$$

is unitary with respect to the truncation of inner product $\langle \cdot, \cdot \rangle_{q,t}$. It suffices to show for $X_n = x_1 + \cdots + x_n$ and $Y_n = x_n + \cdots + y_n$ that

$$
D_x^r \cdot \Omega\left[X_n Y_n \frac{1-t}{1-q}\right] = D_y^r \cdot \Omega\left[X_n Y_n \frac{1-t}{1-q}\right].
$$

Note that

$$
\Omega\big[X_n Y_n \frac{1-t}{1-q}\big] = \prod_{\substack{1 \le i,j \le n \\ 0 \le k}} \frac{1 - t q^k x_i y_j}{1 - q^k x_i y_j}.
$$

So

$$
\Omega\big[X_n Y_n \frac{1-t}{1-q}\big]|_{x_i \mapsto qx_i, i \in I} = \Omega\big[X_n Y_n \frac{1-t}{1-q}\big] \prod_{\substack{i \in I \\ 1 \le j \le n}} \frac{1-x_i y}{1-tx_i y}.
$$

So

$$
LHS = \Omega\left[X_n Y \frac{1-t}{1-q}\right]
$$
 (expression only depend on t).

Similarly,

$$
RHS = \Omega\big[X_n Y_{\frac{1-q}{q}}\big] \text{(expression only depend on } \boldsymbol{t}\text{)}.
$$

Thus it suffices to show when $q = t$, i.e. $\langle \cdot, \cdot \rangle_{q,t} = \langle \cdot, \cdot \rangle$. Then if we denote $\Delta = \prod_{i < j} (1 - x_j / x_i)$, we can rewrite

$$
\sum_{I \in \binom{[n]}{r}} \frac{1}{\Delta} (\Delta f)_{x_i \mapsto qx_i, i \in I} = n! \frac{1}{\Delta} \sum_{w \in W} (-1)^{\ell(w)} (\Delta f)_{x_i \mapsto qx_{w(i)}}.
$$

When $f = s_\lambda$, then each term Δs_λ gives a multiple of s_λ .

8. Origin of Plethysm

8.1. **K-theory.** Note that the topological K -group $K(X) = \mathbb{Z}\{\text{vector bundles over } X\}/\mathbb{Z}, \oplus = +$ $=\pi_0(X, BGL_{\infty}\times \mathbb{Z}).$

But let us use the more classic definition. That is, $K(X)$ is the Grothendieck group of

 $K^+(X) = \{$ vector bundles over $X\}/\sim$.

That is, the element in $K(X)$ is a formal difference $U - V$ for $U, V \in$ $K^+(X)$ with

$$
U - V = U' - V' \iff \begin{cases} U \oplus Y \cong U' \oplus Z \\ V \oplus Z \cong V' \oplus Y \end{cases}
$$
 for some $Y, Z \in K^+(X)$.

We can take Y and Z to be trivial bundles.

We would like to consider

$$
\operatorname{End}_{\text{set}}(K(-)) \stackrel{\text{Yoneda Lemma}}{\longrightarrow} K(BGL_{\infty} \times \mathbb{Z}) \supset \Lambda_{\mathbb{Z}}.
$$

Plethysm is the composition of this endomorphism ring.

Let us state it in a more concrete way. For a vector bundle V , we define

$$
\mathsf{S}_t V = \sum_{k=0}^{\infty} \mathbf{t}^k \mathsf{S}^k V \in K(X)[\![\mathbf{t}]\!],
$$

$$
\mathsf{\Lambda}_t V = \sum_{k=0}^{\infty} (-\mathbf{t})^k \mathsf{\Lambda}^k V \in K(X)[\![\mathbf{t}]\!].
$$

Note that

$$
S_t(U \oplus V) = (S_t U)(S_t V), \qquad \Lambda_t(U \oplus V) = (\Lambda_t U)(\Lambda_t V).
$$

This extends to an operator over $K(X)$. That is

$$
\mathsf{S}_{t}(U-V) := \tfrac{\mathsf{S}_{t}(U)}{\mathsf{S}_{t}(V)}, \qquad \mathsf{\Lambda}_{t}(U-V) := \tfrac{\mathsf{\Lambda}_{t}(U)}{\mathsf{\Lambda}_{t}(V)}.
$$

Note that these operators are not additive.

Now let us make it additive. To do this, we have to work over $K(X)_{\mathbb{O}}$. We have

$$
\ln(S_t(U \oplus V)) = \ln(S_t U) + \ln(S_t V),
$$

$$
\ln(\Lambda_t (U \oplus V)) = \ln(\Lambda_t U) + \ln(\Lambda_t V).
$$

Now we define Adams operation $\psi_r : K(X) \to K(X)_{\mathbb{Q}}$ by the coefficients of $\ln(S_t V)$:

$$
\ln(S_{t}V) = t\psi_{1}(V) + \frac{t^{2}}{2}\psi_{2}(V) + \frac{t^{3}}{3}\psi_{3}(V) + \cdots
$$

Actually, we have $-\ln(\Lambda_t V) = \ln(S_t V)$, but we will not use it. Note that

$$
\psi_r(U \oplus V) = \psi_r(U) + \psi(V).
$$

We extend $\psi_r : K(X)_{\mathbb{Q}} \to K(X)_{\mathbb{Q}}$ by linearity. Actually, if we expand ψ_r in terms of coefficients of S_t , it is not hard to see Adams operation is defined over $K(X)$.

Let us compute for line bundle L

$$
S_t L = 1 + Lt + L^{\otimes 2}t^2 + \dots = \frac{1}{1 - Lt}.
$$

$$
\ln(S_t L) = -\ln(1 - Lt) = Lt + L^{\otimes 2} \frac{t^2}{2} + L^{\otimes 3} \frac{t^3}{3} + \dots
$$

This shows

$$
\psi_r(L) = L^{\otimes r}.
$$

Now let us compute $\psi_r(U \otimes V)$. By splitting principle, we can assume U and V are both direct sums of line bundles. Then immediately, we have

$$
\psi_r(U \otimes V) = \psi_r(U)\psi_r(V).
$$

As a result, ψ_r is not only additive but also multiplicative. Similarly, using the splitting principle again, we have

$$
\psi_r(\psi_k(V)) = \psi_{rk}(V).
$$

Note that we can use $\Lambda_t V = \sum_{k=0}^{\infty} (-t)^k \Lambda^k V$. Then

$$
\ln(\Lambda_t V) = -t\phi_1(V) - \frac{t^2}{2}\phi_2(V) - \frac{t^3}{3}\phi_3(V) + \cdots.
$$

8.2. Character. Let us find the Adams operation in terms of characters. That is,

$$
K_G(\text{pt}) = \text{Rep}(G) \xrightarrow{\chi} \text{Fun}(G, \mathbb{C}^{\times}),
$$

where (*) is given by $V \mapsto \chi(V) = [g \mapsto \text{Tr}(g; V)]$. Actually, the case $G = GL_n$ and $V = \mathbb{C}^n$ is the universal case. The restriction to a

maximal torus is enough.

$$
\begin{array}{ccc}\n\mathbb{C}^n & \in & \operatorname{Rep}(T) \xrightarrow{\chi} \operatorname{Fun}(T, \mathbb{C}^\times) \\
\uparrow & & \downarrow \text{res} \\
\mathbb{C}^n & \in & \operatorname{Rep}(GL_n) \xrightarrow{\chi} \operatorname{Fun}(GL_n, \mathbb{C}^\times) \\
\downarrow & & \downarrow \text{res} \\
V & \in & \operatorname{Rep}(G) \xrightarrow{\chi} \operatorname{Fun}(G, \mathbb{C}^\times)\n\end{array}
$$

Thus finally, it suffices to deal with $G = GL_1$ and $V = \mathbb{C}$ whose character is id = $[z \mapsto z]$. Then direct computation shows

$$
\chi(\psi_r(V)) = [z \mapsto z^r].
$$

As a result, if we define for $\chi \in \text{Fun}(G,\mathbb{C}^{\times})$

$$
\psi_r(\chi):[z\mapsto \chi(z^r)]
$$

Then we have the following commutative diagram

$$
\operatorname{Rep}(G)_{\mathbb{Q}} \xrightarrow{\chi} \operatorname{Fun}(G, \mathbb{C}^{\times})
$$

$$
\psi_r \downarrow \qquad \psi_r \downarrow
$$

$$
\operatorname{Rep}(G)_{\mathbb{Q}} \xrightarrow{\chi} \operatorname{Fun}(G, \mathbb{C}^{\times}).
$$

8.3. Lambda-ring. A lambda ring is a commutative ring R with a family of operators λ^r for $r \in \mathbb{Z}_{\geq 0}$ with certain properties. Let R be a commutative algebra containing Q. Then lambda-ring can be equivalently defined by a family of ring homomorphisms $p_r : R \to R$ for $r \in \mathbb{Z}_{>0}$ with $p_1 = id$ and $p_r \circ p_k = p_{rk}$. We say $\varphi : R_1 \to R_2$ a lambdaring homomorphism if φ is a ring homomorphism and $\varphi \circ p_r = p_r \circ \varphi$.

For a lambda-ring R , we have a ring homomorphism

$$
\Lambda \longrightarrow \text{End}_{\text{set}}(R), \qquad \text{by} \quad p_r \longmapsto p_r.
$$

Namely, it is extended to Λ by

$$
(cf+gh)(x) = cf(x) + g(x)h(x).
$$

Note that

- if $\varphi \in \text{Hom}_{\lambda\text{-Ring}}(R_1, R_2)$, then $\varphi(f(x)) = f(\varphi(x))$ for any f, since we assume φ is a ring homomorphism.
- since $p_r \circ p_k = p_k \circ p_r$, we have $p_r \in \text{End}_{\lambda\text{-Ring}}(R)$ so that $p_r \circ f = f \circ p_r$ for any $f \in \Lambda$.

I claim that

$$
f \circ g = f[g] : K(X) \longrightarrow K(X).
$$

Firstly, by construction,

$$
f \mapsto \begin{cases} \text{LHS} = f \circ g \in \text{End}(R) \\ \text{RHS} = f[g] \in \Lambda \end{cases}
$$

are both algebra homomorphisms. Thus it suffices to check when $f =$ p_r . In this case,

$$
g \mapsto \begin{cases} \text{LHS} = \psi_r \circ g = g \circ \psi_r \in \text{End}(K(X)) \\ \text{RHS} = p_k[g] = g[p_k] \in \Lambda \end{cases}
$$

is also an algebra homomorphism.

Note that Λ itself is a lambda-ring with $p_k : A \mapsto p_k[A]$. We claim that

$$
(\Lambda, Z = p_1)
$$

is the universal lambda-ring in the following sense.

For any lambda-ring $R \supseteq \mathbb{Q}$ and any $x \in R$, there exists a unique lambda ring homomorphism φ : $\Lambda \to R$ such that $\varphi(Z) = x$. Z ∈ $\longmapsto x$ ∈ $\Lambda \longrightarrow R$

That is, for any $x \in R$, we define $\varphi : \Lambda \to R$ be $f \mapsto f(x)$. Since

$$
(p_r \circ \varphi)(f) = p_r(f(x)) = (p_r[f])(x) = (\varphi \circ p_r)[f],
$$

this is a lambda-ring homomorphism. Conversely, for any lambdaring homomorphism $\varphi : \Lambda \to R$, we take $x = \varphi(Z) \in R$. Then $\varphi(f) = \varphi(f[p_1]) = f\varphi(p_1) = f(x).$

For two lambda rings R_1, R_2 , their tensor product is naturally a lambda ring by

$$
p_k(x \otimes y) = p_k(x) \otimes p_k(y).
$$

Since $p_k(1) = 1$, the natural map $R_i \to R_1 \otimes R_2$ is lambda-ring homomorphism for $i = 1, 2$. It has the universal property

We claim if $f[X + Y] = \sum f_1[X]f_2[Y]$, then

$$
f(a+b) = \sum f_1(a)f_2(b).
$$

This follows directly from the universal property — we can replace X by a and Y by b . Namely, we have the following diagram

Similarly, if $f[XY] = \sum f_1[X]f_2[Y]$, then $f(ab) = \sum f_1(a)f_2(b)$.

8.4. **Return to K-theory.** Now, for $V \in K^+(X)$ or $V \in \text{Rep}(G)$,

$$
h_r(V) = \mathsf{S}^r V, \qquad e_r(V) = \mathsf{\Lambda}^r V
$$

from the construction:

$$
1 + h_1(V)\mathbf{t} + h_2(V)\mathbf{t}^2 + \cdots
$$

= $(1 + h_1 \mathbf{t} + h_2 \mathbf{t}^2 \cdots)(V)$
= $\exp\left(p_1 \mathbf{t} + p_2 \frac{\mathbf{t}^2}{2} + p_3 \frac{\mathbf{t}^3}{3} + \cdots\right)(V)$
= $\exp\left(p_1(V)\mathbf{t} + p_2(V)\frac{\mathbf{t}^2}{2} + p_3(V)\frac{\mathbf{t}^3}{3} + \cdots\right)$
= $1 + S^1(V)\mathbf{t} + S^2(V)\mathbf{t}^2 + \cdots$

Similar computation for $e_r(V)$. We also have $h_r(-V) = -(-1)^r e_r(V)$.

Recall that for any partition $\lambda \vdash n$, there is an idempotent $e_{\lambda} \in$ $\mathbb{Q}[\mathcal{S}_n]$, such that the irreducible representation of GL_m of highest weight λ is

$$
\mathbb{V}(\lambda) = e_{\lambda}(\mathbb{C}^m)^{\otimes n}.
$$

Here, if λ cannot be viewed as a weight of GL_m , i.e. the length of λ is more than m, we take the convention that $\mathbb{V}(\lambda) = 0$. We claim that for any $V \in K(X)$ or $\text{Rep}(G)$

$$
s_{\lambda}(V) = e_{\lambda}V^{\otimes n}.
$$

This is known as *Schur functor*. For example,

• when $\lambda = (1^r), e_\lambda = \sum_{w \in S_n} (-1)^{\ell(w)} w$ then $e_\lambda V^{\otimes n} = \Lambda^r V$; • when $\lambda = (r)$, $e_{\lambda} = \sum_{w \in S_n} w$ then $e_{\lambda} V^{\otimes n} = \mathsf{S}^r V$.

For any $V \in \text{Rep}(G)$ of dimension m, we define

$$
\varphi : \text{Rep}(GL_m) \longrightarrow \text{Rep}(G)
$$

by restriction. For any $V \in K(X)$ of rank m, we define

$$
\varphi(U) = \mathcal{F}_X(V) \times_{GL_m} U,
$$

where

$$
\mathcal{F}_X(V) = \{(x, v_1, \dots, v_m) : x \in X, \text{span}(v_1, \dots, v_m) = V_x\}.
$$

Since both construction is a functor, we have

$$
\varphi((\mathbb{C}^m)^{\otimes n})=V^{\otimes m},\qquad \varphi(e_\lambda(\mathbb{C}^m)^{\otimes n})=e_\lambda V^{\otimes m}.
$$

In particular, φ commutes with Λ^k thus is a lambda ring homomorphism.

So it reduces to check the universal case, i.e. when $V = \mathbb{C}^m$ \in $\text{Rep}(GL_m)$, this follows from the fact that the ring homomorphism $\Lambda \to \mathrm{Rep}(GL_m)$ sending $e_r \mapsto \Lambda^r \mathbb{C}^m$ sends s_λ to $\mathbb{V}(\lambda)$.

Remark. Note that it is not obvious that Λ^r extends to $K(X)_{\mathbb{Q}}$, the existence of the extension follows from the construction of Adams operators. Moreover, there is no direct meaning of e_r for any elements. For example,

$$
e_2(\frac{1}{2}V) = \left(\frac{p_1^2 - p_2}{2}\right)(\frac{1}{2}V) = \frac{p_1(\frac{1}{2}V)^2 - p_2(\frac{1}{2}V)}{2}
$$

=
$$
\frac{\frac{1}{4}p_1(V)^2 - \frac{1}{2}p_2(V)}{2} = -\frac{1}{8}p_1(V)^2 + \frac{1}{2}\frac{p_1(V)^2 - p_2(V)}{2}
$$

=
$$
-\frac{1}{8}V^{\otimes 2} + \frac{1}{2}\Lambda^2V.
$$

But if $V = 2U$, then

$$
-\frac{1}{8}V^{\otimes 2} + \frac{1}{2}\Lambda^2 V = -\frac{1}{2}U^{\otimes 2} + \frac{1}{2}(\Lambda^2 U + U \otimes U + \Lambda^2 U) = \Lambda^2 U.
$$

References.

- [Mac1] [Affine Hecke algebras and orthogonal polynomials](http://www.numdam.org/article/SB_1994-1995__37__189_0.pdf) (Bourbaki seminar), by I.G. Macdonald.
- [Mac2] Affine Hecke algebras and orthogonal polynomials (Cambridge University Press), by I.G. Macdonald.
- [Mac3] Symmetric functions and Hall polynomials (Oxford Science Publication), by I.G. Macdonald.
	- [Kir] [Lectures on the affine Hecke algebras and Macdonald conjec](https://arxiv.org/abs/math/9501219)[tures,](https://arxiv.org/abs/math/9501219) by A.A. Kirillov. Jr
	- [Hai] [Cherednik algebras, Macdonald polynomials and combinatorics,](https://math.berkeley.edu/~mhaiman/ftp/icm-2006/comb-mac-chered.pdf) by M. Haiman

9. Haiman Theory

9.1. Springer theory. Let $\mathcal{B} = G/B$ be the flag variety. Let

$$
\pi:T^*\mathcal B=\tilde{\mathcal N}\longrightarrow \mathcal N\subset \mathfrak{gl}_n
$$

be the Springer resolution of type A. For a nilpotent matrix of Jordan type $\lambda \vdash n$, we denote the Springer fibre by \mathcal{B}_{λ} . Let us consider

It was computed

$$
\mathrm{End}_{\mathbf{Perv}(\mathcal{N})}(\pi_*\mathbf{1}_{\tilde{\mathcal{N}}})=\mathbb{Q}[\mathcal{S}_n]
$$

thus the (co)homology of \mathcal{B}_{λ} has an \mathcal{S}_{n} action. Note that all representation of S_n are isomorphic to its dual, thus

$$
H^{\bullet}(\mathcal{B}_{\lambda}) \simeq H_{\bullet}(\mathcal{B}_{\lambda})
$$
 as \mathcal{S}_n -representations.

We will study the cohomology of \mathcal{B}_{λ} . We have (up to graded shifting) at the level of K-group

$$
\pi_*\mathbf{1}_{\tilde{\mathcal{N}}}=\sum_{\lambda\vdash n} \boldsymbol{t}^{\boldsymbol{\tau}} H^\bullet(\mathcal{B}_\lambda)\otimes \mathbf{1}_{\mathbb{O}_\lambda}\in K(\mathcal{S}_n\text{-Rep})\otimes K(\mathcal{N})[\boldsymbol{t}^{\pm 1}].
$$

Here $\mathbf{1}_{\mathbb{O}_{\lambda}} = i_1 \mathbf{1}_{\mathbb{O}_{\lambda}}$. By decomposition theorem, we also have

$$
\pi_*{\bf 1}_{\tilde{\mathcal{N}}}=\bigoplus_{\lambda\vdash n}H_{top}({\mathcal{B}}_\lambda)\otimes{\bf IC}_{{\mathbb O}_\lambda}.
$$

Here the top degree can be compute explicitly, it is

$$
n(\lambda) := \sum_{i \geq 1} (i-1)\lambda_i = \sum_{j \geq 1} {\lambda'_j \choose 2} = \langle \rho, w_0 \lambda \rangle.
$$

For example, for $n = 3$,

It was known that

$$
H^{n(\lambda)}(\mathcal{B}_{\lambda}) \simeq \mathbf{irr}_{\lambda}
$$
, as an \mathcal{S}_n -representation.

Later, we will see

 $H^{\bullet}(\mathcal{B}_{\lambda}) \simeq \text{Ind}_{\mathcal{S}_{\lambda}}^{\mathcal{S}_n}$ tri, as an \mathcal{S}_n -representation.

9.2. Lusztig embedding. Recall affine Grassmannian for GL_n is

$$
Gr = \left\{ \mathcal{O}\text{-lattices in } \mathcal{K}^{\oplus n} \right\} = G_{\mathcal{K}}/G_{\mathcal{O}}.
$$

Denote Λ_0 the standard lattice $\mathcal{O}^{\oplus n}$. Recall the Schubert cell

$$
\Sigma_{\lambda}^{\circ} = \left\{ \Lambda \subseteq \Lambda_0 : \Lambda_0/\Lambda \text{ has type } \lambda \right\} = G_{\mathcal{O}} t^{\lambda} \cdot \Lambda_0.
$$

A torsion $\mathcal{O}\text{-module}$ has type λ means it is isomorphic to $\mathcal{O}/t^{\lambda_1}\mathcal{O} \oplus$ $\mathcal{O}/t^{\lambda_2}\mathcal{O} \oplus \cdots$ for t the generator of the maximal ideal. Note that

$$
\Sigma_{(n)} = \overline{\Sigma_{(n)}^{\circ}} = \left\{ \Lambda \subseteq \Lambda_0 : \dim \Lambda / \Lambda_0 = n \right\}.
$$

Let us take $\mathcal{O} = \mathbb{C}[[t]]$ and $\mathcal{K} = \mathbb{C}((t))$. Let us define

$$
\iota: \mathcal{N} \longrightarrow \Sigma_{(n)}, \qquad A \longmapsto (t - A)\Lambda_0.
$$

Then we have

$$
(\Lambda_0/(t-A)\Lambda_0,t)\simeq (\mathbb{C}^n,A).
$$

This shows \mathbb{O}_{λ} is mapped into Σ°_{λ} . Not hard to show it is an embedding, and by dimension reason, it is open. See [Zhu, Example 2.1.8.] In this case, we get a linear map

$$
K(\Sigma_{(n)})\stackrel{\iota^!\iota^!\iota^*}{\longrightarrow} K(\mathcal{N}),\qquad \begin{cases} \mathbf{1}_{\Sigma^{\circ}_\lambda}\longmapsto \mathbf{1}_{\mathbb{O}_\lambda}\\ {\rm I}\mathbf{C}_{\Sigma^{\circ}_\lambda}\longmapsto {\rm I}\mathbf{C}_{\mathbb{O}_\lambda}.\end{cases}
$$

Recall that the character

$$
\begin{cases} \mathbf{1}_{\Sigma_{\lambda}^{\circ}} \longmapsto P_{\lambda}|_{t \mapsto t^{-1}} & \text{up to some power of } t \\ \mathbf{IC}_{\Sigma_{\lambda}^{\circ}} \longmapsto \chi_{\lambda} = s_{\lambda} \end{cases}
$$

Here P_{λ} is the Hall–Littlewood polynomial (i.e. Macdonald polynomial at $q = 0$) in *n* variables. It is not hard to see the the expansion of P_λ

to s_{λ} does not change if we understand them as symmetric functions. Then the identity

$$
\sum_{\lambda\vdash n} \mathbf{t}^{\tau} H^{\bullet}(\mathcal{B}_{\lambda}) \otimes \mathbf{1}_{\mathbb{O}_{\lambda}} = \sum_{\lambda\vdash n} H_{top}(\mathcal{B}_{\lambda}) \otimes \mathbf{IC}_{\mathbb{O}_{\lambda}} \in K(\mathcal{S}_n\text{-Rep}) \otimes K(\mathcal{N})
$$

reduces to

$$
\sum_{\lambda\vdash n} \mathbf{t}^{\mathfrak{p}} H^{\bullet}(\mathcal{B}_{\lambda}) P_{\lambda}|_{\mathbf{t}\mapsto\mathbf{t}^{-1}} = \sum_{\lambda\vdash n} H_{top}(\mathcal{B}_{\lambda}) \otimes s_{\lambda} \in K(\mathcal{S}_{n} \text{-Rep}) \otimes \Lambda_{\mathbf{t}}.
$$

By applying the Frobenius character, $irr_{\lambda} \mapsto s_{\lambda}$, we get

$$
\sum_{\lambda\vdash n}t^{\gamma}\left(\begin{array}{l}\text{F-char of} \\ H^{\bullet}(\mathcal{B}_{\lambda})\end{array}\right)\otimes P_{\lambda}|_{t\mapsto t^{-1}}=\sum_{\lambda\vdash n}s_{\lambda}\otimes s_{\lambda}\in\Lambda_{t}\otimes\Lambda_{t},
$$

That is

$$
\sum_{\lambda \vdash n} \mathbf{t}^{\mathsf{T}} \left(\begin{array}{c} \text{F-char of} \\ H^{\bullet}(\mathcal{B}_{\lambda}) \end{array} \right) [X] \, P_{\lambda} |_{\mathbf{t} \mapsto \mathbf{t}^{-1}} [Y] = \sum_{\lambda \vdash n} s_{\lambda} [X] s_{\lambda} [Y].
$$

The right hand side is $\Omega[XY]^{\text{deg}=n}$. This implies, under the Frobenius character,

$$
H^{\bullet}(\mathcal{B}_{\lambda}) \mapsto \boldsymbol{t}^{n(\lambda)} \left(\begin{array}{c} \text{dual basis of } P_{\lambda}|_{\boldsymbol{t} \mapsto \boldsymbol{t}^{-1}} \\ \text{under the Hall pairing} \end{array} \right).
$$

Let us have a quick look at the case $t = 1$, i.e. if forgetting the grading. Recall that $P_{\lambda}|_{t=1} = m_{\lambda}$. This tells the Frobenuis character of $H^{\bullet}(\mathcal{B}_{\lambda})$ is $h_{\lambda} = h_{\lambda_1} h_{\lambda_2} \cdots$, the same as $\text{Ind}_{\mathcal{S}_{\lambda}}^{\mathcal{S}_n}$ tri. So

$$
H^{n(\lambda)}(\mathcal{B}_{\lambda}) \simeq \mathbf{irr}_{\lambda}, \quad \text{as an } \mathcal{S}_{n}\text{-representation}.
$$

Now return to the graded version. Denote

$$
Q_{\lambda} = \frac{1}{\langle P_{\lambda}, P_{\lambda} \rangle_{t}} P_{\lambda}
$$
 dual HL polynomials
\n
$$
H_{\lambda} = Q_{\lambda} [Z \frac{1}{1-t}]
$$
 transformed HL polynomials
\n
$$
\tilde{H}_{\lambda} = t^{n(\lambda)} H_{\lambda} |_{t \mapsto t^{-1}}
$$
 cocharge variant of THLP

Since Q_{λ} is the dual basis of P_{λ} under $\langle \cdot, \cdot \rangle_{t}$, H_{λ} is the dual basis of P_{λ} under $\langle \cdot, \cdot \rangle$. As a result, $H_{\lambda}|_{t\mapsto t^{-1}}$ is the dual basis of $P_{\lambda}|_{t\mapsto t^{-1}}$ under $\langle \cdot, \cdot \rangle$. This implies

$$
H^{\bullet}(\mathcal{B}_{\lambda}) \longmapsto \left(\begin{array}{c} \text{F-char of} \\ H^{\bullet}(\mathcal{B}_{\lambda}) \end{array} \right) = \tilde{H}_{\lambda}.
$$

Note that \tilde{H}_{λ} can be characterized by

(1) $\langle s_{(n)}, H_{\mu} \rangle = 1$ for $n = |\mu|$. (2) $\widetilde{H}_{\mu}[Z] \in \text{span}(s_{\lambda} : \lambda \geq \mu)$ (3) $\widetilde{H}_{\mu}[Z(1-t)] \in \text{span}(s_{\lambda} : \lambda \geq \mu').$

The proof goes as follows:

(1) Since $H^{\bullet}(\mathcal{B}_{\mu}) \simeq \text{Ind}_{\mathcal{S}_{\mu}}^{\mathcal{S}_{n}}$ tri, the invariant $H^{\bullet}(\mathcal{B}_{\lambda})^{\mathcal{S}_{n}}$ has to be one-dimensional, thus it is $H^0(\mathcal{B}_\lambda)$.

- (2) This is a standard fact about $\text{Ind}_{\mathcal{S}_\mu}^{\mathcal{S}_n}$ tri.
- (3) comes from

$$
H_{\mu}[Z(1-\boldsymbol{t})] = Q_{\mu} = \frac{1}{\langle P_{\mu}, P_{\mu} \rangle_{\boldsymbol{t}}} P_{\mu} \in \text{span}(s_{\lambda}, \lambda \leq \mu).
$$

So

$$
\tilde{H}_{\mu}[Z(1-t)] = \tilde{H}_{\mu}[tZ(t^{-1}-1)] = t^{|\lambda|}\tilde{H}_{\mu}[-Z(1-t^{-1})]
$$
\n
$$
= \frac{t^{|\lambda|}t^{n(\lambda)}}{\langle P_{\mu}, P_{\mu}\rangle_t}P_{\mu}[-Z]\big|_{t\mapsto t^{-1}} \in \text{span}(s_{\lambda'}:\lambda \leq \mu).
$$

References.

- [Lus] Green polynomials and singularities of unipotent classes, by G. Lusztig.
- [Zhu] [An introduction to affine Grassmannians and geometric Satake](https://arxiv.org/abs/1603.05593) [equivalence,](https://arxiv.org/abs/1603.05593) by X. Zhu.
- [Hai] [Combinatorics, symmetric functions and Hilbert schemes,](https://math.berkeley.edu/~mhaiman/ftp/cdm/cdm.pdf) by M. Haiman.

9.3. Computation of Springer resolution. Let us describe the cohomology of \mathcal{B}_{λ} more explicitly. We can assume \mathcal{B}_{λ} has an action by torus T_{λ} . For example,

$$
\lambda = (2, 1) \rightsquigarrow \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \rightsquigarrow T_{\lambda} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x, y \in \mathbb{C}^* \right\}.
$$

Note that the rank of the torus has rank $\ell(\lambda)$ the number of parts of λ . Consider the following closed variety

$$
X_{\lambda} = \left\{ (\mathbf{t}, \mathbf{x}) : \begin{array}{c} \text{the coordinate of } \mathbf{x} \\ \text{has } \lambda_i \text{ many copies of } t_i \end{array} \right\} \subseteq \mathbb{C}^{\ell(\lambda)} \times \mathbb{C}^n.
$$

Then $\mathcal{O}(X_{\lambda}) = H_{T_{\lambda}}^{\bullet}(X_{\lambda})_{\mathbb{C}}$ with

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ functions $t_1, \ldots, t_{\ell(\lambda)}$ are equivariant parameters of T_λ , functions x_1, \ldots, x_n are restricted from full flag variety, grading is from the \mathbb{C}^{\times} -action on t_j, x_i \mathcal{S}_n acts by permuting x_i 's.

We will view X_{λ} as a variety over $\mathbb{C}^r = \text{Spec } H_{T_{\lambda}}^{\bullet}(\text{pt})$. Then the generic fibre at $\mathbf{t} = (t_1, \ldots, t_{\ell(\lambda)})$ is

$$
\mathcal{S}_n\text{-orbit of }(\cdots,\underbrace{t_i,\cdots,t_i}_{\lambda_i},\cdots) \qquad \subseteq \mathbb{C}^n.
$$

For example,

Finally, $H^{\bullet}(\mathcal{B}_{\lambda}) = H^{\bullet}_{T_{\lambda}}(\mathcal{B}_{\lambda})/\langle t_i \rangle$. That is,

$$
H^{\bullet}(\mathcal{B}_{\lambda}) = \mathcal{O}(X_{\lambda}^0),
$$

where X_{λ}^{0} is the zero fibre (scheme theoretic, not reduced). Geometrically,

$$
X_{\lambda}^{0} \longrightarrow X_{\lambda} \longrightarrow \text{(fibre)}_{red} \longrightarrow \mathbb{C}^{n}
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\n
$$
\{0\} \longrightarrow \mathbb{C}^{\ell(\lambda)} \longrightarrow \text{stratum of } \lambda \longrightarrow \mathbb{C}^{n}/S_{n}.
$$

Let us denote graded ring with S_n -action

 $R_{\lambda}(\mathbf{x}) = \mathcal{O}(X_{\lambda}^0)$, i.e. Spec $R_{\lambda}(\mathbf{x}) = X_{\lambda}^0$.

Then

Frobenius character of $R_u(\mathbf{x}) \in \text{span}(s_\lambda : \lambda > \mu)$.

9.4. Haiman Theory. Now we consider the two dimensional analogy. We need Hilbert schemes. Let H_n be the Hilbert schemes of n points over \mathbb{C}^2 . That is

$$
H_n = \{ \text{ideal } I \subset \mathbb{C}[x, y] : \dim \mathbb{C}[x, y] / I = n \}.
$$

For $\mu \vdash n$, and generic $(\mathbf{a}, \mathbf{b}) \in \mathbb{C}^{\ell(\lambda)} \times \mathbb{C}^{\ell(\lambda')}$ (i.e. a_i 's and b_i 's are distinct), we construct *n* different points in \mathbb{C}^2 . We illustrate the definition by an example.

$$
(a_3, b_1) (a_2, b_1) (a_2, b_2) (a_1, b_1) (a_1, b_2) (a_1, b_2) (a_1, b_2)
$$

The ideal for these *n* points defines an ideal, i.e. defines a point of H_n . Let us consider $C_{\mu} \subset H_n$ the closure of all points constructed in this way. Note that the monomial ideal I_μ defined by the diagram of μ is in C_u . For example, I_u is given by

$$
\frac{y^2}{y \, xy} = \langle x^4, x^3y^2, xy^3, y^3 \rangle.
$$

1 | x | x²|x³

Let us consider

The notations will be explained one by one:

• We view

 $\mathbb{C}^{2n} = \{n\text{-tuples of points over }\mathbb{C}^2\};$ $\mathbb{C}^{2n}/\mathcal{S}_n = \{n\text{-multi-sets of points over }\mathbb{C}^2\}.$ We write the S_n -orbit of $(P_1, \ldots, P_n) \in \mathbb{C}^{2n}$ by $[P_1] + \cdots + [P_n] \in \mathbb{C}^{2n}/\mathcal{S}_n.$

• Here $H_n \to \mathbb{C}^{2n}/\mathcal{S}_n$ is given by

 $I \mapsto$ the 0-cycle defined by I

$$
= \sum_{P \in \mathbb{C}^2} \text{mult}_P(\mathbb{C}[x, y]/I) \in \mathbb{C}^{2n}/\mathcal{S}_n.
$$

For example, if I is the ideal for *n*-distinct points P_1, \ldots, P_n , then $I \mapsto [P_1] + \cdots + [P_n]$. If $I = I_\mu$ defined by a partition, $I_{\mu} \longmapsto n[0].$

• Here X_n is the *reduced* fibre product, called *isospectral Hilbert* scheme. Say,

$$
X_{\mu} = \left\{ (I, P_1, \dots, P_n) : \text{the 0-cycle defined by } I \right\}.
$$

over \mathbb{C}^2 is $[P_1] + \dots + [P_n] \right\}.$

Note that at each point, the fibre is a closed subscheme of \mathbb{C}^2 . At the generic points, i.e. ideals $I \in H_n$ defined by n distinct points, the fibre is reduced and is S_n -orbit of those *n*-tuple in \mathbb{C}^2 .

Let us define

$$
R_{\mu}(\mathbf{x}, \mathbf{y}) = \mathcal{O}(\text{fiber}_{\mu}), \text{ i.e. } \text{Spec } R_{\mu}(\mathbf{x}, \mathbf{y}) = \text{fiber}_{\mu}.
$$

Since I_{μ} is a $(\mathbb{C}^*)^2$ -fixed point, $R_{\mu}(\mathbf{x}, \mathbf{y})$ is a bigraded ring with an \mathcal{S}_n -action. The ring $R_u(\mathbf{x}, \mathbf{y})$ is the two dimensional analogy of $R_\lambda(\mathbf{x})$ above.

Denote the bigraded Frobenius character by $\chi: \bigoplus_{n\geq 0} K(\mathcal{S}_n\text{-Rep})_{q,t} \to$ $\Lambda_{q,t}$. We are going to show $\chi_{R_{\mu}}[Z] \in \Lambda_{q,t}$ satisfies the following characterization of transformed Macdonald polynomials \tilde{H}_{μ}

(1) $\langle s_{(n)}, \tilde{H}_{\mu} \rangle = 1$, where $n = |\mu|$; (2) $\widetilde{H}_{\mu}[Z(1-q)] \in \text{span}(s_{\lambda} : \lambda \geq \mu);$ (3) $\widetilde{H}_{\mu}[Z(1-t)] \in \text{span}(s_{\lambda} : \lambda \geq \mu').$

Haiman proved the map $\rho: X_n \to H_n$ is flat, i.e.

$$
\rho_* \mathcal{O}_{X_n} \text{ is a vector bundle of rank } n!.
$$
 (*)

As a result,

$$
R_{\mu}(\mathbf{x}, \mathbf{y}) = \text{ fibre of } \rho_* \mathcal{O}_{X_n} \text{ at } I_{\mu}.
$$

Now we can prove (1). Since generically the fibre is an S_n -orbit of *n* distinct points, thus the fibre of \mathcal{O}_{X_n} is the regular representation $\mathbb{C}[\mathcal{S}_n]$ at generic points. By (*), all the fibre of \mathcal{O}_{X_n} is the regular representation. Say, the multiplicity sheaf

$$
\mathcal{H}\hspace{-1pt}\mathit{om}(\mathbf{irr}_\lambda,\rho_*\mathcal{O}_{X_n})
$$

is a vector bundle. In particular, we have $R_\mu \simeq \mathbb{C}[\mathcal{S}_n]$ the regular representation. Thus $R^{\mathcal{S}_n}_{\mu} = R^{\text{deg}=0}_{\mu}$, so $\langle s_{(n)}, \chi_{R_{\mu}} \rangle = 1$.

Let us prove (2) . The proof of (3) is similar. We need to notice that the first projection of points reduces to dimension 1 case. For example:

$$
(a_3, b_1) \n(a_2, b_1) (a_2, b_2) \n(a_1, b_1) (a_1, b_2) (a_1, b_2) (a_1, b_2) a_1 a_1 a_1 a_1
$$

Thus

$$
R_{\mu}(\mathbf{x}, \mathbf{y})/\langle \mathbf{y} \rangle = R_{\mu}(\mathbf{x}, \mathbf{y})/\langle y_1, \dots, y_n \rangle = R_{\mu}(\mathbf{x}).
$$

Denote Q_{μ} the only point over I_{μ} , i.e. $Q_{\mu} = (I_{\mu}, \mathbf{0}, \cdots, \mathbf{0}) \in X_n$. Let us consider the diagram

$$
S = \mathcal{O}_{X_n, Q_\mu} \xrightarrow{R/\mathfrak{m}} R_\mu(\mathbf{x}, \mathbf{y})
$$

$$
R = \mathcal{O}_{H_n, I_\mu} \xrightarrow{R/\mathfrak{m}} R/\mathfrak{m} = \mathbb{C}
$$

Here S and R are just local rings at Q_{μ} and I_{μ} respectively, and m is the maximal ideal of $I_{\mu} \in H_n$. By (*), the ring S is free over R, from the diagram, we have

$$
\chi_S[Z] = \chi_{R_\mu}[Z] \cdot \chi_R.
$$

Since R has trivial S_n action, $\chi_R[Z] \in \mathbb{Q}_{q,t}$, so we denote it just by χ_R . It was proved by Haiman that y_1, \ldots, y_n form a regular sequence of \mathcal{O}_{X_n,Q_μ} . By Koszul complex (see below), we get

$$
\chi_{S/\langle \mathbf{y} \rangle}[Z] = \chi_S[Z(1-\mathbf{q})] = \chi_{R_\mu}[Z(1-\mathbf{q})] \cdot \chi_R.
$$

Now we have

$$
S/\langle \mathbf{y} \rangle \stackrel{R/\mathfrak{m}}{\longrightarrow} R_{\mu}(\mathbf{x}, \mathbf{y})/\langle \mathbf{y} \rangle = R_{\mu}(\mathbf{x}).
$$

Since $\mathfrak m$ has trivial S_n -action, by Nakayama lemma,

$$
\chi_{R_{\mu}(\mathbf{x})} \in \text{span}(s_{\lambda} : \lambda \ge \mu) \Longrightarrow \chi_{S/\langle \mathbf{y} \rangle}[Z] \in \text{span}(s_{\lambda} : \lambda \ge \mu).
$$

Thus

$$
\chi_{R_{\mu}}[Z(1-\mathbf{q})] \in \mathrm{span}(s_{\lambda} : \lambda \geq \mu).
$$

This proves (2).

Appendix: Koszul complex. Let V be a $S_n \times \mathbb{C}^*$ -representation. Then

$$
\chi_V[Z(1-q)] = \sum_k (-q)^k \chi_{V \otimes \Lambda^k \mathbb{C}^n}[Z].
$$

Actually it suffices to check the right hand side is a ring homomorphism (i.e. well-behaved under induction), and it is true for tri.

References.

[Gor] Haiman's work on the n[! theorem, and beyond](https://www.maths.ed.ac.uk/~igordon/pubs/grenoble3.pdf) by Iain Gordon.

[Hai1] [Macdoanlad Polynomials and Geoemtry,](https://math.berkeley.edu/~mhaiman/ftp/nfact/msri.pdf) by M. Haiman.

[Hai2] [Combinatorics, symmetric functions and Hilbert schemes,](https://math.berkeley.edu/~mhaiman/ftp/cdm/cdm.pdf) by M. Haiman.