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1 Simultaneously Triangularity

We will investigate when a family of matrices can be diagonalized/triangulated
simultaneously.

Definition 1.1 To be exact, let {Ai}i∈I be a family of n×n complex matrices.
We say that they can be simultaneously diagonalized (SD) if there exists
a P ∈ GLn(C) such that every PAiP

−1 is a diagonal matrix.
Similarly, we say that they can be simultaneously triangulated (ST)

by changing the above condition by requiring each PAiP
−1 to be an upper

triangular matrix.

The first reduction can be made on the number of matrices. Note that
Ai’s spans a finite-dimensional subspace of matrix algebra, which allow us to
reduce the problem to finite many of matrices.

Remark 1.2 Geometrically, SD is equivalent to the existence of a decompo-
sition

V1 ⊕ · · · ⊕ Vn = Cn

with each Vj a one-dimensional subspace which is Ai-invariant for all i.
Similarly, ST is equivalent to the existence of a flag

0 = V0 ⊆ V1 ⊆ · · · ⊆ Vn−1 ⊆ Vn = Cn

with each Vj an j-dimensional subspace which is Ai-invariant for all i. In
particular, any non-zero element v ∈ V1 is a common eigenvector of all
Ai’s.

From this point of view, a single matrix is definitely able to be triangulated
since we can always find an eigen-subspace and proceed by induction on the
quotient space.

A motivating statement is the coming theorem. Actually, all of the state-
ments in this section can be viewed as a generalization of this argument.

Theorem 1.3 Assume A and B commutes, then they can be ST.

— Proof. Let V be the eigen-subspace of A for some eigenvalue λ. Then V
is B-invariant, since A(Bv) = B(Av) = λBv for v ∈ V . Therefore, we can
pick a B-eigenvector v inside V which is the desired common eigenvector.
Now by making induction on Cn/ span(v), we see the existence of the flag.

▶ Problem 1.4 Assume A and B are diagonalizable matrices commuting
each other, show that they can be SD. ◀P7
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▶ Problem 1.5 For a commutative family {Ai}, show that they can be ST.

▶ Problem 1.6 Show that Ai’s can be SD if and only if they are all diago-
nalizable and commute each other.

It is natural to ask for an equivalent condition for ST, which does exist.
Before starting it as a theorem, we shall make attempt on the necessary con-
ditions for two matrices A and B able to be ST. Note that if A and B can be
ST, then

[A,B] = AB −BA

is nilpotent. Actually, this is not extremely far from the equivalent condition.

Theorem 1.7 ([1]) The family {Ai} can be ST if and only if

[Ai, Aj ]f(A)

is nilpotent for any non-commutative polynomial f in Ai’s.

— Proof. The author dislikes the elementary proofs, so a proof using the
representation of associative algebra will be given here.

It is clear the condition holds when it is possible to be ST. Assuming the
condition holds, we will show the converse. Consider the algebra A generated
by {Ai}. We will view V = Cn as representation of A. The condition stated
here tells that [Ai, Aj ] lies in the radical of A. In other words, A is basic, i.e.
all simple modules are one-dimensional. The condition for ST is equivalent to
a A-flag which is ensured by Jordan–Hölder theorem.

Good as this theorem looks, Theorem 1.7 only serves as a theoretic state-
ment in practice. Frankly speaking, only the generalization of Theorem 1.3
would work in face of any less abstract cases.

▶ Problem 1.8([2]) Assume rank[A,B] = 1, show that A and B can be ST. ◀P7

The rest of the section will be devoted to explaining the solubility of Lie
algebra and groups. Actually, the condition stated in 1.7 can be viewed as the
associative-algebra-theoretic notation for solvable algebras which are already
named by “basic algebras”.

Recall a (concrete) Lie algebra is a subspace of matrix algebra which is
closed under the Lie bracket [·, ·]. For the theorems of Lie algebras and its
group theoretic analogy, see [3].

Definition 1.9 Let g be a Lie algebra, we say it is solvable if g(N) = 0 for
some N where g(0) = g and g(i+1) = [g(i), g(i)] the space of elements [x, y] for
x, y ∈ g(i).
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The first non-commutative solvable lie algebra is

b =
{(

a b
−a

)
: a, b ∈ C

}
.

Denoting H =
(
1
−1

)
and E =

(
0 1
0

)
, we have [H,E] = 2E which forms all

the defining relations. Due to the defining form of b, it is already ST. The
following problem is to ask no matter how b is embedded (or more generally,
represented) it can always be ST.

▶ Problem 1.10 For two matrices H and E with relation [H,E] = 2E, show
that they can be ST. ◀P7

Lie’s Theorem 1.11 A solvable Lie algebra g can be ST.

— Proof. We can find a codimensional one ideal a of g by doing the same
thing in the commutative Lie algebra g/g(1). By induction, we can find a
linear functional λ : a→ C such that

V = {v ∈ Cn : ∀a∈A,av = λ(a)v} ≠ 0.

We will show that this space is invariant under g. Pick any x ∈ g \ a. For any
a ∈ a and v ∈ V ,

a · xv = xav + [a, x]v = λ(a)xv + λ([a, x])v, (∗)

since [a, x] ∈ a. This does not tell the invariance immediately, but it tells a
flagged version that

a · xv ⊆ span(xv, v).

In particular, by an easy induction, we get

a · span(xrv, · · · , v) ⊆ span(xrv, · · · , v).

We see all a ∈ a fix a common partial flag span(xrv, · · · , v) (deleting the
repetitive spaces if necessary). Denote the biggest member of this flag by

V ′ = span(v, xv, x2v, . . .).

By the above discussion, under the matrix presenting over V ′, a can be ST
with all diagonal elements λ(a) for any a ∈ a. Note that V ′ is also x-invariant,
thus the trace of a bracket [a, x] of two operators over V ′ is zero. On the other
hand, [a, x] ∈ a, we thus get

dimV ′ · λ([a, x]) = 0.

Luckily, we are working over C where the above condition implies that λ([a, x]) =
0. Substituting back to (∗), we see the space V is x-invariant (thus g-
invariant). Finally, argue just as Theorem 1.3.
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In Lie theory, there is another important theorem on ST concerning nilpo-
tent matrices.

Engel’s Theorem 1.12 For a Lie algebra g, if all its elements are nilpotent,
then g can be ST.

— Proof. It suffices to show the existence of a vector v ̸= 0 such that for any
x ∈ g,

x · v = 0.

For any proper subalgebra h of g, there is an induced adjoint action of h on
g/h. Note that

adx = left multiplication by x− right multiplication by x.

If x is nilpotent, the adjoint action of x can be written as a sum of two com-
mutative nilpotent operators as above, and in particular, it is still nilpotent.
So h acts on g/h nilpotently. By applying induction hypothesis on g/h, there
exists an g ∈ g \ h such that

[h, g] ⊆ h.

In particular, h+ span(g) is a bigger subalgebra. If we pick h to be maximal,
then h must be an ideal. By induction,

h⊥ =
⋂
x∈h

kerx ̸= 0.

For any v ∈ h⊥, x ∈ h and g ∈ g, we have

x · gv = gxv + [x, g]v = 0.

This tells us that h⊥ is g-invariant, so we can conclude the theorem by induc-
tion.

Now we turn to the group theoretic analogy of the above two theorems.
We will work with subgroups of GLn(C).

Definition 1.13 Let G be a group, we say it is solvable if G(N) = 0 for
some N where G(0) = G and G(i+1) = [G(i), G(i)] the subgroup generated by
elements xyx−1y−1 for x, y ∈ G(i).

Theorem 1.14 A connected solvable subgroup G of GLn(C) can be ST.
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— Proof. By induction, we can find a character χ of G(1) such that

V = {v ∈ Cn : ∀x∈G(1),xv = χ(x)v}

is nonzero. Note that χ 7→ χ(g−1 · g) permutes all such characters, since

xv = χ(x)v ⇐⇒ xgv = g(g−1xg)v = χ(g−1xg)gv.

But there are finite of them, so it acts trivially thanks to the connectivity.
Note that for any x ∈ V and x ∈ G(1), we have

x(gv) = g(g−1xg)v = gχ(g−1xg)v = χ(x)gv.

The rests of the proof are the same as before.

From the geometric point of view, the proof essentially shows the existence
of a fixed point G over the projective space CPn−1 — the space of all one-
dimensional subspaces. Actually, there is a theorem generalize in this direction
but in terms of algebraic groups, see [1].

Theorem 1.15 Assume a connected solvable algebraic group G acts on a
complete variety X, then X has a fixed point.

— Proof. We can replace X by the fixed loci of G′. Note that for any x ∈ X,
the stabilizer Gx is normal since it is contained in G′. In particular, G/Gx is
a connected affine algebraic group which isomorphic to the orbit of x (under
the reduced structure). We can pick the orbit of minimal dimension which
must be closed (thus complete). But the only connected affine variety which
is complete is a single point.

There is a funny analogy over finite fields. Philosophically, we shall think
p-group as a characteristic-p analogy of unipotent groups, a special case of

solvable groups. For example

(
1 Fp

1

Fp

F0

1

)
is a non-commutative p-group.

▶ Problem 1.16 Let G ⊆ GLn(Fp) be a p-group. Show that G can be ST
over Fp. ◀P8

Kolchin’s Theorem 1.17 A subgroup G of GLn(C) can be ST if all its
elements are unipotent.

— Proof. It suffices to show the existence of a nonzero fixed vector. We can
view V = Cn as a representation of G. Firstly, we can assume V is simple.
Then by Burnside’s theorem, G spans End(V ), the space of matrices. For any
g ∈ G, g − 1 is nilpotent by definition. Note that for any g′ ∈ G,

tr((g − 1)g′) = tr(gg′)− tr(g′) = 0.
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As a result, for any matrices x,

tr((g − 1)x) = 0.

By taking in elementary matrices, we see it says g − 1 = 0.
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Hints

1.4 By our discussion above, we need to show B can be diagonalized on a
B-invariant subspace V . This is clear since B is diagonalizable if and only if
its minimal polynomial has not multiple roots.

If one wants, this argument can be done by using Krull–Schmidt theo-
rem.

1.8 Show that kerA or imA is B-invariant.
Firstly, for v ∈ kerA, we have A(Bv) = BAv+ [A,B]v = [A,B]v. If kerA

is B-invariant, then the argument of Theorem 1.3 still works. So we assume
the converse, then im[A,B] is spanned by ABv for some v ∈ kerA. So imA is
B-invariant. Actually, BAu = ABu− [A,B]u = A(Bu−xBv) for some x ∈ C.
By replacing A by A− λ for any eigenvalue, we can prove by induction.

1.10 Actually,
HEx = E(H + 2)x

This tells that if Hv = λv, then H(Ev) = (λ+ 2)Hv. We pick an eigenvalue
λ of H such that λ+ 2 is no longer one. Then Ev = 0, for any eigenvector v
of H belonging to λ. This is the desired common eigenvector.
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1.16 We have
#(Fn

p \ 0) ≡ {fixed points} mod p,

since all stabilizers are proper subgroups of G.
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2 AB and BA

We will investigate the relation between AB and BA for two matrices in the
following diagram

Cn
B ++

Cm.
A

jj

The main purpose of this section is to find the exact characterization of two
matrices P and Q such that P = BA and Q = AB, see Theorem 2.7.

Actually, this is equivalent to the problem of finding all indecomposable
modules for a two-cyclic quiver and without extra efforts, the main arguments
can be moved for any cyclic quiver. Actually, the material of this section
comes from the book in this direct [1]. It turns out that it relates to the
representation theory of Hecke algebras (of Type A) at the roots of unity
from the geometric side. This provides one of the most successful examples of
geometric methods in representation theory.

Firstly, we present here two basic problems which warm us up about the
relation of AB and BA.

▶Exercise 2.1 Show that

xm det(x1n −AB) = xn det(x1m −BA).

◀P12

▶Exercise 2.2 Denote f the minimal polynomial for AB, then the minimal

polynomial for BA is f(x), xf(x) or f(x)
x . ◀P12

The following problem shows that if the Jordan type of AB is fixed, then
BA has some constraints.

▶ Problem 2.3 If AB is diagonalizable, then so is BABA. ◀P12

▶Exercise 2.4 If ABAB is diagonalizable, then so is BABABA.

Λemma 2.5 We can decompose

Cn
B **

Cm

A

jj =

U◦

⊕

B ))
V◦

A
jj

U•
B ))

V•
A

jj

such that over BA is nilpotent over U◦ and invertible over U•, and AB is
nilpotent over V◦ and invertible over V•.
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— Proof. This is a special case of the Fitting lemma. For the readers’ con-
venience, we will present the proof in this special case. Actually,

U◦ =
⋃

N ker(AB)N , U• =
⋂

N im(AB)N ,

V◦ =
⋃

N ker(BA)N , V• =
⋂

N im(BA)N .

Then they are generalized eigenspace of the eigenvalue 0 and the direct sum of
the rest of generalized eigenspaces for BA and AB subspaces respectively. It
suffices to show B(Ux) ⊆ Vx for x = ◦, • and vice versa. But this is clear.

The above lemma reduces the problem to two parts — nilpotent case and
the invertible case. For the latter case, i.e. when A and B are both invertible,
it is kind of trivial since it is equivalent to say that, AB = A(BA)A−1 similar
to BA. In general, the Jordan blocks of AB other than that belonging to 0
are the same as those of BA. The most crucial part is the nilpotent case.

Recall that by the theory of Jordan canonical form any nilpotent matrix
A takes the following form

0
A 7−→• A 7−→• A 7−→• A 7−→•

0
A 7−→• A 7−→• A 7−→• A 7−→•

0
A 7−→• A 7−→•

0
A 7−→•,

with all •’s form a set of basis. Actually, for the case we care about, it is

reasonable to guess the same picture but alternating
A 7−→and

B 7−→. To be
exact, we call any one of two spaces

0
A 7−→• B 7−→• A 7−→• B 7−→· · · 7−→•

0
B 7−→• A 7−→• B 7−→• A 7−→· · · 7−→•

a strip.

Theorem 2.6 If AB and BA are both nilpotent, then

Cn
B **

Cm

A

jj

can be decomposed into a direct sum of strips.
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— Proof. The proof is similar to the proof of Jordan’s canonical form. We
denote V = Cn ⊕ Cm, and T be the sum A+B. We have a filtration

0 ⊆ kerT ⊆ kerT 2 ⊆ · · · ⊆ V.

Note that each
kerT r = ker(

r· · · AB)⊕ ker(
r· · · BA)

is Z/2-graded. Moreover, we have induced maps

kerT

0

T← kerT 2

kerT

T← · · · T← kerTN

kerTN−1

T← · · · .

Note that all of them are injective. By identifying them with their image,
they form a flag of

kerT = kerB ⊕ kerA.

Note that every kerT r

kerT r−1 is still Z/2-graded and T has degree 1̄ ∈ Z/2. In
particular, the flag is compatible with the grading, i.e. it is a direct sum of
two flags in kerA and kerB. By picking a set of the basis for this flag, and
picking a lifting, we see that V decomposes into strips.

In particular, thanks to the theorem above, the nilpotent case reduces to
a combinatorial problem.

Theorem 2.7 For two matrices P and Q, there exists A and B such that
P = BA and Q = AB if and only if

(i) the Jordan blocks belonging to nonzero eigenvalues of P and Q are the
same, and

(ii) there exists a pairing of sizes of Jordan blocks belonging to eigenvalue
0 for P and Q such that in each pair their difference is at most 1.

For example, if AB is diagonalizable (i.e. all Jordan blocks are of size 1),
the Jordan blocks of BA belonging to 0 can be predicted to have size at most
2.

For example, if the minimal size of the Jordan block of AB (resp. BA)
belonging to 0 is r (resp. r′), then |r − r′| ≤ 1. For other eigenvalues, the
minimal sizes must be the same. This is exactly Exercise 2.2.

Finally, we left readers to think about what happened for more matrices.
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Hints

2.1 det
(
x1n−AB A

x1m

)
= det

(
x1n

xB
A

x1m

)
= det

(
x1n A

x1m−BA

)
.

2.2 It is clear xf(x) is a polynomail for BA since Af(BA)B = ABf(AB) =
0. So the minimal polynomial g forBA divides xf(x). Conversely, f(x) divides
xg(x) which leads to the assertion.

2.3 Note that the minimal polynomial BA has a multiple root only if 0 has
multiplicity 2 by Exercise 2.2. But in this case BABA is multiplicity free.
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3 Estimation of Eigenvalues

In this section, we will discuss how to estimate eigenvalues. To be exact, for
an n × n complex matrix A = (aij), can we predict the possible places on
the complex plane where its eigenvalues appear? Let λ1, . . . , λn be all the
eigenvalues of A. The first theorem that comes to analysts’ minds is probably
the formula of spectral radius. Recall the spectral radius of a matrix A is
the maximum of norms of eigenvalues of A.

▶ Spectral radius 3.1 For any matrix A, its spectral radius is

lim
n→∞

∥An∥1/n

for any matrix norm ∥ · ∥. ◀P16

But in this section, we would like to give a couple of theorems on the
estimation of eigenvalues more directly by matrix indices. The first affirmative
relation is

tr =
∑

aii =
∑

λi.

Thus it indicates that in the estimation the diagonal elements should con-
tribute mostly. Here is a theorem on general matrices.

Gerŝgorin’s disk Theorem 3.2 For any eigenvalue λ of A, we have

|λ− aii| ≤ |ai1|+ · · ·+ |̂aii|+ · · ·+ |ain|

for some i.

— Proof. Assume Ax = λx, for x = (x1, . . . , xn)
t ̸= 0. That is, for any i,

ai1x1 + · · ·+ ainxn = λxi.

Pick i such that |xi| is maximal. We get

(λ− aii)xi = ai1x1 + · · ·+ âiixi + · · ·+ ainxn

Thus we have

|λ− aii| · |xi| ≤ |ai1| · |x1|+ · · ·+ ̂|aii| · |xi|+ · · ·+ |ain| · |xn|
≤

(
|ai1|+ · · ·+ |̂aii|+ · · ·+ |ain|

)
· |xi|

Since |xi| ≠ 0, we can conclude the assertion.
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▶ Problem 3.3 We call a matrix A = (aij) to be diagonally dominant if

aii > |ai1|+ · · ·+ |̂aii|+ · · ·+ |ain|.

Show that every eigenvalue of any diagonally dominant matrix has a positive
real part.

The problem turns out to be interesting if we restrict ourselves to the case
of hermitian matrices. From now on, we assume A to be an Hermitian
matrix, i.e. Ah = A. Note that in this case, both diagonal elements and
eigenvalues are real numbers so we can assume that

a11 ≥ a22 ≥ · · · ≥ ann,
λ1 ≥ λ2 ≥ · · · ≥ λn.

Before stating the general theorem, let us see a couple of illustrating examples.

Example 3.4 Let
(
a
z̄
z
b

)
be a hermitian matrix with a ≥ b with two eigenvalues

λ1 ≥ λ2. Then
λ1 + λ2 = a+ b,
λ1λ2 = ab− |z|2.

So
(a− λ1)(b− λ1) = ab− λ1(a+ b− λ1) = |z|2 ≥ 0.

Since λ1 ≥ λ2 so that λ1 ≥ a+b
2 , the above condition is equivalent to λ ≥ a.

Example 3.5 The diagonal elements stand between the minimal eigenvalue
and the maximal eigenvalue. That is,

λn ≤ ann ≤ · · · ≤ a11 ≤ λ1.

Actually, we can assumeA = UhDU for unitary matrix U withD = diag(λ1, . . . , λn).
Assume that

U = (u1, . . . , un),

then
aii = uhiDui ≤ λ1uhiui = λ1.

Similar argument shows that aii ≥ λn.

Schur–Horn’s Theorem 3.6 For an hermitian matrix A,

a11 + · · ·+ aii ≤ λ1 + · · ·+ λi

for any 1 ≤ i ≤ n− 1 and

a11 + · · ·+ ann ≤ λ1 + · · ·+ λn.

Moreover, if the above conditions hold then there exists such a matrix.
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A clear proof using symplectic geometry can be found in [1, Example 5.5.4]
as a shadow of the Atiyah–Guillemin–Sternberg Theorem.

On the other hand, one would think about what is the geometric notation
for a “diagonal element”. For any unit vector x, i.e. a vector with xhx =
1, xhAx is a diagonal element of A up to a unitary transformation. This
observation leads to the following theorem.

▶Rayleigh–Ritz Theorem 3.7 For an hermitian matrix A,

λ1 = max
x ̸=0

xhAx

xhx
, λn = min

x ̸=0

xhAx

xhx

If we want to go further — to see the second minimal eigenvalue λn−1, in
principle, we can work over the orthogonal complement V of the eigensubspace
of λn. Luckily, we have a good observation that this space V maximize

min
x∈V \0

xhAx

xhx
,

among all (n − 1)-dimensional subspaces. Actually, this can be seen imme-
diately by assuming A = D to be diagonal. To be exact, denoting U =
span(en−1, en). For general V ,

min
x∈V \0

xhDx

xhx
≤ min

x∈(V ∩U)\0

xhDx

xhx
= λn−1.

Here we use the fact that dimV = n− 1 to ensure that V ∩ U ̸= 0.

▶Courant–Fischer Theorem 3.8 For an hermitian matrix A,

λi = max
dimV=i

min
x∈V \0

xhAx

xhx
= min

dimV=n+1−i
max
x∈V \0

xhAx

xhx
.

▶ Interlacing 3.9 Let A =
(
B
xh

x
c

)
be a hermitian matrix with B a submatrix

of size one less than A. Show that

λ1 λ2 · · · λn−1 λn≥ ≥ ≥ ≥ · · · ≥ ≥ ≥
µ1 µ2 · · · µn−1

with λ1 ≥ · · · ≥ λn eigenvalues of A, and µ1 ≥ · · · ≥ µn−1 eigenvalues of B. ◀P16

▶Weyl Theorem 3.10 We have

λi+j−1(A+B) ≤ λi(A) + λj(B) ≤ λi+j−n(A+B)

for hermitian matrices A,B with λ1(·) ≥ · · · ≥ λn(·) equipped with the obvi-
ous meaning and λ<1 =∞ and λ>n = −∞. ◀P17
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▶ Problem 3.11 Let B = A + xxh be an Hermitian matrix, a rank-one
positive modification. Show that

λ1 λ2 · · · λn
≥ ≥ ≥ ≥ · · · ≥ ≥

µ1 µ2 · · · µn

with λ1 ≥ · · · ≥ λn eigenvalues of A, and µ1 ≥ · · · ≥ µn eigenvalues of B.

We lastly remark that there is a description for the exact conditions (λ1 ≥
· · · ), (µ1 ≥ · · · ) and (ν1 ≥ · · · ) should satisfy such that they are eigenvalues
of hermitian matrices A, B and A+B. This is known as Horn’s conjecture
which is proved by Schubert calculus and symplectic geometry. A good survey
in this direction is [2].
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Hints

3.1 Since all the norms are equivalent over finite-dimensional spaces, we

can pick ∥ · ∥ such that ∥Ax∥ ≤ ∥A∥ · ∥x∥ (for example ∥A∥ = supx ̸=0
∥Ax∥
∥x∥ ).

Assume Ax = λx, then we have

|λ|n∥x∥ = ∥Anx∥ ≤ ∥An∥ · ∥x∥.

This shows |λ| ≤ ∥An∥1/n. On the other hand, denoting d the spectral radius,
we see that A1 = A/(d+ ϵ) satisfies ∥An

1∥ → 0 (for example, computing with
Jordan canonical form). In particular, for n≫ 0,

∥An∥
(d+ ϵ)n

< 1,

which shows ∥An∥1/n < d+ ϵ.

3.9 It suffices to show λ1 ≥ µ1 since the rest follows from the result for

−A =
(−B
−xh

−x
−c

)
. This is a direct application of Theorem 3.8.
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3.10 By Theorem 3.8,

λi(A) + λj(B)= max
dimV=i
dimU=j

min
x∈V \0
y∈U\0

(
xhAx

xhx
+
yhBy

yhy

)
≤ max

dimV=i
dimU=j

min
x=y∈(U∩V )\0

(
xhAx

xhx
+
yhBy

yhy

)
≤ max

dim(U∩V )≥i+j−n
min

x∈(U∩V )\0

(
xh(A+B)x

xhx

)
≤ max

d≥i+j−n
λd(A+B) = λi+j−n(A+B).
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4 Convexity

In this section, we will work with a linear space V over R and use its analytic
properties. Our main concern is convex sets. Recall that a subset C in V is
called convex if

∀x, y ∈ C, {tx+ (1− t)y}0≤t≤1 ⊆ C.

We will show the separation theorem 4.3 stating that any two disjoint convex
sets can be separated by a hyperplane. This statement is intuitively clear, but
the proof is far from easy.

Definition 4.1 For each convex set containing 0, we can define the associated
Minkowski functional mC : V → R by setting

mC(x) = inf
{
λ > 0 : x

λ ∈ C
}
.

For instance, for the disk (solid sphere) of Rn, the associated Minkowski
functional is nothing but the standard Euclidean norm.

Λemma 4.2 For any convex set C containing 0, the Minkowski functional
m = mC satisfies

(i) m(λx) = λm(x) for any λ ≥ 0;
(ii) m(x+ y) ≤ m(x) +m(y).

— Proof. The first property is clear. For the second, we see

x

m(x) + ϵ
and

y

m(y) + ϵ
∈ C.

Then
x+ y

m(x) +m(y) + 2ϵ
∈ C.

We get m(x+ y) ≤ m(x) +m(y).

Separation Theorem 4.3 For a convex set C, and a point x /∈ C, there
exists a linear function ϕ over V such that

ϕ(C) ≤ ϕ(x).

— Proof. Firstly, we can assume C contains an interior point. The reason is
the following. Let V ′ be the affine space spanned by C. By translation, we can
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assume V ′ is a subspace. Assume V ′ is defined by {ϕi = 0} for some linear
functions ϕi.

(i) If x /∈ V ′, then there is one ϕi such that ϕi(x) ̸= 0, so ±ϕi works.
(ii) If x ∈ V ′, then C contains an interior point as a subset of V ′. If we

can find ϕ′ over V ′ separating C and x, then any extension of ϕ′ to V works.
By translation, we can assume C containing 0 as an interior point. Denote

m = mC . Note that
m(C) ≤ 1 ≤ m(x).

Denote ϕ the linear function over the space spanned by x given by ϕ(λx) = λ.
Thus, it suffices to extend ϕ to V such that

ϕ(v) ≤ m(v)

for any v ∈ V . Note that this is already true over span(x), that is,

ϕ(λx) = λ ≤

{
λm(x) = m(λx), λ > 0,

0 ≤ m(λx), λ ≤ 0.

To extend ϕ, inductively, it suffices to extend it by one dimension. Say, assume
ϕ is already defined over V1, then for any y /∈ V1, to extend ϕ to y, we need
to ensure that for any λ ̸= 0 and v ∈ V1

λϕ(y) + ϕ(v) ≤ m(λy + v).

It suffices to ensure when λ = ±1 by (i) of Lemma 4.2. So we get

−m(−y + v) + ϕ(v) ≤ ϕ(y) ≤ m(y + v)− ϕ(v).

In particular, to show the existence of the extension, we need the supremum
of the left-hand side not greater than the infimum of the right-hand side. In
other words, it suffices to show for any v, v′ ∈ V ′,

−m(−y + v) + ϕ(v) ≤ m(y + v′)− ϕ(v′).

This is true since

m(y + v′) +m(−y + v) ≥ m(v + v′) ≥ ϕ(v) + ϕ(v′).

The proof is complete.

Actually, the above separation theorem still works in Banach spaces using
Hahn–Banach extension theorem in which case we should assume the
existence of interior points, see [1].
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▶ Problem 4.4 Show that for two disjoint convex subset C1 and C2, there
exists a linear function ϕ on V such that

ϕ(C1) ≤ ϕ(C2).

◀P21

▶ Problem 4.5(Cancellation) Let P and Q be two compact convex subsets,
we define Minkowski sum and Minkowski difference

P +Q = {p+ q : p ∈ P, q ∈ Q}
P −Q = {x : x+Q ⊆ P}

Show that (P +Q)−Q = P . ◀P21

▶ Farkas Lemma 4.6 For a real matrix A and real vector b, then

Either Ax < b has a solution x ≥ 0,
or ytA ≥ 0 has a nonzero solution y ≥ 0 with yhb ≤ 0.

Here (x1, . . . , xn)
t ≥ (x′1, . . . , x

′
n)

t means xi ≥ x′i for all i. ◀P21

▶ Problem 4.7 For a symmetric semi-positively definite matrix A, show that
there exists a nonzero x ≥ 0 such that Ax ≥ 0. ◀P21

▶Exercise 4.8 Assume v1, . . . , vd ∈ V such that for any non-negative
number x1, . . . , xd ≥ 0,

x1v1 + · · ·+ xdvd = 0 ⇐⇒ x1 = · · · = xd = 0.

Show that there exists a linear function ϕ such that ϕ(vi) > 0 for all i.

Definition 4.9 We call C is a polyhedron if it is intersection of finite many
hyperplanes, i.e.

C =
⋂
{ϕi ≥ bi}

for finite many linear functions ϕi’s and real numbers bi’s. If all bi = 0, then
C is known as a cone. A bounded polyhedron is called a polytope.

Definition 4.10 For a subset S ⊆ V , we denote the convex hull hull(S) the
set of element x ∈ V able to be written as

x =
∑
v∈S

tvv (finite sum),
∑
v∈S

tv = 1.
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We denote the conic hull cone(S) the set of element x ∈ V able to be written

x =
∑
v∈S

tvv (finite sum), ∀v∈S, tv ≥ 0.

For two sets S and T , we denote their (Minkowski) sum

S + T = {s+ t : s ∈ S, t ∈ T}.

Theorem 4.11 A subset C is a polytope (resp., cone) if and only if it is a
convex (resp., conic) hull of a finite set. A subset C is a polyhedron if and
only if it can be written as a Minkowski sum of a polytope and a polyhedral.

We refer [2] for the proof.

Hints

4.4 Consider C1 − C2.
4.5 Assume x + Q ⊆ P + Q. If x /∈ P , we can separate x and P by

a hyperplane, say ϕ(x) ≤ ϕ(P ). Note that ϕ(Q) is a closed interval, it is
impossible to have

ϕ(x+Q) = ϕ(x) + ϕ(Q) ⊆ ϕ(P ) + ϕ(Q) = ϕ(P +Q).

4.6 The first condition says that {Ax}x>0 intersects {t : t < b}. Otherwise,
they can be separated by {t : yht = 0} (after translation) for some nonzero y.
That is ytAx ≥ 0 for all x ≥ 0 and ytt ≤ 0 for all t < b. This is equivalent to
the second condition.

4.7 Otherwise, {Ax : x ≥ 0} \ 0 is disjoint from {x ≥ 0}. So we can find a
nonzero y such that ytAx ≤ 0 and ytx ≥ 0 for all x ≥ 0. This shows y ≥ 0,
but then ytAy ≤ 0, a contradiction.
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5 Perturbation Method

In this section, we will discuss the perturbation method making it possible to
reduce problems to “regular” cases. A good example is the following proof of
Hamilton–Cayley theorem.

Proof 5.1 LetA be a matrix with characteristic polynomial χA(x) = det(x1−
A). Firstly, if A is diagonalizable, then it is clear that χA(A) = 0. Secondly,
χA(A) is a polynomial in entries of A, and it vanishes when A is diagonalizable.
Thus χA(A) = 0 for any A, by the theorem below.

Theorem 5.2 The subset of matrices A with different eigenvalues is a non-
empty Zariski open (thus dense) subset.

— Proof. Actually, the subset is given by {f ̸= 0} with f the resultant of
the characteristic polynomial χA.

In the above example, the fact that χA(A) is continuous in its indices is
vital in the argument. Thus it is unfair not to discuss the problem of contin-
uous/smooth dependence. Fortunately, we are studying linear algebra
where most of the values are polynomial-dependent. But, there still rest some
non-continuous concepts.

Recall a function f is called lower semi-continuous if

∀ϵ > 0,∃ a neighborhood U of x0 such that
for any x ∈ U , we have f(x) > f(x0)− ϵ.

Equivalently,
∀x ∈ R, f−1

(
(x,∞)

)
is open,

∀x ∈ R, f−1
(
(−∞, x]

)
is closed.

Intuitively, it says, among all the way tending to x, the value f(x) coincides
with the lowest limit value. Similarly, we define upper semi-continuous.

Theorem 5.3 The function rank is a lower semi-continuous function over
matrices spaces (under Zariski topology and thus in usual topology).

— Proof. We need to show the subset of matrix A with rank ≤ r is closed.
Note that it suffices to show when r is an integer. This is true since it is
defined by all minors of size r + 1.

▶ Problem 5.4 Show that (V,U) 7−→ dim(V+U) is an upper semi-continuous
function over the space of pair of subspaces of given dimensions (say, the
product of two Grassmannians). ◀P25
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▶ Problem 5.5 For a nilpotent matrix A, we denote λ′(A) = λ′1 ≥ · · · with
λ′i = dimkerAi−1 − dimkerAi. Show that λ′ is lower semi-continuous in the
following sense.

λ′ ≥ µ′ ⇐⇒ ∀i, λ′1 + · · ·+ λ′i ≥ µ′
1 + · · ·+ µ′

i.

For example,
•
•
•
•
4

≤
• •
•
•
3 1
≤

• •
• •
2 2
≤

• • •
•
2 1 1

≤
• • • •

1 1 1 1

◀P25

Now, let us turn to the continuity of eigenvalues. Note that this problem
is essentially the continuous dependence of the roots of a polynomial on its
coefficients. Before going deep, we first remark that the roots are NOT a
continuous function in its coefficients. For example, for f(x) = x2 + bx + c,
its two roots

x1,2 =
−b±

√
b2 − c

2

are continuous over R but can never be continuously extended to C.
To be exact, consider a morphism

π : RC = Cn −→ Cn = PC, (z1, . . . , zn) 7−→ (e1(−z), . . . , en(−z))

where ei is the elementary symmetric polynomial. We will think RC as the
space of roots, and PC as the space of monic polynomials of degree n. Note
that generically, π is n! to 1, but not all point is the case.

Theorem 5.6 Let f(z) = zn +
∑
aiz

i be a monic polynomial of degree n
with distinct roots λ1, . . . , λm with multiplicity mi. Then for any ϵ > 0, there
exists δ > 0 such that for any monic polynomial g = zn +

∑
biz

n of degree n
such that ∥f − g∥ < δ (any given norm ∥ · ∥), there are exactly mi many roots
in the disk {z : |z − λi| < ϵ}.

— Proof. Now we consider the subset of (z1, . . . , zn) such that there are
exactly mi many of them in the disk {z : |z − λi| < ϵ}. Note that this
is an open subset. Now the theorem follows from the fact that π is a full-
rank holomorphic function which is in particular open. This also follows from
Rouché’s Theorem.

Λemma 5.7 For a monic polynomial f = xn +
∑
aix

i, for any δ > 0
sufficiently small such that the δ-disks centered at roots of f are disjoint,
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we can find δ > 0 such that whenever max |ai − bi| < δ, the polynomial
g = xn +

∑
bix

i has the same number of roots as that of f in each δ-disks
centered at roots of f .

Proof. Firstly, we pick δ′ to be the minimum of |f(x)| for x on the boundary
of those disks. Then whenever |g(z)− f(z)| < δ′ < |f(z)| on the boundary of
each disk, g and f share the same number of roots inside the disk by Rouché
theorem.

Denote C the union of the boundaries. Secondly, we claim that there exists
δ > 0 such that

∑
|ai − bi| < δ implies |g(z)− g(z)| < δ′ for all z ∈ C where

g = xn +
∑
bix

i. This follows from the following observation. Other then
(ai) 7→ ∥(ai)∥ = max |ai|, we can define a new norm

(ai) 7−→ ∥(ai)∥′ = max |ai|+min
z∈C

∣∣zn +
∑

aiz
i
∣∣

which is equivalent to ∥ · ∥. As a result, such δ exists.

Theorem 5.8 Let F(X) be the space of continuous function, holomorphic
function, or polynomial function over X = PC or RC.

Then any symmetric f ∈ F(RC) can be
uniquely written as f̃ ◦π for f̃ ∈ F(PC).

C

RC

f

OO

π
// PC.

∃!
aa

In other words, F(RC)
Sn = F(PC).

— Proof. When F is the space of polynomial functions, this is exactly the
fundamental theorem of symmetric polynomials — every symmetric polyno-
mial is a unique polynomial in ei’s.

For the continuous world, we consider the quotient space RC/Sn with the
natural quotient topology. Note that it induces π̂ : RC/Sn → PC which is a
continuous bijection. Actually, π is open by Lemma 5.7.

Note that when F is the space of continuous functions, RC/Sn satisfies the
above universal property. Thus it suffices to show π induces an isomorphism
between RC/Sn and PC. This follows from the fact that π is open since it is
a full-rank holomorphic morphism.

When it comes to the case of holomorphic functions. We equip RC/Sn with
complex structure with coordinates induced by e1, . . . , en ∈ F(RC)

Sn . Then
π̂ : RC/Sn → PC is a morphism of complex manifold which is bijective. Then
by Rouché’s theorem, π̂ is actually an isomorphism which tells F(RC)

Sn =
F(PC).
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In particular, a symmetric and continuous statement on the roots is con-
tinuously dependent on its coefficients. Another useful conclusion on the dis-
tribution of roots is the following.

Recall that the (first) Gerŝgorin Theorem 3.2 shows that the eigenvalues
are contained in a union of disks. The above theorem is used to deduce
the second Gerŝgorin Theorem predicting the number in each connected
component.

▶ Second Gerŝgorin Theorem 5.9 Let A = (aij) be a matrix. Consider
the union of disks in Theorem 3.2. In each connected component consisting
of d many disks, there are exactly d many eigenvalues (counting with multi-
plicities). ◀P25

More specifically, a symmetric and continuous statement on the eigenvalues
is continuously dependent on matrices entries. For example, spectral radius
is a continuous function.

▶ Problem 5.10 Assume A commute with C, show that

det
(
A
C

B
D

)
= det(AD − CB).

◀P25

Hints

5.4 Actually, by picking base, this map is the rank of two sets of vectors
which is semi-continuous.

5.5 This is simply because λ′1(A)+· · ·+λi(A) = dimkerAi−1 = n−randAi

with n the size of A.

5.9 Consider


a11 ta12 · · · ta1n
ta21 a22 · · · ta2n

tan1 tan2 · · · ann

.

5.10 Assume firstly A is invertible.

det
(
A
C

B
D

)
= det

(A
0

B
D−CA−1B

)
= detA det(D − CA−1B).
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6 Non-negative Matrices

In this section, we will discuss non-negative matrices, that is, matrices with
non-negative indices. We will use the notation ≥ (or ≤) between matrices or
vectors if each index is the case. If furthermore, they are not equal, we denote
> (or <). On the other hand, we say a matrix or vector is positive (or
negative), if all of its indices are the case. Note that

(x1, . . . , xn) ≥ 0 ⇐⇒ all xi ≥ 0,
(x1, . . . , xn) > 0 ⇐⇒ all xi ≥ 0 and some xi > 0,

(x1, . . . , xn) is positive ⇐⇒ all xi > 0.

The most fundamental theorem in the study of non-negative matrices is the
Frobenius theorem. There are a lot of variations of it which we will discuss
after proving the most fundamental one.

Theorem 6.1 (Frobenius) Positive square matrix A admits a positive
eigenvector belonging to a positive eigenvalue.

— Proof. Consider the subset S of x ∈ Rn with x > 0 and |x| = 1. Note
that S is homoeomorphic to a closed disk. Then the map x 7→ Ax

|Ax| is well-

defined over S since all indices of A are positive. By the Brouwer fixed
point theorem, this map has a fixed point, i.e. there exists x ∈ S such that
Ax = |Ax| · x. Note that since A is positive and x ≥ 0, so Ax is positive, thus
x is actually positive.

The readers are welcomed to refer [1, Chatper 3] for the application of this
theorem in category theory.

▶ Problem 6.2 Under the assumption of theorem 6.1, show that there is
exactly one simple eigenvalue admits a positive eigenvector. ◀P28

▶ Problem 6.3 Show that if A ≥ 0, then A admits an eigenvector v ≥ 0
belonging to λ ≥ 0. ◀P28

▶Exercise 6.4 Computing the eigenvalues of the matrix N =

(
1

1

1

1

)
.

▶ Problem 6.5 If A ≥ 0 with the biggest real eigenvalue λ ≥ 0, then any
eigenvalue µ satisfying |µ| ≤ λ. ◀P29

Now, let us restrict ourselves to the case of symmetric matrices. Assume
A is symmetric with λ the maximal eigenvalue. Equivalently, in this case,

λ = inf

{
λ : −A+ λ1 is positively definite

}



6 Non-negative Matrices 27

Note that a positive definite matrix must have positive diagonal elements. In
particular, the problem reduces to C-matrices in the following sense.

Definition 6.6 We call a symmetric matrix C a C-matrix if the entries of
C are all non-negative except diagonal elements all positive.

Remark 6.7 Note that geometrically, a matrix C = (cij) is positively defi-
nite if there exists a set of basis {v1, . . . , vn} such that

cij = ⟨vi, vj⟩

under a given inner product ⟨·, ·⟩. We can assume that technically the diagonal
entries are all 1’s and all vi’s are the units so that

cij = cos θij

with θij the angel between vi and vj . So the statement about positive defi-
niteness is equivalent to the existence of certain vectors with promised angles
pairwise. Now, being a positively definite C-matrix is the case when all angles
are obtuse.

Example 6.8 For three θ1, θ2, θ3 ∈ [π/2, π],(
1

cos θ1
cos θ2

cos θ1
1

cos θ3

cos θ2
cos θ3

1

)
is positive definite if and only if θ1 + θ2 + θ3 < 2π.

Theorem 6.9 A C-matrix C is positively definite if and only if Cx > 0 for
some positive x.

— Proof. We already established the existence of x ≥ 0 such that Cx ≥ 0
by Problem 4.7. Denote I = {i : xi = 0}. Then by assumption, for i ∈ I

(Cx)i = ciixi +
∑
j ̸=i

cijxj =
∑
j ̸=i

cijxj ≥ 0

This happens if and only if cij = 0 for all j /∈ I. In other words, by reordering

the index, we can assume C =
(
C1

C2

)
, and x =

(
x1

0

)
with x1 positive. By

induction, there is a positive x2 with C2x2 > 0. So finally,
(
x1

x2

)
serves.

Conversely, we can assume without loss of generality that x = (1, . . . , 1)t.
Then ∑

ciiv
2
i +

∑
i ̸=j

cijvivj =
∑
i

(∑
j

cij
)
v2i −

∑
i ̸=j

cij(vi − vj)2,

which is positive definite.
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▶ Problem 6.10 Let C be an invertible C-matrix, then the following state-
ments are equivalent

(1) C is positively definite;
(2) P tCP = 1 for some upper triangular matrix P ≥ 0;
(3) C−1 > 0. ◀P29

▶Exercise 6.11 A C-matrix C is positively semi-definite if and only if Cx ≥
0 for some positive x.

In particular if C is positively semi-definite but not definite if and only if
Cx = 0 for some positive x.

▶ Problem 6.12 For two C-matrices C = (cij) and D = (dij), if cii = dii
and for i ̸= j,

|cij | ≤ |dij |. (∗)

If D is positively semi-definite, and at least one (∗) is strict, then C is positive
definite. ◀P29

▶ Problem 6.13 For a C-matrix C =
(
C1

Xt

X
C2

)
, if C is positively semi-definite

and X ̸= 0, then C1 is positively definite.

References
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Hints

6.2 Note that At has the same eigenvalue as A, assume xtA = λxt and
Ay = µy for x, y, then λxty = xtAy = µxty. Note that xty ̸= 0. Assume
Ax = λx for a positive x and positive λ. Assume Av = λv for some v. If v is
not a scalar of x, then we can choose t such that v′ = v+ tx > 0 with at least
one zero indices. Now Av′ = λv′ is positive, which is a contradiction. We
also need to show that Av − λv = x has no solution. We can pick t such that
v′ = v + tx < 0 with at least one zero indices. Then Av′ = x+ λv′ invokes a
contradiction.

6.3 Just repeat the proof of Frobenius theorem 6.1. If x 7→ Ax
|Ax| is not

well-defined, i.e. Ax = 0 for some x, then 0 is an eigenvalue.
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6.5 Firstly assume A is positive. Assume xtA = xtλ. We denote a new
norm |v|1 = xtv′ :=

∑
xi|vi| where v′i = |vi| for each i. We find

|Av| =
∑

xi
∣∣Aijvj

∣∣ ≤∑
xiAij

∣∣vj∣∣ = λ
∑

xj |vj | = λ|v|.

If Av = µv, then |Av| = |µ| · |v|. For general A, we consider A+ tN for N the
matrices with all indices 1’s.

6.10 (1)⇒ (2). We can assume without loss of generality that c11 = 1. Now

C =
(

1
xt 1

)(
1
−x

−xt

C′

)(
1 xt

1

)
=

(
1
C′−xxt

)
. Note that when i ̸= j,

(C ′ − xxt)ij = ci+1,j+1 − ci+1,1c1,j+1 ≤ 0.

Since C is positively definite, thus so is C ′ − xxt. In particular, C ′ − xxt is
still a C-matrix.

The implication (2) ⇒ (3) is clear. Actually, C−1 = PP t. For (3) ⇒ (1),
it follows easily from Theorem 6.9.

6.12 Assume Dx ≥ 0 for some positive x, note that Cx − Dx > 0 and is
strict if one of (∗) is strict.
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7 ADE Classifications

In this section, we will discuss the famous phenomenon called ADE classi-
fication. It naturally appears in the study of integer quadratic form. More
precisely, we are asking what conditions should cij ∈ Z≤0 satisfy such that

q(x) =

n∑
i=1

x2i +
∑

1≤i<j≤n

cijxixj

is positive definite. Let us denote the corresponding Cartan matrix

C =


2 c12 · · · c1n
c12 2 · · · c2n

c1n c2n · · · 2


It is clear that q is positive definite if and only if C is. Let us denote the
associated Dynkin diagram D be the graph with vertices 1, . . . , n, and there
are |cij | many edges between i and j. We denote

i j
cij = 0

i j
cij = −1

i
|cij | j
|cij | > 1

Note that the order of vertices does not essentially matter, so we will denote
◦ by a vertex rather than i.

Example 7.1 For example, for n = 2, c ≤ 0

x2 + cxy + y2 is


positively definite |c| = 0, 1

positively semi-definite |c| = 2

indefinite |c| > 2

The Cartan matrix is
(
2
c
c
2

)
. Their Dynkin diagrams are

◦ ◦
x2 + y2

◦ ◦
x2 − xy + y2

◦ 2 ◦
x2 − 2xy + y2

◦ 3 ◦
x2 − 3xy + y2

Example 7.2 For n = 3, a, b, c ≤ 0, denote

D =

◦

◦

a

b
◦

c
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Note that if any one of a, b, c are more than 3, then the quadratic form is

indefinite, i.e. D does not contain ◦ 3 ◦ as a subgraph. By Example 6.8,
the quadratic form with the following diagram is positively definite (up to a
permutation of vertices)

◦ ◦ ◦
x2 + y2 + z2

◦ ◦ ◦
x2 + y2 + z2 − yz

◦ ◦ ◦
x2 + y2 + z2 − xy − yz

The following diagrams correspond to positive semi-definite but not definite
forms

◦ ◦ 2 ◦
x2 + y2 + z2 − 2yz

◦

◦ ◦
x2 + y2 + z2 − xy − yz − xz

Definition 7.3 Denote the following affine ADE diagrams

Ãn(n ≥ 1)

1•

◦
1

◦
1

· · · ◦
1

◦
1

D̃n(n ≥ 4)

1◦
2◦ · · · 2◦

1•

◦
1

◦
1

Ẽ6

• 1

◦ 2

◦
1

◦
2

◦
3

◦
2

◦
1

Ẽ7

◦ 2

•
1

◦
2

◦
3

◦
4

◦
3

◦
2

◦
1

Ẽ8

◦ 3

◦
2

◦
4

◦
6

◦
5

◦
4

◦
3

◦
2

•
1
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Note that the subscript is one less than the number of vertices. Note that Ã1

is ◦ 2 •.

▶ Problem 7.4 The corresponding quadratic forms of affine ADE diagrams
are positively semi-definite but not definite. ◀P34

Example 7.5 For example,

◦ ◦

◦ ◦

1
2

[
(x1 − x2)2 + (x2 − x3)2 + (x3 − x4)2 + (x4 − x5)2

]

◦

◦

◦

◦ ◦

1
4

[
(2x1 − x0)2 + (2x2 − x0)2 + (2x3 − x0)2 + (2x4 − x0)2

]

Definition 7.6 Denote the following (finite) ADE diagrams

An(n ≥ 1) ◦ ◦ · · · ◦

Dn(n ≥ 4) ◦

◦

◦ · · · ◦

E6 ◦ ◦

◦

◦ ◦ ◦

E7 ◦ ◦

◦

◦ ◦ ◦ ◦

E7 ◦ ◦

◦

◦ ◦ ◦ ◦ ◦

where the subscript stands for the number of vertices. Note that, they are all
possible proper connected subgraphs of affine ADE diagrams.

▶ Problem 7.7 The corresponding quadratic forms of affine ADE diagrams
are positive definite. ◀P34
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▶ Problem 7.8 Denote the quadratic form

q(x) =

n∑
i=1

x2i +
∑

1≤i<j≤n

cijxixj ,

for cij ∈ Z≤0. Then
(1) q(x) is positively semi-definite if and only if each connected component

of the corresponding Dynkin diagram is an affine or finite ADE diagram.
(2) q(x) is positive definite if and only if each connected component of the

corresponding Dynkin diagram is a finite ADE diagram. ◀P34

We shall remark on a couple of generalizations of ADE classification as
follows. In the study of Lie theory, see [1], we only need to assume C to
be symmetrizable integer matrices where the vertices are of different “sizes”.
The resulting diagrams are known as affine or finite Dynkin diagrams.
In the study of Coxeter groups (and regular polytopes), see [2], we assume
cij = 2 cos π

d for some d ≥ 2. The resulting diagrams are known as affine or
finite Coxeter diagrams. Other than the above cases, ADE classification
appears in some seeming-non-relative cases. For example, there is a one-to-one
correspondence between finite subgroups of SL2 and ADE diagrams known as
McKay correspondence, see [3, Chapter 8]. In the representation theory
of associative algebra, a connected quiver is of finite representation type if
and only if the underlying graph is a finite ADE diagram, known as Gabriel
theorem, see [1, Chapter 4].
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Hints

7.4 Use Exercise 6.11. The labeled number is the required positive vector.

7.7 By Problem 6.12 and Problem 6.13.

7.8 Firstly, any q(x) whose Dynkin diagram is connected and contains an
affine Dynkin diagram properly cannot be positively semi-definite by Problem
6.12 and Problem 6.13. Note that Ãn’s exclude graphs with a cycle, D̃n’s
conclude graphs with more than 4 branches. Finally, Ẽn’s restrict the graphs
with 3 branches.
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8 Krull–Schmidt Theorem

In this section, we will discuss Krull–Schmidt theorem and how it is re-
flected in terms of linear algebra. It can be stated in the language of module
theory as follows.

Theorem 8.1 (Krull–Schmidt Theorem) Assume we have a module iso-
morphism

X =M1 ⊕ · · · ⊕Mm
∼= N1 ⊕ · · · ⊕Nn,

with all Mi and Ni and indecomposable (unable to write it as a direct sum of
smaller submodules). If X satisfies Artinian and Noetherian conditions, then
n = m, and Mi

∼= Nσ(i) for a permutation σ.

But in this section, we will give another form in terms of linear algebra.
Before this, we give a couple of usual exercises which can be regarded as a
shadow of Krull–Schmidt’s theorem.

▶ Problem 8.2 Let F ⊆ C be a subfield (for example R). If two F-matrices
A and B are similar over C, then they are similar over F. ◀P38

Remark 8.3 Problem 8.2 is also true over finite field. This follows from
the theory of λ-matrices. This is also a special case of Noether–Deuring
Theorem, an application of Krull–Schmidt theorem.

▶ Problem 8.4 If
(
A

A

)
is similar to

(
B

B

)
, show that A is similar to B. ◀P38

Definition 8.5 Let I be a fixed index set. Let A = {Ai}i∈I and B = {Bi}i∈I

be two I-families of matrices of the same size (at least 1). We denote

A ∼= B

if there exists a P ∈ GLn such that for each i ∈ I

PAiP
−1 = Bi,

Definition 8.6 For families A(i) = {A(i)
i }i∈I , we denote

A(1) ⊕ · · · ⊕ A(r) =

{(A
(1)
i

A
(r)
i

)}
.

We say A is indecomposable if we cannot write A ∼= A1 ⊕A2.
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By definition, we can decompose any family A until all summands are
indecomposable, or more precisely, by the finiteness of dimension, this process
terminates. In other words,

A ∼= A(1) ⊕ · · · ⊕ A(r)

with each A(i) indecomposable. For example, if the size of matrices of each
Ai is 1, then we usually say A can be simultaneously diagonalized.

Example 8.7 For the case I is a single point, thenA = {A} is indocomposable
if and only if A is similar to a Frobenius block. In particular, if everything is
over C, the condition is to require A similar to a Jordan block.

Remark 8.8 Geometrically, a decomposition

A = A(1) ⊕ · · · ⊕ A(r)

corresponds to a direct sum

V = V1 ⊕ · · · ⊕ Vr

with each Vj subspace invariant under A. Moreover, the matrix of Ai ∈ A
over Vj is A

(j)
i .

Λemma 8.9 Let A be indecomposable. If a matrix P commutes all matrices
of A, then P is either invertible or nilpotent.

— Proof. This is also an application of Fitting Lemma. Denote

V◦ =
⋃

kerP i and V• =
⋂

imP i.

In other words, V◦ is the generalized eigenspace of 0 and V• is the direct sum
of the rest of generalized eigenspaces. We have Cn ∼= V◦ ⊕ V•. It is very easy
to see from the definition that Vx is A-invariant for x = ◦, •. Since we assume
A is indecomposable, we have V• = Cn or V◦ = Cn. Correspondently P is
invertible or nilpotent.

Actually, from the proof, if we work over C, we can conclude that P has
the same eigenvalues.

We will use the following elementary exercise.

▶Exercise 8.10 Assume P1, . . . , Pd satisfy the condition in Lemma 8.9. If

P = P1 + · · ·+ Pd

is invertible, then one of Pi is invertible. ◀P38
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Theorem 8.11 Assume

A(1) ⊕ · · · ⊕ A(a) ∼= B(1) ⊕ · · · ⊕ B(b),

with each A(i) and B(i) indecomposable. Then a = b and Ai
∼= Bσ(i) for a

permutation σ.

— Proof. By definition of ∼=, there exists P = (Pij) with its inverse Q =
(Qij) such that

PijA
(j)
∗ = B(i)Pij A

(j)
∗ Qji = QijB

(i)∑
j PijQjk = δik1

∑
j QijPjk = δik1.

Note that
P11Q11, . . . , P1aQa1

commute with all matrices of B(1) with sum to be 1. Thus one of them is
invertible. By reordering, we can assume P11Q11 to be invertible. Note that

P11A
(1)
∗ = B

(1)
∗ P11 which implies A(1) ∼= B(1). By conjugating by

(P−1
11

1

)
, we

can assume P =
(
1
Y

X
P ′

)
and A

(1)
∗ = B

(1)
∗ . Denote

A′ = A(2) ⊕ · · · ⊕ A(a) = {A′
∗ = diag(A

(2)
∗ , . . . A

(a)
∗ )}∗∈I ,

B′ = B(2) ⊕ · · · ⊕ B(b) = {B′
∗ = diag(B

(2)
∗ , . . . B

(b)
∗ )}∗∈I .

Note that

(P ′ − Y X)A′
∗ = B′

∗P
′ − Y B(1)

∗ X = B′
∗P

′ − Y A(1)
∗ X = B′

∗(P
′ − Y X).

Since
(
1
Y

X
P ′

)(
1 −X

1

)
=

(
1
Y P ′−Y X

)
, the matrix P ′ − Y X is always invertible.

We can conclude that A′ ∼= B′ and our theorem follows from induction.

▶ Problem 8.12 For two matrices A and B, recall that we call them uni-
tarily similar if there exists a unitary matrix U such that UAUh = B.

Show that A is unitarily similar to B if and only if A and Ah similar to B
and Bh simultaneously. ◀P38

▶ Problem 8.13 If
(
A

A

)
is unitarily similar to

(
B

B

)
, show that A is

unitarily similar to B.

▶ Problem 8.14 For two real matrices A and B, recall that we call them or-
thogonally similar if there exists an orthogonal matrix U such that UAUt =
B.

For two real matrices A and B, show that A is orthogonally similar to B
if and only if A is unitarily similar to B.
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Hints

8.2 Assume A = PBP−1. Let E be a finite field extension of F containing
entries of P . We pick a set of basis B for E/F. Assume P =

∑
β∈B Pββ. Now

AP = PB implies APβ = PβB. Now consider the polynomial in #B many
variables {zβ}β∈B ,

P
(
(zβ)β∈A

)
=

∑
β∈B

Pβzβ .

Now we have AP (zβ) = P (zβ)B. It suffices to find some choice of zβ ∈ F
such that P (zβ) is invertible. Since F is an infinite field, this is equivalent to
requiring det(P (zβ)) ̸= 0 as a polynomial. Being zero does not depend on the
base field. Thus this is clear since det(P (β)) = det(P ) ̸= 0.

8.4 By the previous problem, we can do so over C which we can use Jor-
dan canonical forms. Note that Jordan blocks of

(
A

A

)
are just obtained by

doubling those for A.

8.10 If d = 1, this is automatically true, so we assume d ≥ 2. Note that
it suffices to show when P = 1, since we can replace each Pi by P

−1Pi. To
be exact, Pi is invertible if and only if so is P−1Pi. Thus Pi is nilpotent if
and only if so is P−1Pi by Lemma 8.9. In this case, if P1 is not invertible,
P2+ · · ·+Pd = 1−P1 is invertible. Thus the assertion follows from induction.

8.12 One direction is clear. For the converse, assume PAP−1 = B and
PAhP−1 = Bh, i.e. (P h)−1AP h = B. We thus have P hPA = AP hP . Assume
P = UQ for a unitary matrix U and a positive definite matrix Q by polar
decomposition. So we have Q2A = AQ2. Then QA = AQ, since Q2 is a
polynomial in Q. Now B = PAP−1 = UAU−1.
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9 Matrices Decompositions

In this section, we will make an attempt to summarize the matrices decom-
positions.

Gauss decomposition 9.1 For any invertible matrix A, we can write A =
PSQ with P lower triangular, Q upper triangular, and S a permutation ma-
trix.

— Proof. Note that if a ̸= 0,(
1
−c a

)(
a
c
b
d

)(
1 −b

a

)(
1/a

1/a

)
=

(
1
ad−bc

)
.

Thus, if one entry of A is non-zero, we can without any loss of generality
to assume that this entry is 1 and any entries lower than or right to it is
zero. In particular, each column or row has exactly one 1, i.e. a permutation
matrix.

We see that for most (a dense set many) invertible matrices can be written
as a product of a lower triangular matrix and an upper one.

▶ Problem 9.2(Bruhat decomposition) For any invertible matrix A, we
can write A = PSQ with P and Q both upper triangular, and S a permutation
matrix. ◀P42

▶ Problem 9.3 Show that any matrix A can be written as A = PSQ with
P and Q upper triangular, and S a partial permutation matrix (i.e. at most
one 1 in each column and row).

We remark that the Bruhat decomposition can be generalized to any re-
ductive algebraic groups, see [1] where triangular matrices are generalized to
be an element of a Borel subgroup, and permutation matrices are nothing but
Weyl group elements.

▶ Problem 9.4 Any positively definite matrix A can be decompose into PP t

for an upper triangular matrix P .

Jordan decomposition 9.5 Any matrix A can be uniquely decomposed
into A = D +N with D diagonalizable, N nilpotent and DN = ND. More-
over, D and N are both polynomials in A.

— Proof. Firstly, let us show this over C.
Over each root space V , we define the action of D to be the scalar of

the corresponding eigenvalue and N = A −D. It is clear that D and N are
polynomials in A over V . By the Chinese remainder theorem, they are still
polynomials in A globally. This shows the existence of decomposition.
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Assume we have any other decomposition A = D′ + N ′. Since we have
constructed D and N which are polynomials in A, we see D′, N ′, D and N
commute each other. In particular, D−D′ is still diagonalizable and N −N ′

is still nilpotent. But we require D −D′ = N ′ − N , which forces both sides
to be zero. This is the proof of uniqueness.

For a general subfield F of C, we pick a Galois extension E the entries of
D and N belong to. By the uniqueness, D and N are both invariant under
any Galois group action which shows D and N are both F-matrices.

▶ Jordan decomosition 9.6 Assume A is invertible, show that A = DU
with D diagonalizable, U unipotent (1 + (nilpotent)) and DU = UD. More-
over, D and N are both polynomials in A. ◀P42

QR decomposition 9.7 Any invertible real matrix A can be decomposed
in to A = QR with Q orthogonal and R upper triangular. Moreover, this
decomposition is uniquely determined if we require the diagonal elements of
R to be positive.

— Proof. This is a record of Gram–Schmidt orthogonalization. To be exact,
assume A = (a1, . . . , an) for column vectors ai’s. Gram–Schmidt orthogonal-
ization tells that there is a set of unit orthogonal basis v1, . . . , vn such that
for all i,

vi ∈ span(a1, . . . , ai).

In other words,
(a1, . . . , an)R

′ = (v1, . . . , vn)

for an upper triangular matrix R′. Note that since diag(±1, . . . ,±1) is or-
thogonal, we can always assume the diagonal entries R to be positive. This
shows the existence.

Assume A = QR = Q′R′ for another such decomposition. We have
Q−1Q′ = R(R′)−1 which is both orthogonal and upper triangular. But such
matrices only be diag(±1, . . . ,±1). Thus, if we require the signs over diagonal,
both sides is 1.

▶ Problem 9.8 Any invertible complex matrix A can be decomposed in to
A = QR with Q unitary and R upper triangular. Moreover, this decompo-
sition is uniquely determined if we require the diagonal elements of R to be
positive.

This shows that we have a decomposition

GLn(R) ∼= O(n)×
( R>0 R

R>0

)
(as topological space),
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GLn(C) ∼= U(n)×
( R>0 C

R>0

)
(as topological space),

which in particular shows that GLn(R) and O(n) (resp., GLn(C) and U(n))
are of the same homotopy type. This can also be generalized to complex
groups, known as Iwasawa decomposition.

▶ Problem 9.9 Show that any matrix A (not necessarily invertible) can be
decomposed into A = QR with Q orthogonal and R upper triangular. ◀P42

▶ Problem 9.10 For a matrix A = (aij), show that

detA ≤
n∏

i=1

√
|ai1|2 + · · ·+ |a2in|.

Singular Value Decomposition, SVD 9.11 For any real matrices A, we
can decompose A = PΣQ with P and Q orthogonal and Σ diagonal with
non-negative entries. Moreover, it is clear that the diagonal entries of D are
square roots of eigenvalues of AAt which are known as the singular values
of A.

— Proof. Note that AAt is positively definite. We can find an orthogonal P
such that

AAt = PΣ2P t

for Σ a diagonal matrix whose diagonal entries are the square roots of eigen-
values of AAt. If Σ is invertible, equivalently A is invertible, it suffices to
show Q = Σ−1P tA is orthogonal. This is clear by observing that

QQt = (Σ−1P tA)(AtPΣ−1) = 1.

As a result, we get the decomposition A = PΣQ.
In the general case, we pick a sequence Ai of invertible matrices tending

to A. Assume Ai = PiΣiQi the decomposition as above. Since the space
of orthogonal matrices is compact, we can find a convergent sub-sequence
for (Pi, Qi). By replacing the sequence by the sub-sequence, we can assume
(Pi, Qi) has a limit (P,Q). Then Σ = P tAQt is the limit of Σi which is
non-negative and diagonal. Hence we get the decomposition A = PΣQ.

▶ Problem 9.12 For any complex matrices A, we can decompose A = PΣQ
with P and Q unitary and Σ diagonal with non-negative entries.

▶ Polar decomposition 9.13 For any real/complex matrices A, we can
decompose A = PO with P an orthogonal/unitary matrix and O an positively
semi-definite matrix. ◀P42
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Hints

9.2 Denote w0 =

(
1

1
)
, Note that w0

( ∗ ∗

∗

)
w0 =

( ∗

∗ ∗

)
.

9.6 Assume A = N +D = D(1 +D−1N). Note that D−1 is a polynomial
in D thus in A.

9.9 If A is not invertible, then we pick a sequence Ai of invertible matrices
tending to A. Assume Ai = QiRi the QR decomposition. Since the set of
orthogonal matrices is compact, we can find a convergent sub-sequence. By
replacing the sequence with the sub-sequence, we can assume Qi has a certain
limit Q. Then QtA is the limit of Ri which is also upper triangular.

9.13 Assume A = PΣQ, then A = PQ(QtΣQ).
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10 Three Subspaces

We have a well-known formula stating the relation of dimensions of intersection
and sum, say for two subspaces X and Y , we have

dim(X) + dim(Y ) = dim(X ∩ Y ) + dim(X + Y ).

It was warned in a lot of contexts that the analogy is no longer true for three
subspaces. That is, in general, for three subspaces X, Y , and Z

dim(X + Y + Z) ̸= dim(X) + dim(Y ) + dim(Z)
−dim(X ∩ Y )− dim(Y ∩ Z)− dim(X ∩ Z)
+dim(X ∩ Y ∩ Z).

For example, consider three different lines (going through 0) in a plane.

�
�
�
�
�

A
A
A
A
A

Then dim(X + Y + Z) = 2, but the right-hand-side is 3 + 0. In fact, to state
a correct formula for three spaces, we need to do a lot.

Theorem 10.1 For three subspacesX ,Y , and Z, there are 28 many possible
different subspaces obtained by summing and intersecting among them.

X+Y +Z

X+Y
X+Z

Y +Z

(X+Y )∩(X+Z)

(X+Y )∩(Y +Z)

(X+Z)∩(Y +Z)

X+V U Y +V
Z+V

X X
′

Y
′

Z
′

Y Z

X∩U V Y ∩U
Z∩U

(X∩Y )+(X∩Z)

(X∩Y )+(Y ∩Z)

(X∩Z)+(Y ∩Z)

X∩Y
X∩Z

Y ∩Z

X∩Y ∩Z

U=(X+Y )∩(Y+Z)∩(Z+X)
V=(X∩Y )+(Y ∩Z)+(Z∩X)

X′=V+X∩U
Y ′=V+Y ∩U
Z′=V+Z∩U
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This diagram is known as the free modular lattice generated by 3 elements,
see [1] for more information.

▶ Problem 10.2 For three subspaces X, Y and Z, show that

dimX+dimY +dimZ = dim(X+Y +Z)+dim(X∩Y ∩Z)+1

2
(dimU+dimV ),

where
U = (X + Y ) ∩ (Y + Z) ∩ (Z +X)
V = (X ∩ Y ) + (Y ∩ Z) + (Z ∩X)

are as in Theorem 10.1. ◀P47

For example, if we have a base B such that X, Y and Z are spanned by
BX = B ∩X, BY = B ∩ Y and BZ ∩ Z respectively. Then U = V is nothing
but the space spanned by

(BX ∪ BY ) ∩ (BY ∪ BZ) ∩ (BZ ∪ BX) = (BX ∩ BY ) ∪ (BY ∩ BZ) ∪ (BZ ∩ BX).

For another example, consider three different lines in a plane as before. The
subspace U is the whole 2-dimensional subspace, and V is zero. In particular,

1 + 1 + 1 = 2 + 0 +
2

2
.

We will see just after one more example below that these two examples above
actually include all possible cases. In particular, knowing Theorem 10.5, prob-
lem 10.2 follows from those two examples.

▶Modular property 10.3 For three subsapces X,Y, Z, if X ⊆ Y , then
X +(Z ∩Y ) = (X +Z)∩Y . Thus, it makes no confusion to write X +Z ∩Y ,
and

(X + Y ) ∩ (Y + Z) ∩ (Z +X) = (X ∩ Y ) + (Y ∩ Z) + (Z ∩ Z) = X + Z ∩ Y.

▶ Problem 10.4 For three subspaces X, Y and Z with X ⊆ Y , show that
there are 8 many possibly different subspaces obtained by sum and intersection
among them.

Y +Z

Y X+Z

X+Z∩Y
Z

X Y ∩Z

X∩Z



10 Three Subspaces 45

In particular,

dimX + dimY + dimZ = dim(Y + Z) + dim(X ∩ Z) + dim(X + Z ∩ Y ).

In general, any two chains of subspaces admits finitely many possible sub-
spaces obtained by sum and intersection. Moreover, the diagram, in the most
general case, is the same as the lattice of Young diagrams inside a rectangle,
which is a part of the Young lattice.

Now, we are in the position to state our main theorem on the structure of
three subspaces.

Theorem 10.5 For three subspaces X, Y and Z, we can find a base

{v1, . . . , vd} ∪ {x1, . . . , xr} ∪ {y1, . . . , yr}

such that
(i) X is spanned by {vi ∈ X} ∪ {xi};
(ii) Y is spanned by {vi ∈ Y } ∪ {yi};
(iii) Z is spanned by {vi ∈ Z} ∪ {xi + yi}.

— Proof. This can be proved by the quiver representation of

D⃗4 :

◦
��
◦ ◦.oo

◦
DD

From the representation theory of quiver, the full list of indecomposable rep-
resentations of the above quiver are

1
000

0
100

0
001︸ ︷︷ ︸

(I)

0
010

1
010

0
110

0
011

1
110

0
111

1
011

1
111︸ ︷︷ ︸

(II)

1
121︸ ︷︷ ︸
(III)

Now, we view three inclusions as a D⃗4-representation. It decomposes into
indecomposable modules. Note that (I) will not appear since the maps are
not injective.

The direct summand of (II) tells that there exists a base

{v1, . . . , vd}

such that X, Y or Z is spanned by the basis contained respectively.
The direct summand of (III) tells that there exists a base

{x1, . . . , xr} ∪ {y1, . . . , yr}
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such that X is spanned by {xi}, Y is spanned by {yi} and Z is spanned by
{xi + yi}.

Combining the two parts together, we get the assertion in the theorem.

Remark 10.6 We remark that the story about arbitrary subspaces as what
we discussed in this section stops at the number 3. It is easy to construct four
subspaces with infinitely many different subspaces from sum and intersection.
For example,

{x = y = z}, {x = y = 0}, {y = z = 0}, {z = x = 0}.

•

• •

•

There would not able to get a “finite type” classification as in Theorem 10.5.
Since, the space of four spaces of dimension d1, · · · , d4 in an n-dimensional
space has dimension

n(n− d1) + · · ·+ n(n− d4)

which would achieve n2

4 + · · ·+ n2

4 = n2 for some n and d1, . . . , d4. If there are
only finitely many possibilities of structures, then there are only finite many
GLn-orbits, which in particular indicates the dimension of it is not more than
n2 − 1 (the action of scalar matrices in GLn are trivial), a contradiction. We
refer [2] for the more detailed classification.
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Hints

10.2 Denote

⋆

♡ ♡ ♡

♢ ♢ ♢

□ ♣ □ □

♠ △ △ △ ♠ ♠

□ ♣ □ □

♢ ♢ ♢

♡ ♡ ♡

⋆

We have

⋆−♡+♢−♣ = 0
2♡ = 3⋆+♢

}
=⇒ 2♡ = ♣+ 2⋆

♠ = 2♡

 =⇒ ♠ = ♣+ 2⋆.
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11 Substituting Matrices into Functions

For a square matrix A, we are able to evaluate it for any polynomial f(x) =∑
aix

i, i.e.

f(A) =
∑

aiA
i.

In this section, we will discuss to what extent we are allowed to substitute a
matrix into a function f . We will restrict to R or C in order to motivate two
ways of generalization of it to functional analysis, see Remark 11.8. We will
lastly study the special case when f is exponential or logarithm.

A typical example is that it makes sense to denote f(N) for a nilpotent
matrix N and f(x) = 1

1−x . The observation is

f(x) =
1

1− x
= 1 + x+ x2 + · · ·

in some (for example, topological) sense.

▶ Problem 11.1 For a nilpotent matrix N , show that

(1−N)−1 = 1 +N +N2 + · · · .

Note that the sum is finite.

Λemma 11.2 For a finite set {λ1, . . . , λn} ⊆ R or C and any function f
which is ni-differential at λi, there exists a polynomial p such that

f(z) = p(z) + o
(
(z − λ)ni

)
when z → λi.

— Proof. This lemma can be viewed as a generalization of Lagrangian in-
terpolation with multiplicities. For any 0 ≤ r ≤ n1, since (z − λ1)n1+1−r is
relative prime to

∏
i ̸=1(z − λi)ni+1, we can write

f(x)(z − λ1)n1+1−r + g(x)
∏
i ̸=1

(z − λi)ni+1 = 1.

Denote
χ
(r)
1 (z) = g(z)

∏
i̸=1

(z − λi)ni+1(z − λi)r.

We see for i ̸= 1,

χ
(r)
1 (z) = o

(
(z − zi)ni

)
when z → λi,



11 Substituting Matrices into Functions 49

and
χ
(r)
1 (z) = (z − λ1)r + o

(
(z − λ1)n1

)
when z → λ1.

We can similarly construct χ
(r)
i . As a result,

p(z) =
∑
i

ni∑
r=0

f
(r)
i (λi)

r!
χ
(r)
i (z)

serves.

Construction 11.3 Let f : Ω→ C for an open subset Ω of C (resp., R) and
A be an n× n complex (resp., real) matrix. Assume that

(1) all eigenvalues of A are contained in Ω;
(2) f is (n(λ) − 1)-differentiable at eigenvalue λ of A, where n(λ) is the

multiplicity of (z − λ) of minimal polynomial of A.
Then we define

f(A) = p(A)

where p(z) is any polynomial such that

f(z) = p(z) + o
(
(z − λ)n(λ)−1

)
when z → λ

for any eigenvalues λ of A.

▶ Problem 11.4 Show this construction is well-defined, i.e. p(A) does not
depend on the choice of p(z). ◀P55

▶ Spectral Mapping Theorem 11.5 Show that the eigenvalues of f(A) is
the image of eigenvalues of A under f .

Example 11.6 For example, we can evaluate f(D) when D is diagonalizable.
Assume

D = P diag(d1, . . . , dn)P
−1.

Then
f(D) = P diag(f(d1), . . . , f(dn))P

−1.

Example 11.7 For example, we can evaluate f(J) when J is a Jordan block

J =


λ 1

λ

λ 1
λ


n×n

,
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where f(z) is differentiable (n− 1)-differentiable. It is not hard to see

f(J) =


f(λ) f ′(λ) f ′′(λ)

2 · · · · · ·

f(λ) f ′(λ) f ′′(λ)
2

f(λ) f ′(λ)
λ


n×n

Remark 11.8 We remark that there are two great generalizations in func-
tional analysis of what we discussed in the section. Both of them require more
restrictions on functions or operators.

• we can substitute bounded linear operators A over a Banach space into
any analytic function f defined over an open subset of C containing
the spectrum of A. The definition uses Cauchy integral

f(A) =

∮
f(z)dz

z −A
,

where the integral is over any curve around the spectrum of A. See [1,
§3.30].

• We can substitute normal bounded linear operators A over a Hilbert
space into any continuous function f : C→ C. The definition is

f(A) =

∫
f(z)dE(z)

where E is an operator-valued measure over the spectrum of A. See [1,
§12.24].

Both of them reduce to what we defined above when the underlying vector
space is of finite dimension.

▶ Problem 11.9 Show that a matrix A is normal if and only if its conjugate
transposition Ah is a polynomial of A. ◀P55

▶ Problem 11.10 For an ∞-differentiable function f , show that

d
(
f(A)

)
= f ′(A)dA.

◀P55



11 Substituting Matrices into Functions 51

As an application, we will use the construction in this section to solve the
matrix equation

f(X) = A,

where f is function and A is a given complex matrix. The following theorem
is necessary to establish.

Theorem 11.11 For two infinitely differentiable functions f and g,

g(f(A)) = (g ◦ f)(A)

holds whenever both sides make sense.

— Proof. Assume

f(z) = p(z) + o
(
(z − λ)n

)
when z → λ

g(w) = q(w) + o
(
(w − f(λ))n

)
when z → f(λ)

for any eigenvalues λ of A. We will show that

g(f(z)) = q(p(z)) + o
(
(z − λ)n

)
when z → λ.

Actually, by picking a non-constant p if necessary, we have∣∣∣∣g(f(z))− q(p(z))(z − λ)n

∣∣∣∣ ≤ ∣∣∣∣g(p(z))− q(p(z))(z − λ)n

∣∣∣∣+ ∣∣∣∣g(f(z))− g(p(z))(z − λ)n

∣∣∣∣
=

∣∣∣∣g(p(z))− q(p(z))(p(z)− p(λ))n

∣∣∣∣ · ∣∣∣∣p(z)− p(λ)z − λ

∣∣∣∣n
+ constant ·

o
(
(z − λ)n

)
(z − λ)n

which tends to zero.

▶ Problem 11.12 For any r, if A is nonsingular, then there exists a matrix
B with Bn = A.

▶ Problem 11.13 Show that there is no matrix A such that A2 =
(
0 1
0

)
.

Theorem 11.14 For a infinitely differentiable function f , the equation

f(X) = A

has a solution if for any eigenvalue a of A, there exists an x with f(x) = a
such that f ′(x) ̸= 0.
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Proof. From our construction, it suffices to find an infinitely differentiable
function g defined near eigenvalues of A such that f ◦ g is identity. So the
problem finally reduces to local calculus. By implication theorem, we can find
a differential g near a such that

g′(z) =
1

f ′(g(z))
.

By induction, g(n)(z) is infinitely differentiable. As a result, X = g(A) is a
solution.

▶ Problem 11.15 Assume we have two ∞-differentiable functions f and g,
show that

d
(
gf(A)

)
= g′(f(A))f ′(A)dA.

Next, we will study the matrix exponentials. That is, we will substitute
eA = expA for a square matrix A. Recall that we have the following expansion

ez = exp z = 1 + z +
z2

2!
+
z3

3!
+ · · ·

Note that we can take derivative item-wise for the above series, so that

eA = expA = 1 +A+
A2

2!
+
A3

3!
+ · · ·

under the index-wise limit. This can also be obtained by introducing a norm
of matrices. We will list some properties of matrix exponentials by exercise.

▶ Problem 11.16 For any t1, t2 ∈ C, we have

exp(t1A) exp(t2A) = exp((t1 + t2)A).

In particular, eA is always invertible, and its inverse is e−A.

▶ Problem 11.17 Any invertible matrix can be written as eA for some
complex matrix A, i.e. the map

exp : gln(C) −→ GLn(C)

is surjective. Recall gln(C) is another notation for matrix space Mn(C). ◀P55

▶ Problem 11.18 We have

d

dt
etA = etAA.
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In particular, d
dte

tA
∣∣
t=0

= A. Actually, by theory of ordinary differential

equation, X(t) = etA is the unique solution for

dX

dt
= XA,

such that X(0) = 1n. ◀P55

▶ Problem 11.19 Solve differential equation

dX

dt
= AX.

▶ Problem 11.20 We have

det eA = etrA.

◀P55

Next theorem explains the significance of Lie bracket

[A,B] = AB −BA.

To explain the notation, we need a well-defined logarithm. We firstly remark
that the logarithm is NOT a well-defined function over C \ 0, thus it makes
no sense to denote logA in general. But log can be defined over the open disk
D = {z ∈ C : |z − 1| < 1}. Moreover, we have

log(1 + z) = z − z2

2
+
z3

3
+ · · · .

In this case, it is well-defined to define logA if the eigenvalues of A are suffi-
ciently close to 1.

Theorem 11.21 When |t| > 0 is sufficiently small, the eigenvalues of etAesB

all lie in D, and

log(etAetB) = t(A+B) +
t2

2
[A,B] + o(t2).

Proof. Note that the function sending the maximum distance of eigenvalues
from 1 is a continuous function (Theorem 5.8). Thus when |t| is sufficiently
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small, all eigenvalues of etAetB will be sufficiently close to 1. Now,

log(etAetB) = (etAetB − 1)− (etAetB−1)2

2 + o(t2)

=
(
(1 + tA+ t2

2 A
2)(1 + tB + t2

2 B
2)− 1

)
−

(
(1+tA)(1+tB)−1

)2

2 + o(t2)

= t(A+B) + t2AB + t2

2 (A
2 +B2)− t2 (A+B)2

2 + o(t2)

= t(A+B) +
t2

2
[A,B] + o(t2).

Remark 11.22 Actually, if we expand more, we will find

log(etAetB) = t(A+B) +
t2

2
[A,B] +

t3

12
[A, [A,B]]− t3

12
[B, [A,B]] + o(t3).

The famous Baker–Campbell–Hausdorff theorem tells that the coeffi-
cients are sum of iterated Lie bracket of A and B. In particular, the multi-
plication structure of GLn(C) is recorded by the Lie bracket over gln(C). We
refer [1] for an elementary introduction to this topic.

▶ Problem 11.23 Show that actually

log(etAesB) = tA+ sB +
ts

2
[A,B] + o(|s|2 + |t|2).

▶ Problem 11.24 Show that

lim
t→0

etAetBe−tBe−tA − 1

t2
= [A,B].

Another explanation of the Lie bracket is the following.

▶ Problem 11.25 Show that

d

dt
etAXe−tA

∣∣∣∣
t=0

= [A,X].

◀P55
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Hints

11.4 It suffices to show when

p(z) = o
(
(z − λ)n(λi)−1

)
when z → λi

then p(A) = 0. Actually,
∏
(z − λ)n(λi) divides p.

11.9 Since A can be unitarily diagonalized when A is normal, the result
follows directly from Lagrangian interpolation.

11.10 It suffices to show when f is a monomial. Thus everything reduces to
Leibniz rule d(AB) = A(dB) + (dA)B.

11.17 Since d
dxe

x does not vanish.

11.18 detA = etAd(tA) = etAAdt.

11.20 This is obviously true for the diagonal matrix. The general case follows
from the Jordan decomposition or perturbation argument.

11.25 etAXe−tA = (1 + tA)X(1− tA) + o(t) = t(AX −XA) + o(t).
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12 Topology of Classical Groups

In this section, we will list the basic topological properties of classical Groups.
Here we list some of them.

GLn(R) = {invertible real matrices},
GLn(C) = {invertible complex matrices},
SLn(R) = {A ∈ GLn(R) : detA = 1},
SLn(C) = {A ∈ GLn(C) : detA = 1},

O(n) = {A ∈ GLn(R) : A ·At = At ·A = 1n},
U(n) = {A ∈ GLn(C) : A ·Ah = Ah ·A = 1n},

SO(n) = {A ∈ O(n) : detA = 1},
SU(n) = {A ∈ U(n) : detA = 1},

We do not mention symplectic groups, but the computation is similar.

Proposition 12.1 The group GLn(R) has two connected components,

GL±
n (R) = {A ∈ GLn(R) : ±detA > 0}.

— Proof. It suffices to show GL+
n (R) is path connected. Let us denote the

path-connected component of identity 1n by Pn. It suffices to show Pn =
GL+

n (R). We first list some basic properties of Pn.
(1) If A1 ∈ Pn and A2 ∈ Pm, then

(
A1

A2

)
∈ Pm+n.

(2) If A,B ∈ Pn, then A
−1, AB ∈ Pn, i.e. Pn is a subgroup.

(3) If A ∈ Pn, then QAQ
−1 ∈ Pn for any Q ∈ GLn(R), i.e. Pn is a normal

subgroup.
Note that any orthogonal matrix A with detA = 1 is contained in Pn. To

be exact, by (1) and (3), it suffices to check

A =
(
cos θ
sin θ

− sin θ
cos θ

)
∈ P2,

which is trivial. On the other hand, upper triangular matrices with positive
diagonal entries, i.e.

A =

( R>0 R

R>0

)
∈ Pn.

By (2), the general case follows from QR decomposition Theorem 9.7.

▶ Problem 12.2 Show that O(n) has two connected components, SO(n) and
SO−(n) = {A ∈ O(n) : detA = −1}.
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▶ Problem 12.3 The following groups are connected

SLn(R), SLn(C), GLn(C), U(n), SO(n), U(n).

We remark that, using the surjectivity of exponential map exp : gln(C)→
GLn(C), we also conclude the connectedness of GLn(C), see Problem 11.17.

The above discussion about connected components of G is essentially the
computation of π0(G, 1) in terms of topology. Our next step is to understand
π1(G, 1) the fundamental group. Before doing computation, we present
here a famous result saying π1(G, 1) is always abelian.

Proposition 12.4 For any topological groupG, its fundamental group π1(G, 1)
is always abelian.

— Proof. Denote the usual product of π1(G, 1) by ◦. The productG×G→ G
induces another group structure over π1(G, 1) which we denoted by ⋄. Note
that ⋄ is ◦-homomorphism, i.e.

(x ◦ y) ⋄ (z ◦ w) = (x ⋄ z) ◦ (y ⋄ w) =:

[
x ◦ y
⋄ ⋄
z ◦w

]
.

Note that the constant path 1 is the identity not only for ⋄ but also for ◦.
Thus we can apply the Eckmann–Hilton argument

x ◦ y =

[
x ◦ y
⋄ ⋄
1 ◦ 1

]
=

[
1 ◦ y
⋄ ⋄
x ◦ 1

]
=

[
y ◦ 1
⋄ ⋄
1 ◦x

]
=

[
y ◦x
⋄ ⋄
1 ◦ 1

]
= y ◦ x.

This shows commutativity.

▶ Problem 12.5 Show that ◦ = ⋄. ◀P60

The understanding of fundamental groups of mentioned groups starts from
the case of small n. For example, it is easy to see

U(1) = SO(2) = S1 = the unit circle in R2.

Thus
π1(U(1)) = π1(SO(2)) = Z.

The next lemma concerns a little bit big n, which turns out to be important
when computing the general cases.
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Λemma 12.6 We have

SU(2) ∼= S3 = 3-dimensional sphere in R4

SO(3) ∼= RP 3 = 3-dimensional real projective space

— Proof. Note that SU(2) is homeomorphic to the space of unitary vectors
in C2, i.e. the unit ball of R4.

Note that any A ∈ SO(3) is a rotation. Denote

π : S2 × [0, π] −→ SO(3)

by sending (u, θ) to the rotation of angle θ with axis uR. Note that all possible
collision of (u, θ) is

(1) for any u, v ∈ S2, R(u, 0) = R(v, 0);
(2) for any u ∈ S2, R(u, π) = R(−u, π).
By (1), we can glue

(u, 0) ∼ (v, 0) for all u, v ∈ S2,

the resulting quotient space is a solid ball D3 with θ parametrized by radium.
By (2), we can glue

(u, π) ∼ (u,−π) for all u ∈ S2,

the resulting quotient space is RP 3 by definition. By above discussion, π
induces a continuous bijection

π̂ : RP 3 −→ SO(3),

which must be a homeomorphism since both of them are Hausdorff compact.

Remark 12.7 Actually, one can show that SU(2)/{±1} ∼= SO(3), see [1].

As a result,

π1(SU(2)) = π1(S
3) = 0, π1(SO(3)) = π1(RP 3) = Z/2Z.

In general, we can compute fundamental groups for all mentioned groups.
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Theorem 12.8 We have

π1(GLn(C)) = π1(U(n)) = Z,
π1(SLn(C)) = π1(SU(n)) = 0,

π1(GL+
n (R)) = π1(SLn(R)) = π1(SO(n)) =


0, n = 1,

Z, n = 2,

Z/2, n ≥ 3.

— Proof. By QR decomposition, the groups in each row are homotopy equiv-
alent, thus it suffices to compute any one of them. We first show the last case as
an example. We did the computation for n = 2, 3 above, and it is trivial when
n = 1, so we assume n > 3. The natural identification SO(n − 1) ⊆ SO(n)
gives a long exact sequence

π2(
SO(n)

SO(n−1) )→ π1(SO(n− 1))→ π1(SO(n))→ π1(
SO(n)

SO(n−1) )→ 0.

We remark that SO(n)/ SO(n − 1) is nothing but the (n − 1)-dimensional
sphere Sn−1 in Rn. To be exact, SO(n) acts transitively on Sn−1 with the
stablizer of (0, . . . , 0, 1) isomorphic to SO(n − 1). As a result, when n > 3,
π2(S

n−1) = π1(S
n−1) = 0. This shows π1(SO(n)) = π1(SO(n− 1)) for n > 3.

By a similar manner, we can show

π1(SU(n)) = π1(SU(n− 1)), π1(U(n)) = π1(U(n− 1))

for 2n > 3 i.e. n ≥ 2.

▶ Problem 12.9 Show π1(GLn(C)) = Z from π1(SLn(C)) = 0 directly. ◀P60

▶ Problem 12.10 Compute the universal cover of GLn(C). ◀P60

Remark 12.11 The universal covering of SO(n) is known as the spin group.
To construct them, we need Clifford algebra. We refer readers to [2, §I.6].
The fundamental groups of a compact group can be computed in terms of root
systems, see [2, §V.7].
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Hints

12.5 x ◦ y =

[
x ◦ y
⋄ ⋄
1 ◦ 1

]
=

[
x ◦ 1
⋄ ⋄
1 ◦ y

]
=

[
1 ◦x
⋄ ⋄
1 ◦ y

]
= x ⋄ y.

12.9 Note that GLn(C)/ SLn(C) = C×. We have a long exact sequence

π1(SLn(C))→ π1(GLn(C))→ π1(C×)→ 0.

Note that C× is homotopy equivalent to circle S1, thus π1(GLn(C)) ∼= Z.
12.10 It is C× SLn(C), with covering map be (z,A) 7−→ ez/nA.
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13 Counting Subspaces

In this section, we will compute the number of subspaces over a finite field
Fq where q is a power of a prime. There are two methods correspondent
to addition principle and multiplication principle. The first method is to
decompose (stratify) the space into disjoint pieces. The second method is to
find a surjective map to with preimage (fibre) of each point isomorphic. As a
result, our method works over any field except counting at the end.

We first introduce some notations.

Definition 13.1 We define quantum number

[n] =
qn − 1

q− 1
= 1 + q+ · · ·+ qn−1.

We define quantum factorials, and quantum binomial coefficients

[n]! = [n] · · · [1],
[n
k

]
=

[n]!

[k]![n− k]!
.

The main object is Grassmannian, the set of k-subspaces of Fn
q.

Definition 13.2 For 0 ≤ k ≤ n, denote Grassmannian

Gr(k, n) = {V ⊆ Fn
q : dimV = k}.

Note that Gr(1, n) = Pn−1 is the projective space. We also denote complete
flag variety

Fl(n) = {0 ⊆ V1 ⊆ · · · ⊆ Vn−1 = Fn
q : dimVi = i}.

▶ Problem 13.3 Show that #Pn−1 = [n]. ◀P65

Theorem 13.4 We have

#Fl(n) = [n]!, #Gr(k, n) =
[n
k

]
.

— Proof. We have a natural map

π : Fl(n) −→ Gr(1, n) = Pn−1

by sending a flag (V•) to V1. Note that π is surjective. For each V ∈ Gr(1, n),
the fibre π−1(V ) is in bijection to the set of complete flag of Fn

q/V , i.e. Fl(n−1)
up to an isomorphism. As a result,

#Fl(n) = #Pn−1 × #Fl(n− 1) = [n] · #Fl(n− 1).
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By induction, we see #Fl(n) = [n]!.
Next, let us consider

πk : Fl(n) −→ Gr(k, n)

by sending a flag (V•) to Vk. Note that πk is surjective with each fiber iso-
morphic to Fl(k)× Fl(n− k). Thus

[k]! · [n− k]!× #Gr(k, n) = [n]!.

This is exactly what we asserted.

▶ Problem 13.5 For k = (0 < k1 < · · · < km < n), compute the number of
partial flag variety

Fl(k, n) = {0 ⊆ V1 ⊆ · · · ⊆ Vn−1 = Fn
q : dimVi = ki}

equals to so-called quantum multinomial coefficient

[n]!

[k1]![k2 − k1]! · · · [n− km]!
.

Our next problem is to compute the number of subspaces (U, V ) with the
following dimension condition

dim


U + V

U V

U ∩ V

 =


t

u v

s

 .
Note that u+ v = t+ s. Let us denote this set by Gr(u t

s v, n).

Example 13.6 For example, let us consider the case t
u v

s

 =

 k+1
k 1

0

 .
In this case, for each line V , we need to avoid those U containing V . In other
words, for a fixed V , the choice of U is Gr(k, n)\X with X ∼= #Gr(k−1, n−1).
As a result,

#Gr
(
k
k+1
0 1, n

)
= [n] ·

([n
k

]
−
[n−1

k−1

])
.
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▶ Problem 13.7 Show that

#Gr(u t
s v, n) =

[n
t

]
#Gr(u t

s v, t) =
[n
t

][
t
s

]
#Gr(u-s t-s0 v-s, t− s).

▶ Problem 13.8 Prove that

#GLn(Fq) = (qn − 1)(qn − q) · · · (qn − qn−1) = (q− 1)nqn(n−1)/2[n]!.

◀P65

▶ Problem 13.9 Prove that

#Gr(kn
0 n-k, n) =

#GLn(Fq)

#(GLk(Fq)×GLn−k(Fq))
= qk(n−k)

[n
k

]
.

In other words, we are counting all possible direct sum decomposition of the
given dimensions for Fn

q.

Example 13.10 Alternatively, it is easy to see

#Gr(kn
0 n-k, n) =

[n
k

]
× #X

where X is the set U ∈ Gr(n− k, n) such that Fn
q = U ⊕ V for a given V of

dimension k. For each U0 ∈ X, we claim

X ∼= Hom(U0, V ).

To be exact, any U ∈ X is the graph of some linear map φ : U0 → V , i.e.

U = {u⊕ φ(u) : u ∈ U0} ⊆ U0 ⊕ V = Fn
q.

That is, for each u ∈ U0, u+ V intersects U exactly once. As a result,

#Gr(kn
0 n−k, n) = qk(n−k)

[n
k

]
.

Theorem 13.11 We have

#Gr(u t
s v, n) = q(u−s)(v−s) [n]!

[s]![u− s]![v − s]![n− t]!
.
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Corollary 13.12 For a given u-dimensional space U , the number of v-

dimensional spaces V with dim(V ∩ U) = d is q(u−d)(v−d)
[u
d

][n−u

v−d

]
. Actually,

the fiber of

V 7−→ (U ∩ V, U+V
U ) ∈ Gr(d, u)×Gr(v − d, n− u)

has cardinality q(u−d)(v−d).

Now, assume we have a 2-step flag U1 ⊆ U2, we can form the lattice for
any subspace V

Fn
q

U2 + V

U2 U1 + V

U1 + V ∩ U2 V

U1 U2 ∩ V
U1 ∩ V

0

Assume U1 ⊆ U2 is given, of dimensions u1 ≤ u2. We can compute the number
of subspaces V such that U1 ∩ V ⊆ U2 ∩ V have dimension v1 ≤ v2. We can
first predict the dimensions of all subspaces in the diagram, say,

n
k+u2-v2

u2 k+u1-v1
u1+v2-v1 k

u1 v2
v1

0

Then we set

V 7−→ (U1∩V, U1+V ∩U2

U1
, U2+V

U2
) ∈ Gr(v1, u1)×Gr(v2−v1, u2−u1)×Gr(k−v2, n−u2).

The diagram is { ◦
◦

◦
◦
◦
•

◦
◦
◦

◦

}
π //

π1 !!

{ ◦
◦

◦
◦

◦
◦

◦

}

{ ◦
◦

◦
◦
◦

◦
◦
◦

◦

} π2

==

.
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We see the computation of fiber π1 and π2 can be reduced to Corollary 13.12.
As a result, the final answer is

q(u1−v1)(v2−v1)+(u2−v1)(k−v2)
[u1

v1

][u2−u1

v2−v1

][n−u2

k−v2

]
.

In general, for any chain of subspaces, we can do a similar computation.

▶ Problem 13.13 Let us counting the number of nilpotent matrices over a
finite field. Let

N(n) = {x ∈Mn(Fq) : x
n = 0}.

Prove that

#Mn(Fq) =

n∑
k=0

#Gr(kn
0 n-k) · #GLn−k(Fq) ·N(k)

=

n∑
k=0

#GLn(Fq)

#GLk(Fq)
N(k) = N(n) +

n−1∑
k=1

#GLn(Fq)

#GLk(Fq)
N(k)

= N(n) +
#GLn(Fq)

#GLn−1(Fq)

n−1∑
k=1

#GLn−1(Fq)

#GLk(Fq)
N(k)

= N(n) +
#GLn(Fq)

#GLn−1(Fq)
#Mn−1(Fq).

As a result, N(n) = qn(n−1).

Hints

13.3 Actually, we can decompose Pn−1 = A0⊔· · ·⊔An−1 where each Ai ∼= Fi
q

whose cardinaty is qi. Alternative, we see Pn−1 is obtained from Fn
q\0 quotient

by a free action of F×
q .

13.8 It is equivalent to count the number of linearly independent vectors
of cardinality n. The number of linearly independent vectors of cardinality
k ≤ k is (qn − 1)(qn − q) · · · (qn − qk−1).
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14 Commutating Matrices

We will describe all matrices commuting with a given matrix. We will only
deal with nilpotent matrices and left the general cases to readers. See Problem
14.10.

We will use the following diagram (of length r)

0
A 7−→• A 7−→• A 7−→· · · A 7−→• A 7−→•

to represent a nilpotent matrix A, i.e. Jordan block of size r. We call the
vector corresponding to the rightmost dot the generator of A, or it generates
A. The theory of Jordan canonical forms tells that any nilpotent matrices are
the direct sum of Jordan blocks. For a nilpotent matrix A, if A decomposes to
Jordan blocks of sizes λ1 ≥ λ2 ≥ · · · , we call λ is the type of A. For example,
the following diagram

0
A 7−→• A 7−→• A 7−→• A 7−→•

0
A 7−→• A 7−→• A 7−→• A 7−→•

0
A 7−→• A 7−→•

0
A 7−→•,

represents a nilpotent matrix of type (4, 4, 2, 1).

Definition 14.1 For a partition λ, we denote

Gλ = {X ∈ GL(V ) : XA = AX},
gλ = {T ∈ End(V ) : TA = AT},

for a nilpotent transform A over V of type λ, i.e. the automorphism group of
V preserves A.

▶ Problem 14.2 Let A = J be single Jordan block (belonging to 0) of size
r. Show that

Gλ = {a01+ a1J + · · ·+ ar−1J
r−1 : a0 ̸= 0},

gλ = {a01+ a1J + · · ·+ ar−1J
r−1.

Or, in terms of matrix

Gλ =




a0 a1 a2 · · · ar−1

a0 a1 a2
a0 a1

a0

 : a0 ̸= 0

 .
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In particular, dimGλ = r.

▶ Problem 14.3 Note that type of A =

(
0

0 1

0

)
is (2, 1). Prove

G(2,1) =

{(
a

c

0

0

d

0

b

e

d

)
: ad ̸= 0

}
g(2,1) =

{(
a

c

0

0

d

0

b

e

d

)}
.

In particular, dimG(2,1) = 5.

Let us fix a Jordan canonical form of A. For two coordinate subspaces
M ⊆ N , we denote N ⊖M to be the complement coordinate subspace. For
example,

V ′
i = kerxi ⊖ x(kerxi+1)

is space spanned by generators of Jordan block of size i. Note that dimV ′
i is

exactly the number of i’s appearing in λ.

Example 14.4 Assume we are given a

φ = (φi) ∈
∏

Hom(V ′
i , kerA

i ⊖ V ′
i ).

Then φ defines Tφ : V → V by sending

Ajv 7−→ Ajv +Ajφ(v)

for v ∈ V ′
i . It is clear that Tφ−1 commutes with A and is nilpotent. Actually

any X ∈ Gλ such that the submatrix for

V ′
1 ⊕ V ′

2 ⊕ · · · ⊕ V ′
i ⊆ V

is identity admits a unique φ such that X = Tφ. We denote radGλ the
subgroup of all transforms obtained in this way.

Example 14.5 Assume we are given

σ = (σi) ∈
∏

GL(V ′
i )

Each σ defines gσ : V → V by sending

Ajv −→ Ajσi(v)

for v ∈ V ′
i . It is clear that gσ commutes with A and is invertible. We denote

Lλ the subgroup of all transforms obtained in this way.
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We use the following diagram to illustrate them.

• • • •

• • • •

• • •

•

ll kk gg

rr ss ww

ww {{ ��

||

__ WW OO

gg ____ OO

oo oo

ww

OO

OO

OO

morphisms
for arrows ← ∈ radGλ

automorphisms
inside frames □ ∈ Lλ

Theorem 14.6 We have a split short exact sequence

0 −→ radGλ −→ Gλ −→ Lλ −→ 0.

— Proof. Note that kerAi⊖V ′
i is A-invariant, thus the operator sending T to

the submatrix of Vi is well-defined. By our discussion above, this is clear.

▶ Problem 14.7 Find the description for gλ = {T ∈ End(V ) : TA = AT}.
Actually, gλ is the Lie algebra of Gλ.

We are going to compute the dimension of Gλ.
To establish this theorem, we need more notations concerning partitions.

Let us denote λ′ the conjugation of λ, i.e. transpose. That is, λ′i is the number
of •’s in the i-th column. For example (4, 4, 3, 1)′ = (4, 3, 3, 2)

• • • •
• • • •
• • •
•
4 3 3 2

Note that λ′i− λ′i+1 is the number of i’s appearing in λ. A slightly less trivial
computation is

▶ Problem 14.8 Show that

n(λ) :=
∑

(i− 1)λi =
∑(

λ′i
2

)
In other words,

∑
λ′2i = |λ|+ 2n(λ). ◀P71

Theorem 14.9 We have dimGλ = dim gλ = |λ|+ 2n(λ).
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— Proof. By Theorem 14.6,

dimGλ = dim radGλ + dimLλ

=
∑

(λ′i − λ′i+1)(λ
′
1 + · · ·+ λ′i−1 + λ′i+1) +

∑
(λ′i − λ′i+1)

2

=
∑

(λ′i − λ′i+1)(λ
′
1 + · · ·+ λ′i)

=
∑

λ′2i

where the last equality uses summation by parts. For example,

λ′1


λ′2

λ′3
λ

′
4

{ λ′1︷ ︸︸ ︷
• • • •
• • • •
• • • •
• • • •

λ′2︷ ︸︸ ︷
• • •
• • •
• • •

λ′3︷ ︸︸ ︷
• • •
• • •
• • •

λ′4︷ ︸︸ ︷
• •
• •

Thus the result follows from above problem.

See also [1, Lemma 2.8] or [2, II (1.6)].

▶ Problem 14.10 Denote

GA = {T ∈ GL(V ) : TA = AT},
gA = {T ∈ End(V ) : TA = AT},

for any linear transform A. Assume A decomposes into diag(A1, . . . , Ad) with
Ai belonging to different eigenvalues σi. Show that

GA = diag(GA1 , . . . , GAd
),

gA = diag(gA1 , . . . , gAd
).

In particular,

dim gA =
∑
|λi|+ 2n(λi),

where λi is the type, i.e. the sizes of Jordan blocks belonging to σi.

▶ Problem 14.11 Assume we have Jordan decomposition A = D +N with
D diagonalizable and N nilpotent. Show that

GA = GD ∩GN , gA = gD ∩ gN .
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▶ Problem 14.12 Assume the coefficients of A are all in F a subfield of C.
We can form

gA(F) = {T ∈Mn(F) : TA = AT}.

Show that
dimF gA(F) = dimC gA(C).

◀P71

▶ Problem 14.13 Show that any matrix B commutes with all elements of
gA is a polynomial of A. ◀P71

Remark 14.14 We can classify the pairs (A, x) for A ∈Mn(C) and x ∈ Cn.
Geometrically, this problem is equivalent to the classification of the following
data

v ∈ V

A

rr or 1 // ⃝ ss

Similarly, we will only deal with the case when A is nilpotent. Let A be a
nilpotent matrix of type λ. We pick a Jordan canonical form of A, say,

V =
⊕
i

mi⊕
j=1

(
Ce(j)i ⊕ · · · ⊕ CAi−1e

(j)
i

)
,

with each e
(j)
i ∈ kerAi, and mi the number of i’s appearing in λ. For any

v ∈ V , there exists a g ∈ Gλ such that

gv = Ab1e
(1)
a1+b1

+ · · ·+Abde
(1)
ad+bd

,

for two partitions

a : a1 > a2 > · · · > ad > 0, b : b1 > b2 > · · · > bd ≥ 0,

such that a1 + b1, . . . , ad + bd represent different parts of λ. We illustrate this
with an example.

1 2 0 0
3 4 5 0
6 7
8

Lλ7−→
? ? 1 0
? ? 0 0
6 7
8

radGλ7−→
0 0 1 0
0 0 0 0
0 7
8

Lλ7−→
0 0 1 0
0 0 0 0
0 1
8

radGλ7−→
0 0 1 0
0 0 0 0
0 1
0

Thus a = (3, 2) and b = (1, 0). Moreover, it is not hard to see two partitions
(a, b) are uniquely determined. See [3, Proposition 2.5]. We left it to the
reader to figure out the general case when A is not necessarily nilpotent.
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Hints

14.8 Since n(λ) is the sum of numbers obtained by attaching 0 to each • in
the top row, and 1 to each • in the second row, and so on.

14.12 Actually, TA = AT is a linear equation in entries of T .

14.13 This follows from the direct computation.
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15 Subspaces Avoidence

In this section, we will discuss the phenomenon of subspaces avoidance. The
simplest version states that over an infinite field F a finite-dimensional vector
space V cannot be covered by finite many proper subspaces.

If F = R, this assertation follows from a measure theory argument. To
be exact, any proper subspaces of Rn have measure zero under the standard
Lebesgue measure. Therefore the union of at most countable proper subspaces
is also of measure zero. Similarly, this also follows a Baire category argument,
see [1]. Note that the same is true for C since we can view a complex vector
space as a real one with dimension doubled.

In the general case, we can make an attempt for the union of two subspaces.
For two proper subspaces U1 and U2 of V . If U1 ⊆ U2 or U2 ⊆ U1, then the
union is a single proper subspace, thus cannot cover V . Otherwise, we can
pick a ∈ U1 \ U2 and b ∈ U2 \ U1, in this case, it is easy to show a + b is not
in U1 ∪ U2. This can be generalized to more subspaces.

Theorem 15.1 Let F be an infinite field. Any vector space (not necessarily
finite-dimensional) cannot be covered by finite many proper subspaces.

— Proof. Assume U1, . . . , Un be subspaces of V . This is clear when n = 1,
so we assume n ≥ 2. By induction, we can assume each Ui is not contained
in the union of Uj for j = i. In other words, we can find xi ∈ Ui but not in
Uj for j ̸= i. Note that

#

{
x1 + λx2 : λ ∈ F×

}
=∞.

Assume U1 ∪ · · · ∪ Un = V , then there must be one Ui contains at least two
elements, i.e.

v1 = x1 + λ1x2 ∈ Ui, v2 = x1 + λ2x2 ∈ Ui

for λ1 ̸= λ2, which implies

x2 =
v1 − v2
λ1 − λ2

∈ Ui, x1 = v1 − λ1x2 ∈ Ui.

This contradicts our choice.

Theorem 15.2 Let V be a finite-dimensional vector space over an infinite
field F. If

V =
⋃
i∈I

Ui

for {Ui}i∈I a family of proper subspaces, then |I| ≥ |F|.
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— Proof. We can assume V = Fn. We can construct the following curve

γ : F −→ Fn, t 7−→ (1, t, t2, . . . , tn−1).

The main feature of this curve is, any n different points on γ are not contained
in any proper subspace. That is, for different t1, . . . , tn,

1
t1

tn−1
1

 ,


1
t2

tn−1
2

 , · · · ,


1
tn

tn−1
n


are linear independent. This is clear by Vandemonde’s determinant. As a
result, any Ui contains at most n − 1 many points on γ. In particular, since
|I| =∞,

|I| = (n− 1)|I| ≥ |F|.
This finishes the proof.

▶ Problem 15.3 Give a counterexample when dimV =∞. ◀P74

▶ Problem 15.4 Let Fq be a finite field of q elements. Show that we need
all q + 1 one-dimensional subspaces to cover F2

q.

▶ Problem 15.5 Let f(x1, . . . , xn) be a polynomial and S ⊆ F be a finite
set. If deg f < |S|, show that we can always find x1, . . . , xn ∈ S such that
f(x1, . . . , xn) ̸= 0. ◀P74

Theorem 15.6 Let V be a finite-dimensional vector space over a finite field
F. If

V =
⋃
i∈I

Ui

for {Ui}i∈I a family of proper subspaces, then |I| ≥ |F|+ 1.

— Proof. We assume V = Fn. By deleting the repeating subspaces, we can
assume I to be finite. Without loss of generality, we assume every Wi to be a
hyperplane, say Ui = {fi = 0}. The condition says

f(x1, . . . , xn) =
∏

fi(x1, . . . , xn) = 0 (∗)

for all x ∈ V . Note that f is homogeneous of degree |I|. By the problem
above, we see |I| > |F|. Assume |I| = |F|. Now since 0 is contained in each
Ui, we have

#

(⋃
Ui

)
< |I| · |Fn−1| = |Fn| = |V |,

which is absurd. As a result, |I| ≥ |F|+ 1.
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Remark 15.7 Lastly, we remark a vast extension of Problem 15.5, combi-
natorial nullstellensatz by N.Alon [2].

Let F be an arbitrary field, and let f = f(x1, . . . , xn) be a polyno-
mial in F[x1, . . . , xn]. Suppose the degree deg(f) of f is

∑n
i=1 ti,

where each ti is a nonnegative integer, and suppose the coefficient
of

∏n
i=1 x

ti in f is nonzero. Then, if S1, . . . ,Sn are subsets of F
with |Si| > ti, there are s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn so that

f(s1, . . . , sn) ̸= 0.
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[2] N.Alon, Combinatorial nullstellensatz[J]. Combinatorics, Probability and
Computing, 1999, 8(1-2): 7-29.

Hints

15.3 Consider
⊕∞

i=1 R, it is the union of
⊕n

i=1 R for all n.

15.5 Apply the induction hypothesis on the coefficient of the leading term
of f with respect to x1.
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16 Classification of A+ λB

In this section, we will classify the equivalence class of pair of complex matrices
where (A,B) is similar to (A′, B′) if there exists invertible P and Q such that

PA = A′Q, PB = B′Q.

Note that we are actually classifying indecomposable representation of Kro-
necker quiver

◦ ((
66 ◦.

More precisely, if we draw (A,B) as

Cn A **
B
44 Cm

then (A,B) is equivalent to (A′, B′) if and only if the following

Cn A **
B
44

Q

��

Cm

P
��

Cn A′ **
B′ 44 C

m

commutes

i.e.

Cn A **

Q

��

Cm

P
��

Cn A′ **
Cm

commutes

and

Cn

B
44

Q

��

Cm

P
��

Cn

B′ 44 C
m

commutes.

▶Exercise 16.1 Assume A is invertible, then (A,B) are similar to (I, J)
where J is a Jordan canonical form.

Before preceding, let us consider the translation of this problem in terms
of λ-matrices. Recall a λ-matrix is nothing but an element in Mn(C)[λ] =
Mn(C[λ]).
▶Exercise 16.2 Show that a λ-matrix P (λ) is invertible if and only if
detP (λ) is a nonzero number. Equivalently, P (λ) is invertible for any complex
number λ.

▶ Problem 16.3 Assume A is invertible Show that two pairs (A,B) is similar
to (A′, B′) if and only if there exists invertible λ-matrices P (λ) and Q(λ) such
that

P (λ)(A+ λB) = (A′ + λB′)Q(λ).

◀P80

By replacing A by A + λ0B for some λ0, we actually find the canonical
form for pairs (A,B) with the polynomial det(A+ λB) nonzero. The details
are left to readers. Now, we will assume det(A+ λB) = 0 (including the case
(A,B) are not square matrices).
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Kronecker Theorem 16.4 If det(A+λB) = 0, then (A,B) is equivalent to((
R

A′

)
,
(
L

B′

))
or

((
Rt

A′

)
,
(
Lt

B′

))
where

R =
(
0

0

1

1

)
, L =

(
1

1

0

0

)
.

Since det(A+λB) = 0 or A+λB is not even a square matrix, by replacing
A + λB by its transpose, we can assume there is a nonzero null λ-vector for
(A− λB) (here we use A− λB to simplify the signs). Precisely, there exists

v(λ) = v0 + v1λ+ · · ·+ vkλ
k ∈ Cn[λ]

such that
(A− λB)v(λ) = 0.

We assume the degree k of v(λ) is as small as possible.
By expanding the equation, we get

· · · 0 u1 · · · uk 0 · · ·

0
�

__ ??

v0
�

__ ??

v1
�

__ ??

· · ·�

__ ??

vk
�

__ ??

0
�

__ ??

where A :
� // and B : // . Conversely, the diagram of the shape

above provides a null λ-vector.
We shall denote vectors by[

· · · 0 u1 u2 · · · uk 0 · · ·
· · · 0 v0 v1 · · · · · · vk 0 · · ·

]
.

Claim Vectors u1, . . . , uk are linearly independent.

— Proof. Let λ1u1 + · · ·+ λkuk = 0 be linear relation. Then we consider

λ1

[
· · · 0 u1 u2 · · · uk 0 · · ·

· · · 0 v0 v1 · · · · · · vk 0 · · ·

]
+ λ2

[
· · · u1 u2 · · · uk 0 0 · · ·

· · · v0 v1 · · · · · · vk 0 0 · · ·

]
+ · · ·

+ λk

[
· · · uk−1 uk 0 0 · · · 0 · · ·

· · · vk−2 vk−1 vk 0 · · · · · · 0 · · ·

]
=

[
· · · ∗ 0 ∗ · · · ∗ 0 · · ·

· · · ∗ ∗ ∗ · · · · · · ∗ 0 · · ·

]



16 Classification of A+ λB 77

We get a null vector[
· · · 0 0 ∗ · · · ∗ 0 · · ·

· · · 0 0 ∗ · · · · · · ∗ 0 · · ·

]
By our choice, all ∗ vanish, and thus all λi = 0. The proof is complete.

▶Exercise 16.5 Show that v0, v1, . . . , vk are linearly independent.

Now we find the matrices of (A,B) restricting to

V =span(vi)

A
((

B

66
span(ui)= U,

is nothing but (R,L). Now, (A,B) is equivalent to((
R C

A1

)
,
(
L D

B1

))
for some matrices C and D. Now we assume

(A,B) =
((

R C
A1

)
,
(
L D

B1

))
I claim there exist matrices X and Y such that(

1 X
1

)(
R C

A1

)
=

(
R

A1

)(
1 Y

1

)(
1 X

1

)(
L D

B1

)
=

(
L

B1

)(
1 Y

1

)
That is, the following matrix equation{

RY −XA1 = C

−LY +XB1 = −D

is solvable. To see this, we need to show the linear map

(X,Y ) 7−→ (RY −XA1,−LY +XB1)

is surjective.

▶Exercise 16.6 Check that the adjoint of

Ma×b(C) −→Mc×d(C), A 7−→ PAQ

is
Md×c(C) −→Mb×a(C), B 7−→ QBP.

In particular, the matrix equation PXQ = A has a solution for any A if and
only if QY P = 0 has only zero solution.
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Equivalently, the adjoint

(M,N) 7−→ (MR−NL,A1M −B1N)

is injective.

Claim The equation {
MR−ML = 0

A1M −B1N = 0

has only zero solution.

— Proof. Let us denote M = (x0, . . . , xk−1), the equation tells that we have
the following diagram

· · · 0 y1 · · · yk−1 0 · · ·

0
��

[c ;C

x0
��

[c ;C

x1
��
[c ;C

· · ·��

[c ;C

xk−1
��
[c ;C

0
��

[c ;C

where A1 :
�� +3 and B1 : +3 . Firstly, we will lift the chain to

· · · ỹ0 ỹ1 · · · ỹk−1 0 · · ·

· · ·�

__ ??

x̃0
�
__ ??

x̃1
�
__ ??

· · ·�

__ ??

x̃k−1

�
__ ??

0
�

__ ??

where A : � // and B : // . We require it is a lift in the following sense
The last n− k − 1 component of x̃i is xi, i.e. x̃i =

( ∗
xi

)
. Then the last m− k

component of ỹi is yi, i.e. t̃i =
(∗
ti

)
. We include i = 0 by assuming y0 = 0.

Note that

B

(
0

xk−1

)
= Dxk−1 +B1xk−1 = Dxk−1 ∈ span(vi)

So we can find −Lx′k−1 = B
(

0
xk−1

)
. We put x̃k−1 =

(
x′
k−1

xk−1

)
, we have Bx̃k−1 =

0. Let us denote ỹk−1 = Ax̃k−1.
Note that

B

(
0

xk−2

)
− ỹk−1 ∈ span(vi).

So we can find −Lx′k−2 = B
(

0
xk−2

)
− ỹk−1. We put x̃k−2 =

(
x′
k−2

xk−2

)
, we have

Bx̃k−2 = Ax̃k−1.
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Let us denote ỹk−2 = Ax̃k−2.
We can extend this process to get a chain claimed above to get[

· · · ỹ0 ỹ1 ỹ2 · · · ỹk 0 · · ·
· · · · · · x̃0 x̃1 · · · · · · x̃k 0 · · ·

]
.

Now assume ỹ0 = λ1u1 + · · ·+ λkuk. We then consider

λ1

[
· · · 0 u1 u2 · · · uk 0 · · ·

· · · 0 v0 v1 · · · · · · vk 0 · · ·

]
+ λ2

[
· · · u1 u2 · · · uk 0 0 · · ·

· · · v0 v1 · · · · · · vk 0 0 · · ·

]
+ · · ·

+ λk

[
· · · uk−1 uk 0 0 · · · 0 · · ·

· · · vk−2 vk−1 vk 0 · · · · · · 0 · · ·

]
−

[
· · · · · · ỹ0 0 · · · ỹk 0 · · ·

· · · · · · · · · x̃0 · · · · · · x̃k 0 · · ·

]
=

[
· · · ∗ 0 ∗ · · · ∗ 0 · · ·

· · · ∗ ∗ ∗ · · · · · · ∗ 0 · · ·

]
We get a null vector[

· · · 0 0 ∗ · · · ∗ 0 · · ·
· · · 0 0 ∗ · · · · · · ∗ 0 · · ·

]
By our choice, all ∗ should vanish, but it implies x̃i ∈ span(ui) and thus
xi = 0. The proof is complete.

Now, we finished the proof of the Kronecker theorem.

Remark 16.7 The quiver
◦ ((

66 ◦
is known as Kronecker quiver. It helps to

• understand of (modular) representation of Klein four-group, see [1];

• set a derived equivalence between coherent sheaves over P1, see [2].
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Hints

16.3 The “only if” part is trivial. Now we assume

P (λ)(A+ λB) = (A′ + λB′)Q(λ).

Note that

det(A+ λB) = det(A′ + λB) up to some nonzero complex number.

Thus A′ is also invertible. Pick any N > deg p and N > deg q. Then we can
write by Euclidean algorithm

P (λ) = (A′ + λB′)U(λ) + P0λ
n

Q(λ) = V (λ)(A+ λB) +Q0λ
n

where degU(λ) < N and deg V (λ) < N . Now we have

(A′ + λB′)

(
U(λ)− V (λ)

)
(A+ λB) = −

(
P0(A+ λB)− (A+ λB)Q0

)
λN .

Take λ = 0, we see
A′(U(0)− V (0)

)
A = 0.

Since we assume A and A′ to be invertible, 1
λ (U(λ) − V (λ)) is a polynomial

of degree < N −1. Substituting and canceling λ both side, we can continuous
our process to conclude that U(λ) = V (λ). This leads to

P0(A+ λB) = (A+ λB)Q0.

By comparing the coefficients, it is equivalent to say (A,B) is equivalent to
(A′, B′).
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17 Quadratic Forms

In this section, we are going to present the basic theory of quadratic forms
over an arbitrary field F of characteristic ̸= 2. We recommend [1] for a short
introduction. A quadratic form is a homogeneous polynomial of degree 2.
In general, we can write

q(x) =
∑

ij aijxixj

for a symmetric matrix (aij). There is an associated symmetric bilinear form

Bq(x, y) :=
∑
ij

aijxiyj =
1

2
(q(x+ y)− q(x)− q(y)).

Instead of considering quadratic forms, we shall consider quadratic space,
i.e. a vector space V equipped with some symmetric bilinear form q ∈ S2V ∗.
For example, square sum

q(x) = x21 + · · ·+ x2n

is a quadratic form, and it equips the space Fn the structure of quadratic
space.

Example 17.1 (Diagonalized form) For any a ∈ F, we have a one-dimensional
quadratic form q = ⟨a⟩ defined by

q(x) = ax2.

More generally, for a1, . . . , an ∈ F, the quadratic form q = ⟨a1, . . . , an⟩ given
by

q(x) = a1x
2
1 + · · ·+ anx

2
n.

Example 17.2 (Hyperbolic plane) We denote the hyperbolic plane by

H = ⟨1,−1⟩ .

The corresponding quadratic form is

q(x, y) = x2 − y2 = (x− y)(x+ y).

By changing of variable, it is equivalent to

q′(x, y) = xy.

We say a quadratic form is hyperbolic if it is an orthogonal sum of copies of
hyperbolic planes.
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Definition 17.3 Let (V, q) be a quadratic space. For any subspace U , we
define the orthogonal

U⊥ =
{
v ∈ V : ∀u ∈W, Bq(v, u) = 0

}
.

Note that it is possible to have q(x) = 0 for some x, thus it is possible to
have (Fx) ⊆ (Fx)⊥.

Definition 17.4 (Regular) For a quadratic space (V, q), we denote the radical

rad q =
{
v ∈ V : Bq(v,−) = 0

}
= V ⊥.

We say q is regular or nondegenerate if rad q = 0. We say q is totally
isotropic or trivial if rad q = V , i.e. q = 0.

▶ Problem 17.5 Show that up to isomorphism, we have a unique decompo-
sition

q = qr ⊕ qt (as quadratic space)

where qr is regular, and qt is trivial. ◀P85

Thus the problem of classifying quadratic forms reduces to the case when
q is regular.

▶Exercise 17.6 Let (V, q) be a regular quadratic space. For any subspace
u, we have

dimU⊥ + dimU = dimV.

Moreover, if (U, q|U ) is regular, we have

V = U ⊕ U⊥ (as quadratic space).

Particularly, (U⊥, q|U⊥) is still regular.

We can apply this exercise to one-dimensional subspace Fv. Note that the
restriction of q to Fv is ⟨q(v)⟩. Thus if a1 = q(v) ̸= 0, we have a decomposition

q = ⟨a1⟩ ⊕ q1 as quadratic space.

By induction, we obtain the following.

Theorem 17.7 Any (regular) quadratic forms can be diagonalized, i.e. equiv-
alent to ⟨a1, . . . , an⟩ for some ai ∈ F (ai ∈ F×).
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Example 17.8 Over C, and quadratic forms are of the form

⟨1, . . . , 1, 0, . . . , 0⟩

where the number of 1’s is the rank.

Example 17.9 Over R, and quadratic forms are of the form

⟨1, . . . , 1,−1, . . . ,−1, 0, . . . , 0⟩

where the number of 1’s (resp., −1’s) is the positive (resp., nagative)
index of inertia.

Definition 17.10 Let (V, q) be a regular quadratic space. A vector v ̸= 0 is
said to be isotropic if q(v) = 0. The space (V, q) is said to be isotropic if it
admits an isotropic vector. Otherwise, (V, q) is said to be anisotropic.

Example 17.11 All regular one-dimensional quadratic forms ⟨a⟩ for a ∈ F×

are anisotropic.

Example 17.12 Hyperbolic plane H is isotropic. Since q(x, y) = xy, any
nonzero vector over x-axis or y-axis is isotropic.

Example 17.13 Over R, any positively (negatively) definite quadratic form
is anisotropic.

Example 17.14 Over C, only one-dimensional quadratic forms can be anisotropic.

▶ Problem 17.15 Over Q, for two integers p and q, show that if p is not a
square mod q, then

⟨1,−p,−q, pq ⟩

is anisotropic. ◀P85

Λemma 17.16 Assume q is regular but isotropic, then we have

q = qh ⊕ qa (as quadratic spaces)

where qh is hyperbolic and qa is anisotropic.

— Proof. If q is anisotropic, then we are done since we can take qh = 0. Now,
assume q isotropic, i.e. there exists x such that q(x) = 0. Since q is regular

Fx ⊆ (Fx)⊥ ̸= V
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i.e. there exists y /∈ Fx such that Bq(x, y) ̸= 0. Note that

Bq(x, y + λx) = Bq(x, y)
Bq(y + λx, y + λx) = q(y) + 2λBq(x, y)

By replacing y by y + λx for suitable λ, we can assume q(y) = 0. Now, the
restriction of q over Fx⊕ Fy is hyperbolic. Thus we have

q = H⊕ q1 (as quadratic spaces).

The proof follows from induction.

Now we are going to show the decomposition in the Lemma 17.16 is unique.
It follows from the following Witt cancelation theorem.

Witt cancelation 17.17 Assume

⟨a⟩ ⊕ q ∼= ⟨a⟩ ⊕ p (as quadratic spaces)

then
p ∼= q (as quadratic spaces).

Λemma 17.18 Let (V, q) be a quadratic space. For two vectors u and v such
that q(u) = q(v) ̸= 0, there exists

A ∈ O(q) = {A ∈ GL(V ) : q(Ax) = q(x)}

such that Au = v.

— Proof. We should first try the reflection by δ := u− v.

Case A. If q(δ) ̸= 0, the reflection is defined to be

Rδ : x 7−→ x− 2
Bq(x, δ)

q(δ)
δ.

It is easy to see Rδ ∈ O(q), and Rδ(u) = v.

Case B. If q(δ) = 0, then we should try to reflect u to some place such that
we can reduce to Case A. The condition tells

q(u) = q(v) = Bq(u, v) ̸= 0

Then we can compute Rvu = u− 2v. Note that

q
(
(u− 2v)− v

)
= q(x)(1− 6 + 9) ̸= 0

So we reduce to Case A.
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— Proof of 17.17. Since the decomposition into totally isotropic and regular
part is unique, we can assume a ̸= 0.

Geometrically, it says there exists u and v such that

q(u) = q(v) = a ̸= 0 and

{
q = (Fu)⊥

p = (Fu)⊥

By Lemma above, we can move u to v without changing the quadratic form,
say by A. As a result q ∼= p by A.

Witt decomposition 17.19 For any quadratic form q, we have a unique
decomposition

q = qt ⊕ qh ⊕ qa (as quadratic spaces)

where qt is trivial, qh is hyperbolic and qa is annisotropic.

▶ Sylvester’s law of inertia 17.20 The positive index of inertia and
nagative index of inertia are invariants of quadratic forms over R.
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Hints

17.5
( 1
−CtA−1 1

)(
A
Ct

C
0

)( 1 −A−1C
1

)
=

(
A

0

)
17.15 That is, the equation

x2 + pqy2 = pz2 + qw2

has no nonzero integer solution. Assume we have a nonzero solution (x, y, z, w),
we have

x2 ≡ pz2 mod q.

By assumption, it implies q|x and q|z. Say x = qx0 and z = qz0, so
(w, z0, y, x0) is another solution. Note that the norm of the solution would
infinitely decrease which is a contradiction.
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18 Symplectic Spaces

A symplectic space is a vector space V equipped with a nondegenerate
anti-symmetric form ω ∈ Λ2V ∗. Here ω is nondegenerate if the pairing

V × V 7−→ R, (x, y) 7−→ ω(x, y)

induces an isomorphism

V
∼−→ V ∗ x 7−→ ω(x,−).

Correspondently, by picking a basis, the measure matrix
(
ω(ei, ej)

)
is anti-

symmetric and of full rank.
The following problem would explain the reason we should care about

symplectic spaces.

▶Birkhoff–von Neumann 18.1 For a bilinear form f ∈ V ∗ ⊗ V ∗, if

f(x, y) = 0 ⇐⇒ f(y, x) = 0

then f is symmetric or anti-symmetric. Geometrically, it says the left anni-
hilator coincides with the right annihilator if and only if f is symmetric or
anti-symmetric. ◀P92

Example 18.2 For any vector space X, the space

X ⊕X∗

has a natural symplectic form ω defined by

ω
(
x+ ϕ, y + ψ

)
= −ϕ(y) + ψ(x).

By picking basis and dual basis for X and X∗, the matrix is
(
I
−I

)
.

Remark 18.3 There would be a more geometric method to define this sym-
plectic form. Picking a basis of X, we get an isomorphism

(qi) : X 7−→ Rn,

it extends to an isomorphism by considering the dual basis

(qi, pi) : X ⊕X∗ 7−→ R2n.

Let us denote the Lagrangian form

λ =
∑
i

pidqi ∈ Ω1(T ∗X)
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to be the universal 1-form. It is universal in the following sense,

for any α ∈ Ω1(X), viewed as a section
α : X → T ∗X, we have α∗(λ) = α.

α λ�
α∗

oo

X
α
// T ∗X

We define
ω = dλ =

∑
dpi ∧ dqi ∈ Ω2(T ∗X).

For real vector spaces, nondegenerate symmetric forms (i.e. regular quadratic
forms, or full-rank symmetric matrices) are classified by indices of inertia.
However, there is only one symplectic space up to isomorphism.

Theorem 18.4 Any symplectic space is isomorphic to X ⊕ X∗ for some
vector space X.

— Proof. Pick any nonzero x ∈ V . Since ω is nondegenerate, we have

Rx ⊆ (Rx)⊥ ̸= V.

So there exists y /∈ Fx such that

ω(x, y) ̸= 0.

We can without loss of generality to assume ω(x, y) = 1. So the matrix over
Fx⊕ Fy is

(
−1

1
)
. We then have

V ∼= (Fx⊕ Fy)⊕ (Fx⊕ Fy)⊥ (orthogonal)

Thus the theorem follows from induction.

Let us denote the group of symplectic transform

Sp(V ) =
{
A ∈ GL(V ) : ω(A−, A−) = ω(x, y)

}
.

In terms of matrices, it tells

AtMωA =Mω

for measure matrices Mω. Taking the determinant on both sides, we get
detA = ±1. But actually, only detA = 1 is possible.

Theorem 18.5 For any A ∈ Sp(V ), detA = 1.

In the rest of this section, we will show this fact through three approaches.
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Approach A. Recall that detA has the following description. For a linear
transform A : V → V , it induces

ΛkA : ΛkV −→ ΛkV

for any k. Since ΛnV is one-dimensional for n = dimA, the map ΛkA is a
scalar and the scalar is detA.

▶Exercise 18.6 Assume (V, ω) is a symplectic space of dimension 2n. Show
that

ωn := ω ∧ · · · ∧ ω︸ ︷︷ ︸
n

∈ Λ2nV ∗

is nonzero.

— Proof of Theorem 18.5. Let A∗ be the adjoint of A. Now A∗ω or more
precisely (Λ2A∗)ω is ω. Thus we have

(Λ2nA∗)ωn = ωn

So detA∗ = detA = 1.

Approach B. We are going to introduce a new invariant for antisymmetric
matrices.

▶ Problem 18.7 For an anti-symmetric matrix A with integer coefficients,
then detA is zero or a perfect square. ◀P93

Let xij for 1 ≤ i < j ≤ n be n(n−1)
2 many variables. We denote xii = 0

and xji = −xij . Now
det(xij) ∈ Z[xij ].

Since we can find invertible matrix P with coefficients in rational field Q(xij)
such that

PAP t = diag
((

−1
1
)
, . . . ,

(
−1

1
)
, 0, · · ·

)
.

So we have detA ∈ Q(xij)
2.

Λemma 18.8 Show that

Q(xij)
2 ∩ Z[xij ] = Z[xij ]2.

— Proof. Assume (p/q)2 = h for some polynomials p, q, h. We assume p, q
to be relatively prime. Note that q2|hq2 = p2 which implies q is a unit. This
shows p/q is a polynomial.
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Note that this implies that there exists a polynomial P (xij) ∈ Z[xij ] such
that P (xij)

2 = det(xij). Can we find an explicit choice? Recall that for an
n× n matrix (xij), we have

det(xij) =
∑

σ∈Sn

(−1)ℓ(w)x1σ(1) · · ·xnσ(n)

where Sn is the group of permutations, and

ℓ(σ) = #
{
(i < j) : w(i) < w(j)

}
is the number of inversions.

Definition 18.9 (Pffafian) For an anti-symmetric matrix A = (xij) or size 2n,
we define

pf(A) =
∑

(−1)ℓ(π)xi1j1 · · ·xinjn
where the sum goes over all possible pairings π of {1, . . . , 2n}

(i1 < j1), · · · , (in < jn) (unordered)

where
ℓ(π) = #{(a < b) : ia < ib < ja < jb}.

Example 18.10 We have pf
(
−x

x
)
= x since there is only one pairing s s .

Example 18.11 We have

pf


x12 x13 x14

−x12 x23 x24
−x13 −x23 x34
−x14 −x24 −x34

 =

s s s s
x12x34

−
s s s s
x13x24

+

s s s s
x14x23

Theorem 18.12 We have

pf(A) =
1

2nn!

∑
w∈S2n

(−1)ℓ(σ)xσ(1)σ(2) · · ·xσ(2n−1)σ(2n).

— Proof. Let Π be the set of pairings. Note thatS2n acts on Π by permuting
indices. We have a surjective map S2n → Π by sending σ to the pairing

(σ(1), σ(2)), . . . , (σ(2n− 1), σ(2n)).

Since the stabilizer of this action is Bn = (Z2)
n⋊Sn, i.e. the group generated

by
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• transpositions of 2i− 1 and 2i and

• permutations of pairs (1 < 2), . . . , (2n− 1, 2n).

Moreover, the summand

(−1)ℓ(w)xσ(1)σ(2) · · ·xσ(2n−1)σ(2n)

does not change under Bn. Moreover, by a combinatorial argument, we have

ℓ(π) ≡ ℓ(σ) mod 2.

This finishes the proof.

Actually, the action can be illustrated as followsss ss ss sss s s s =

ss ss ss ss =
s s s s

▶ Problem 18.13 Show that

pf(PAP t) = det(P ) pf(A).

Show that
pf(A)2 = det(A).

— Proof of Theorem 18.5. Since

AtMωA =Mω

we can take Pffafian on both sides to get

det(A) pf(Mω) = pf(Mω).

Since det(Mω) = pf(Mω)
2 ̸= 0, we can conclude detA = 1.

Approach C. Note that detA might equal −1 when A is orthogonal, i.e.
preserving a fixed inner product ⟨−,−⟩. The simplest example is a reflection
with respect to a nonzero vector y

x 7−→ x− 2
⟨x, y⟩
⟨y, y⟩

y.

Note that this refection fixes the hyperplane (Ry)⊥ and sends y to −y. In
symplectic space, there is a similar notion for this.
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Definition 18.14 (Symplectic transvection) A symplectic transvection is a
linear transform A ∈ Sp(V ) such that A fixes a hyperplane.

▶Exercise 18.15 For A ∈ Sp(V ), show that

ker(A− 1) = im(A− 1)⊥.

◀P93

Let t be a symplectic transvection. Note that x 7→ tx − x has only one-
dimensional, say Ry for some y ∈ V . By the above exercise, the hyperplane
fixed by t is H = (Ry)⊥. Thus we can assume

tx = x+ aω(x, y)y

for some a. It is direct to check t ∈ Sp(V ) for any a ∈ R.

Theorem 18.16 Symplectic transvections generate Sp(V ).

Let T be the group generated by symplectic transvections. By induction,
it suffices to show the following claim.

Claim Assume xi, yi such that ω(xi, yi) = 1 for i = 1, 2, then there exists
t ∈ T such that tx1 = x2 and ty1 = y2.

— Proof. We first ensure that tx1 = x2.
If ω(x1, x2) ̸= 0, then we can take the symplectic transvection,

z 7−→ z +
ω(z, δ)

ω(x1, δ)
δ, where δ := x2 − x1.

Note that it sends x1 to x2.
If ω(x1, x2) = 0, then we can find x′ ∈ V such that ω(x1, x

′) ̸= 0 and
ω(x2, x

′) ̸= 0 since
(Rx1)⊥ ∪ (Rx2)⊥ ̸= V.

It reduces to the case above.
We can now assume x := x1 = x2. If ω(y1, y2) ̸= 0, then we can take the

symplectic transvection,

z 7−→ z +
ω(z, δ′)

ω(y1, δ′)
δ′, where δ′ := y2 − y1.

Note that it sends y1 to y2 and fixes x at the same time.
If ω(y1, y2) = 0, by applying

z 7−→ z ± ω(z, x)x
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we can replace yi by yi ± x to reduce to the case above since

ω(x, yi ± x) = ω(x, yi)

ω(y1 − x, y2 + x) = 2ω(y1, x) ̸= 0.

The proof is complete.

— Proof of Theorem 18.5. By the above theorem, it suffices to show each
symplectic transvection has determinant 1. Assume the fixed hyperplane is
H = (Ry)⊥, then

V/H
∼→ R, x 7→ ω(x, y).

Since t fixesH, only the induced action of t over V/H contributes determinant.
Since t preserves ω and fixes H, thus the action is identity over V/H, so that
the determinant is 1.

Hints

18.1 Note that f is anti-symmetric if f(x, x) = 0 for any x ∈ V . Assume f
is not anti-symmetric, so there exists x0 such that f(x0, x0) ̸= 0.

We first show f(x0, y) = f(y, x0) for any y. Note that{
f(x0, y + λx0) = f(x0, y) + λf(x0, x0)

f(y + λx0, x0) = f(y, x0) + λf(x0, x0)

Since f(x0, x0) ̸= 0, we can take suitable λ such that f(x0, y + λx0) = 0, so
by assumption we have f(y+λx0, x0) = 0. Then f(x0, y) = f(y, x0) by above
identities.

Next, we show f(x, y) = f(y, x) for any x, y. If f(x, x0) = f(x0, x) ̸= 0,
we can apply the same trick as above{

f(x, y + λx0) = f(x0, y) + λf(x, x0)

f(y + λx, x0) = f(y, x0) + λf(x, x0)

to conclude f(x, y) = f(y, x). Similarly, if f(y, x0) = f(x0, y) ̸= 0, then we
are done.

Now assume f(x, x0) = f(y, x0) = 0. Note that{
f(x+ µx0, y + λx0) = f(x, y) + λµf(x0, x0)

f(y + λx0, x+ µx0) = f(y, x) + λµf(x0, x0).

By picking µ = 1 and suitable λ, we can conclude f(x, y) = f(y, x). The proof
is complete.
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18.7 We can find invertible matrix P over Q such that

PAP t = diag
((

−1
1
)
, . . . ,

(
−1

1
)
, 0, · · ·

)
.

So we have detA ∈ Q2. Note that Q2 ∩ Z = Z2.

18.15 For x ∈ ker(A− 1), i.e. Ax = x, we have

ω(x,Ay − y) = ω(x,Ay)− ω(x, y) = ω(A−1x, y)− ω(x, y) = 0.

So ker(A− 1) ⊆ im(A− 1)⊥. By dimension reason, they are actually equal.



19 Invariant Theory 94

19 Invariant Theory

In linear algebra, there are different sorts of equivalence relations. The purpose
of this section is to study the (continuous, polynomial) invariants of the
relations. To be exact, for an equivalence relation ∼ over some matrix space
X, a (continuous, polynomial) invariant is a (continuous, polynomial)
function f : X → R or C such that if

A ∼ B =⇒ f(A) = f(B).

In terms of set theory, we are actually studying the space of functions over
the quotient set X/ ∼.

Fun(X/ ∼,R) or Fun(X/ ∼,C).

Continuous invariants and polynomial invariants correspond to quotient space
and GIT quotient in topology and algebraic geometry.

Note that the space of invariants forms a ring, i.e. constant maps are
invariants and

f and g are invariants =⇒ f + g and fg are invariants.

Similarly, continuous, polynomial invariants form subrings.

Equivalent matrices Recall that two matrices in Mn×m(C) are equivalent
if

A ∼ B ⇐⇒ ∃P ∈ GLn(C), Q ∈ GLm(C), such that A = PBQ.

Note that if A ∼ B, then rank(A) = rank(B). So rank provides an invariant.

Proposition 19.1 Any invariant of ∼ is a function of rank.

— Proof. Let f be an invariant. Since A ∼ B if and only if rank(A) =
rank(B), so that f(A) is only determined by rank(A). So f is actually a
function of rank.

Proposition 19.2 Any continuous invariant of ∼ is a constant.

— Proof. Let f be a continuous invariant. Note that the space of matrices
of full rank is dense, so f is a constant.
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Congruent matrices Recall that two (anti-)symmetric matrices of size n are
congruent if

A ∼ B ⇐⇒ ∃P ∈ GLn(R), such that A = PBP t.

▶Exercise 19.3 Show that invariants of ∼ over symmetric matrices are
functions of the positive and negative indices of inertia.

▶Exercise 19.4 Show that invariants of ∼ over anti-symmetric matrices are
functions of rank.

Left Equivalent matrices Recall that two matrices in Mn×m(C) are left
equivalent if

A ∼ B ⇐⇒ ∃P ∈ GLn(C), such that A = PB.

It is not quite possible to find the full list of invariants. So we turn to contin-
uous and polynomial invariants. As above, to study continuous invariants, we
only need to be concerned about the space of matrices of full ranks min(n,m).

Remark 19.5 There are two ways to understand this relation geometrically.
(1) Let the column vectors of B be b1, . . . , bm. The left multiplication by

P ∈ GLn(C) moves them together inside Cn. So the equivalence classes are
nothing but the “configurations” of m-vectors in Cn, say realizable matroids.

(2) Let the row vectors of B is x1, . . . , xn. If they are linearly indepen-
dent, then the space span(x1, . . . , xn) is invariant under the left action of
P ∈ GLn(C). So the equivalence classes are nothing but the subspaces of
dimension n in Cm.

▶ Problem 19.6 If n > m, then any continuous invariants of ∼ are constant. ◀P97

Definition 19.7 Assume n ≤ m. We call

St(n,m) = {A ∈Mn×m(C) : rankA = m}

the Stiefel varierty. We denote

Gr(n,m) = {V ⊆ Cm : dimV = n}

the Grassmannian varierty.
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Theorem 19.8 By the discussion above, when n ≤ m, we have

Gr(n,m) = GLn(C)\ St(n,m).

In particular,

• any continuous invariant of ∼ is a continuous function over the Grass-
mannian variety;

• any polynomial invariants of ∼ is a constant (since Gr(n,m) is a projec-
tive variety).

Remark 19.9 From above, the polynomial invariants are not interesting for
∼. Actually, instead of considering polynomials f such that

f(PA) = f(A) for all A,

we can consider the twisted invariant

f(PA) = det(P )df(A) for all A.

For example, when d = 1, any such f is spanned by
(
m
n

)
minors of size n× n.

Note that ⊕
d

{
f : ∀A f(PA) = (detP )df(A)

}
is a graded ring. Actually, it defines the projective coordinate of Gr(n,m)
under the Plücker embedding.

Similar matrices Recall that two matrices in Mn(C) are similar if

A ∼ B ⇐⇒ ∃P ∈ GLn(C), such that A = PBP−1.

Note that det(PAP−1) = det(A). So determinant is a polynomial invariant.
Similarly, trace is also a polynomial invariant. More generally, we consider

χA(t) = det(t1−A) = tn − (trA)tn−1 + · · ·+ (−1)n detA.

The coefficients are all polynomial invariants.

▶ Problem 19.10 Show that the coefficients of tn−i in χA(t) is

(−1)i
∑

det(X)

with the sum over all principle minors X of size i.
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Let λ1, . . . , λn be eigenvalues of A (counting multiplicity). Then we have

χA(t) =
∏

(t− λi).

Theorem 19.11 Any continuous invariants of ∼ are functions of coefficients
of characteristic polynomial.

— Proof. Note any invariant f is determined by its values at Jordan canon-
ical forms. Note that

lim
t→0

(
λ t

λ

)
→

(
λ

λ

)
where the Jordan canonical forms of

(
λ t

λ

)
are

(
λ 1

λ

)
whenever t ̸= 0. If we

assume f is continuous, then f is determined by its values at diagonal matrices.
Note that two diagonal matrices are similar if and only if the values on the
diagonals differ by a permutation. That is, they have the same characteristic
polynomial. So any continuous invariants of ∼ are functions of coefficients of
the characteristic polynomial.

Theorem 19.12 Any polynomial invariants of ∼ are polynomials of coeffi-
cients of characteristic polynomial.

— Proof. The restriction of a polynomial to the space of diagonal matrices is
still a polynomial. Note that any polynomial is represented by f(x1, . . . , xn)
for diag(x1, . . . , xn) ∈ Mn(C). Since f is a symmetric polynomial, it is a
polynomial of coefficients of the characteristic polynomial.

Hints

19.6 Now the rank of B is m, i.e. b1, . . . , bm are linearly independent, we
can move them to a part of the standard basis.
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20 Division algebras

The main question in this section is the requirement on n such that

for any vector space V of dimension n, there exists linear trans-
formations A1, . . . , An such that for any nonzero vector v ∈ V ,
A1v, . . . , Anv forms a basis of V .

(∗)

Here is some example in low dimensions.

• When n = 1, we can take A1 = id;

• When n = 2 and over R we can take A1 = id and A2 =
(
0
1
−1
0

)
. Actually,

det
(
A1

(
x
y

)
, A2

(
x
y

))
= det

(
x
y
−y
x

)
= x2 + y2 = 0 ⇐⇒ x = y = 0.

• When n = 3 and over R, we can assume A1 = id without loss of gener-
ality. Note that as a 3× 3 matrix A2 must admits a real eigenvalue and
a real eigenvector v. Thus v = A1v and A2v cannot be always linearly
independent.

• When n = 4, insprited from the case n = 4, we first notice that

det


x −y −z −w
y x w −z
z −w x y
w z −y x

 = (x2 + y2 + z2 + w2)2.

Thus we take Ai(x, y, z, w) = the i-th colume.

▶ Problem 20.1 The condition (∗) is not satisfied for n = 2 over C. ◀P100

▶ Problem 20.2 The condition (∗) is not satisfied for odd n > 1 over R.

▶ Problem 20.3 The condition (∗) is not satisfied for any n > 1 over C.

▶ Problem 20.4 Recall that we can identify

C ⊂−→M2(R), x+ yi 7−→
(
x
y
−y
x

)
.

Using this trick to prove the determinant above is (x2 + y2 + z2 + w2)2. ◀P100
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As reader may observe, these determinants are related to quaternion
algebra. Recall that

H = R⊕ Ri⊕ Rj⊕ Rk

The relations are
i2 = j2 = k2 = −1

ij = k, jk = i, ki = j,
ji = −k, kj = −i, ik = −j.

Let us denote
x+ yi+ zj+ wk = x− yi− zj− wk.

We have

(x+ yi+ zj+ wk)(x+ yi+ zj+ wk) = x2 + y2 + z2 + w2.

Example 20.5 Now let us restate the construction for n = 4 over R. We take
V = H, and the linear transformations are A1 = id, A2(z) = iz, A3(z) = jz,
A4(z) = kz. For any nonzero z, if λ1A1(z) + · · ·+ λ4A4(z) = 0 for some real
numbers λ1, . . . , λ4, i.e.

(λ1 + λ2i+ λ3j+ λ4k)z = 0

We can multiply z and cancel zz ̸= 0 to conclude λ1 + λ2i + λ3j + λ4k = 0.
Thus λ1 = · · · = λ4 = 0

▶ Problem 20.6 If F admits a field extension of degree d, then (∗) is possible
for n = d.

Example 20.7 Thank to the existence of octonion algebra O, we can get
a construction for n = 8 over R. Note that O is no longer associative, but it
still satisfies (xy)y = x(yy). So all the steps are the same as above.

Theorem 20.8 Over R, the condition (∗) is possible if and only if when
n = 1, 2, 4, 8 .

— Proof. Without loss of generality, we can take A1 = id. Let us consider
the sphere Sn−1 ⊂ Rn. For each v ∈ Sn−1, we can project A2v, . . . , Anv
to the tangent hyperplane at v (i.e. span(v)⊥). This defines a trivialization
of the tangent bundle. By Adams theorem, Sn−1 has trivial tangent bundle
(parallelizable) if and only if n = 1, 2, 4, 8. Since we have constructed the
answer for n = 1, 2, 4, 8, this concludes the theorem.

Actually, the maximal number r of matricesA1, . . . , Ar such thatA1v, . . . , Arv
are linearly independent for any nonzero v is known as the Hurwitz–Radon
number.
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Hints

20.1 Note that det
(
x
y
ax+by
cx+dy

)
= 0 cannot have only one solution over C.

20.4 det
(
x+yi
z+wi

−z+wi
x−yi

)
= x2+ y2+ z2+w2. Note that we have the following

commutative diagram

Mn(C)

det

��

⊂ // M2n(R)

det

��
C

|·|2 // R.
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