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BACKGROUND

(Satake diagram of type AIII)



Symmetric Pairs

A symmetric pair is a pair (K ,G ) where K = G θ for some
involution θ of G . When G = GLn, we have three types

type involution K ⊂ G

AI g 7→ (g t)−1 On ⊂ GLn

AII g 7→ J2m(g
t)−1J2m Sp2m ⊂ GL2m

AIII g 7→ Ip,q · g · I−1
p,q GLp × GLq ⊂ GLp+q

where J2m =
[

-Im
Im
]

and Ip,q =
[
Ip

-Iq

]
.



Real Groups

Symmetric pair arises from the study of real groups.

type K ⊂ G real form

AI On ⊂ GLn GLn(R)

AII Sp2m ⊂ GL2m GLm(H)

AIII GLp × GLq ⊂ GLp+q U(p, q)

This will allow us translate real question to complex
questions. For example, the geometry of K -orbit closure
over flag variety is closely related to the representation of
real group, thanks to the serial work of Vogan.



Spherical Subgroups

A subgroup H of G is called spherical if the set

H\G/B = {H-orbits of gB ∈ G/B}

is finite, where G/B is the flag variety.

The Borel subgroup B is
spherical. We have Bruhat
decomposition

B\G/B
1:1
=== Weyl group.

Each orbit is known as a
Schubert cell.

The group K in a symmetric
pair is spherical (a version of
Iwasawa decomposition).

K\G/B
1:1
=== a finite set.

We are interested in the
K -orbits of G/B .



Index set of K -orbits

When G = GLn, the flag variety

G/B = {0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = Cn}.

type K index set of K\G/B

AI On {w ∈ Sn : w
2 = 1}

AII Sp2m {w ∈ S2m : w 2 = 1,w(i) ̸= i }

AIII GLp × GLq {(p, q)-clans}

Today we will focus on type AIII.



COMBINATORICS OF CLANS

t t t t t t t t t t t t t t
(an example of (10,11)-clan)



Clans
A (p, q)-clan is a partial matching of p + q nodes with
unmatched nodes colored by or with

#{ }− #{ } = p − q.

For example, the following is a (5, 6)-clan

γ = t t t t t t
vγ
i =

e1
+
e8

e6
e2
+
e11

e3
+
e9

e4 e7 e8 e9 e10 e5 e11,

the orbit = K



1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1


B/B .



Example

Consider the case

GL1 × GL1 ⊂ GL2 P1 = {0 ⊂ L ⊂ C2} = C ⊔ {∞}.

There are three orbits

clan clan t t clan

x

y

x

y

x

y

{0} = Ce1 C× {∞} = Ce2



Special types of clans

matchless
closed K -orbits
(there are

(
p+q
p

)
many)

non-crossing

t t t t
Richardson varieties (indexed by two
inverse Grassmannian permutations)

rainbow

t t t t t t
open orbit
(open orbit is unique)



Orders on Clans

The weak order of clans are generated by

q q q q q qq q q q q q q q q t q q q t t q q q t q q q

7→ 7→ 7→
q q q t t q q q q q q t q q q t t q q q t q q q

t q q q t t q q q t t t q q q t q q q t t q q q t q q q t t

7→ 7→ 7→

t q q q t t q q q t t t q q q t q q q t t q q q t q q q t t
There is also a strong order induced by orbital closure.



Example

t t t t
s s s s s s s s

s s s s s s s s s s s s
s s s s s s s s s s s s



BUMPLESS PIPE DREAMS

t
tt

tt
t

(BPD meets clans)



Schubert Calculus

In the work of Wyser and Yong [WY14], many
fundamental framework was built.
▶ polynomial representations
▶ non-equivariant Schubert expansion
▶ commutative algebra interpolations and etc.

However, there remain some questions
▶ combinatorial models of the polynomials
▶ equivariant Schubert expansion and etc.

We will answer the second question.

B. J. Wyser and A. Yong. Polynomials for GLp × GLq
orbit closures in the flag variety. Sel. Math. New Ser.
(2014) 20:1083-1110.



Polynomial representatives

The polynomials of [WY14] are characterized by the
following two properties:
▶ When γ is non-crossing,

Υγ(x ; y) = Suγ(x ; y) ·Svγ(x ; y⃖).

(Since the closed K -orbit is a Richardson variety)
▶ When si ∗ γ ̸= γ (weak order)

Υsi∗γ =
Υγ − Υγ|xi↔xi+1

xi − xi+1
.

(Follow from the geometry of weak order)



Main result — Localization
Let us denote the localization

Υγ|w = Υγ(yw(1), . . . , yw(n); y1, . . . , yn).

Our main result is a combinatorial formula of the
localization at the minimal w = vγ such that Υγ|w ̸= 0:

γ = t t t t t t
vγ = 1 6 2 3 4 7 8 9 10 5 11

Theorem (Chen–Fan–X.–Yao, 2025+)
The localization Υγ|vγ ∈ Q[y1, . . . , yn] is given by bumpless
pipe dream fragments.



Example

γ = t t t t
vγ = 1 5 2 6 3 7 8 4 9

1
2
3
4

9 8 7 6 5

1
2
3
4

9 8 7 6 5

1
2
3
4

9 8 7 6 5

y5
-y2

y6
-y3

y5
-y3

y8
-y4

y7
-y4

y6
-y4

y5
-y4

·


y1

-y9 1 1 1 1
1 1 1 1
1 1 y3

-y7

1

+

y1
-y9

y1
-y81 1 1 1

1 1 1 1
1 1 1
1

+

y1
-y9 1 1 1 1

y2
-y9 1 1 1
1 1 1
1





Idea of the Proof

Geometric part of the proof

The initial case is by study
the local structure of closed
K -orbits at id.

Algebraic part of the proof

The inductive step is by study
the local change of a clan.

s s s s

s s s s



Relation to Billey formula
When γ is matchless, the K -orbit closure is a Richardson
variety. In this case,

Υγ|vγ = Svγ(vγy , y).Suγ(vγy , y⃖).

After some work, one can see our formula agrees with
Billey formula. Actually, the key step is a classical
bijection of five-vertex model:

↔↔↔↔↔
Note that does not appear since γ is matchless.



APPLICATIONS

(normal T -stable curves at vγ)



Application — equivariant Schubert
expansion

We give a complete answer of [WY14, Question 2].
Assume

Υγ(x ; y) =
∑
w∈Sn

cγw(y)Sw(x ; y).

Theorem (Chen–Fan–X.–Yao, 2025+)
We have

cγw(y) =
Schubert polynomial

of a partial permutation or 0

where the partial permutation is determined by w ∗ γ.



Example

Υ
γ= r r r r(x , y)

= (y1 − y5)(y2 − y5)Sid(x , y)

+ (y1 − y5)Ss2(x , y)

+ (y2 − y4 + y1 − y5)Ss4(x , y)

+ Ss1s2(x , y)

+ Ss2s4=s4s2(x , y).

t t t t
t t t t

1,4

??

t t t t
2

__

t t t t
2

__

4

??

1
2
3

5 4

1
2
3

5 4

1
2
3

5 4

1
2
3

5 4

1
2
3

5 4s s s s s s s s s s s s s s s s
1 y1 − y5 y2 − y4 + y1 − y5 (y1 − y5)(y2 − y5)



Application — structure constants
Since when γ is non-crossing, the K -orbit closure is a
Richardson variety, we can obtain the following result.

Corollary (Chen–Fan–X.–Yao, 2025+)
For any non-crossing clan γ and any v ∈ Sn, assume that

Svγ(x ; y)Sv(x ; y) =
∑

dw
uγ,v(y)Sw(x ; y).

Then the coefficient of Sw0vγ(x ; y) is given by

dw0vγ
uγ,v (y) = cγ,w0v(y⃖).

Note that this is a formula of Graham-positivity [Gr].

William Graham. Positivity in equivariant Schubert
calculus. Duke Math. J., 109(3):599–614, 2001.



Application — smoothness
Localization can be used to detect smoothness.

Corollary (Chen–Fan–X.–Yao, 2025+)
For a clan γ, the following statements are equivalent:
▶ the orbit closure Yγ is smooth at vγ;
▶ the clan γ has exactly one BPD fragment;
▶ the clan γ avoids the following 5 patterns:

t t , t t t t , t t t t ,
t t t t t t , t t t t t t .

The proof is by comparing the localization and the
T -stable curves.



Application — smoothness
We can recover the smoothness criterion of McGovern [1]
and Woo and Wyser [2].

Theorem (McGovern, Woo–Wyser)
For a non-crossing γ, the orbit closure Yγ is smooth if and only
if γ avoids the following patterns:

t t , t t t t , t t t t , t t t t t t .
W. McGovern, Closures of K-orbits in the flag variety
for U(p, q), J. Alg. 322 (2009), 2709–2712.

A. Woo and B. J. Wyser. Combinatorial results on (1, 2,
1, 2)-avoiding GL(p,C )× GL(q,C )-orbit closures on
GL(p + q,C )/B , Int. Math. Research Notices 24 (2015),
13148-13193.



The proof

By [1], a Richardson variety is smooth if and only if it is
smooth at the maximal and the minimal permutation.

Richardson t t t t
smooth at vγ

(minimal point)

t t , t t t t , t t t t ,
t t t t t t , t t t t t t .

smooth at w0uγ
(maximal point)

t t , t t t t , t t t t ,
t t t t t t , t t t t t t .

A. Knutson, A. Woo, and A. Yong. Singularities of
Richardson varieties. Mathematical Research Letters.
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