

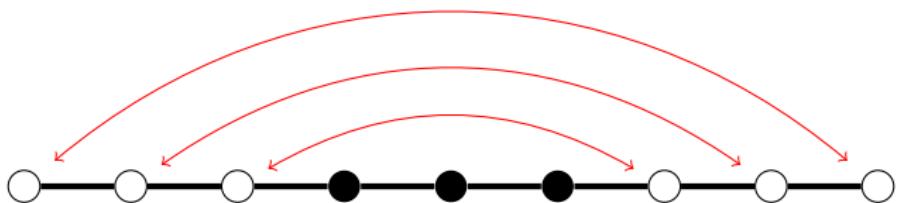
Bumpless Pipe Dream Fragments

—Equivariant Geometry of Clans

(joint with Yiming Chen, Neil J.Y. Fan and Ming Yao)

Rui Xiong

BACKGROUND



(Satake diagram of type AIII)

Symmetric Pairs

A **symmetric pair** is a pair (K, G) where $K = G^\theta$ for some involution θ of G . When $G = GL_n$, we have three types

type	involution	$K \subset G$
AI	$g \mapsto (g^t)^{-1}$	$O_n \subset GL_n$
AI I	$g \mapsto J_{2m}(g^t)^{-1}J_{2m}$	$Sp_{2m} \subset GL_{2m}$
AI II	$g \mapsto I_{p,q} \cdot g \cdot I_{p,q}^{-1}$	$GL_p \times GL_q \subset GL_{p+q}$

where $J_{2m} = \begin{bmatrix} I_m & \\ -I_m & \end{bmatrix}$ and $I_{p,q} = \begin{bmatrix} I_p & \\ & -I_q \end{bmatrix}$.

Real Groups

Symmetric pair arises from the study of real groups.

type	$K \subset G$	real form
AI	$O_n \subset GL_n$	$GL_n(\mathbb{R})$
AII	$Sp_{2m} \subset GL_{2m}$	$GL_m(\mathbb{H})$
AIII	$GL_p \times GL_q \subset GL_{p+q}$	$U(p, q)$

This will allow us translate real question to complex questions. For example, the geometry of K -orbit closure over flag variety is closely related to the representation of real group, thanks to the serial work of Vogan.

Spherical Subgroups

A subgroup H of G is called **spherical** if the set

$$H \backslash G/B = \{H\text{-orbits of } gB \in G/B\}$$

is finite, where G/B is the flag variety.

The Borel subgroup B is spherical. We have **Bruhat decomposition**

$$B \backslash G/B \stackrel{1:1}{=} \text{Weyl group.}$$

Each orbit is known as a **Schubert cell**.

The group K in a symmetric pair is spherical (a version of **Iwasawa decomposition**).

$$K \backslash G/B \stackrel{1:1}{=} \text{a finite set.}$$

We are interested in the K -orbits of G/B .

Index set of K -orbits

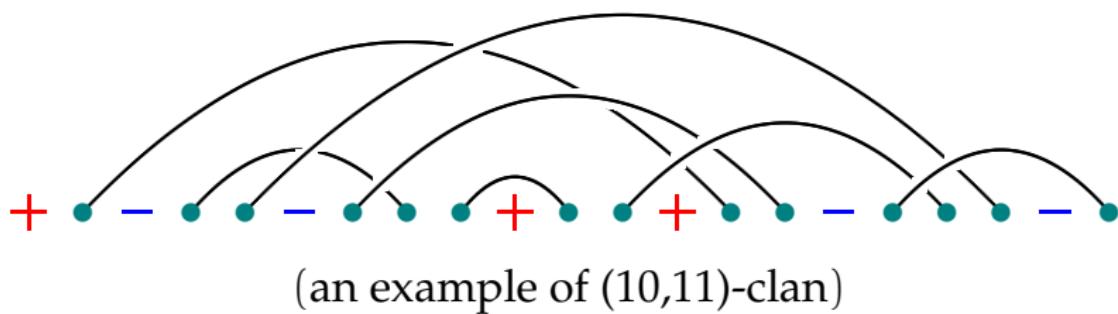
When $G = GL_n$, the flag variety

$$G/B = \{0 = V_0 \subset V_1 \subset \cdots \subset V_{n-1} \subset V_n = \mathbb{C}^n\}.$$

type	K	index set of $K \backslash G/B$
AI	O_n	$\{w \in S_n : w^2 = 1\}$
AI I	Sp_{2m}	$\{w \in S_{2m} : w^2 = 1, w(i) \neq i\}$
AI II	$GL_p \times GL_q$	$\{(p, q)\text{-clans}\}$

Today we will focus on type AI II .

COMBINATORICS OF CLANS



Clans

A (p, q) -clan is a partial matching of $p + q$ nodes with unmatched nodes colored by $+$ or $-$ with

$$\#\{+\} - \#\{-\} = p - q.$$

For example, the following is a $(5, 6)$ -clan

$$\gamma = \text{---} \quad \text{---} \quad \text{---} \quad + \quad \text{---} \quad \text{---} \quad \text{---} \quad +$$
$$v_i^\gamma = \begin{matrix} e_1 \\ e_8 \end{matrix} \quad \begin{matrix} e_6 \\ e_11 \end{matrix} \quad \begin{matrix} e_2 \\ e_9 \end{matrix} \quad \begin{matrix} e_3 \\ e_9 \end{matrix} \quad e_4 \quad e_7 \quad e_8 \quad e_9 \quad e_{10} \quad e_5 \quad e_{11},$$

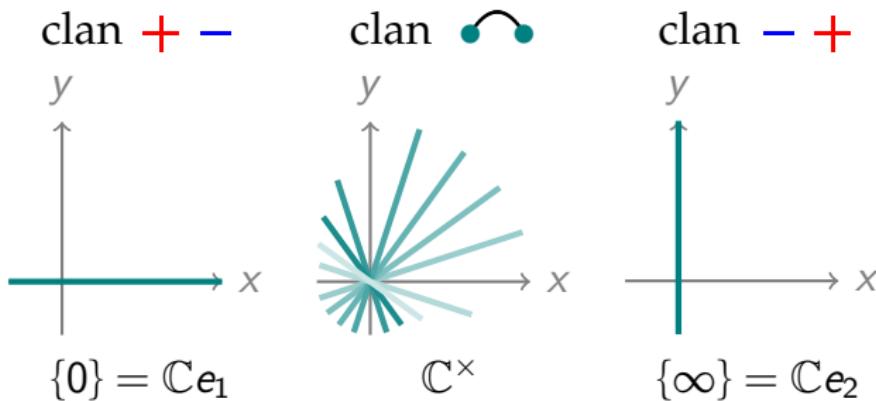
the orbit = $K \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} B/B.$

Example

Consider the case

$$GL_1 \times GL_1 \subset GL_2 \curvearrowleft \mathbb{P}^1 = \{0 \subset L \subset \mathbb{C}^2\} = \mathbb{C} \sqcup \{\infty\}.$$

There are three orbits



Special types of clans

matchless

— + — + + — —

closed K -orbits

(there are $\binom{p+q}{p}$ many)

non-crossing

— ● — ● ● ● +

Richardson varieties (indexed by two inverse Grassmannian permutations)

rainbow

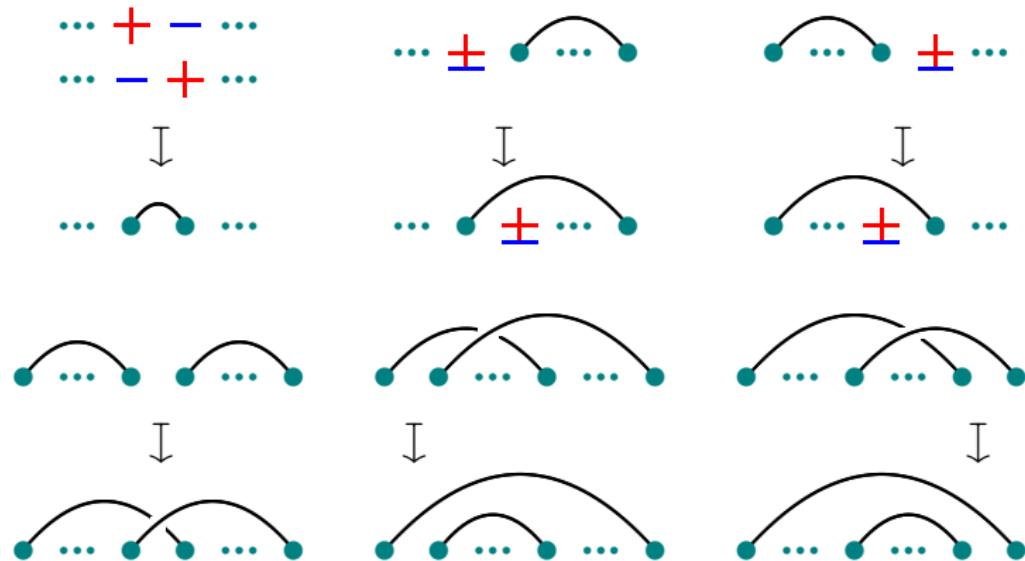
● — ● — ● — ● ●

open orbit

(open orbit is unique)

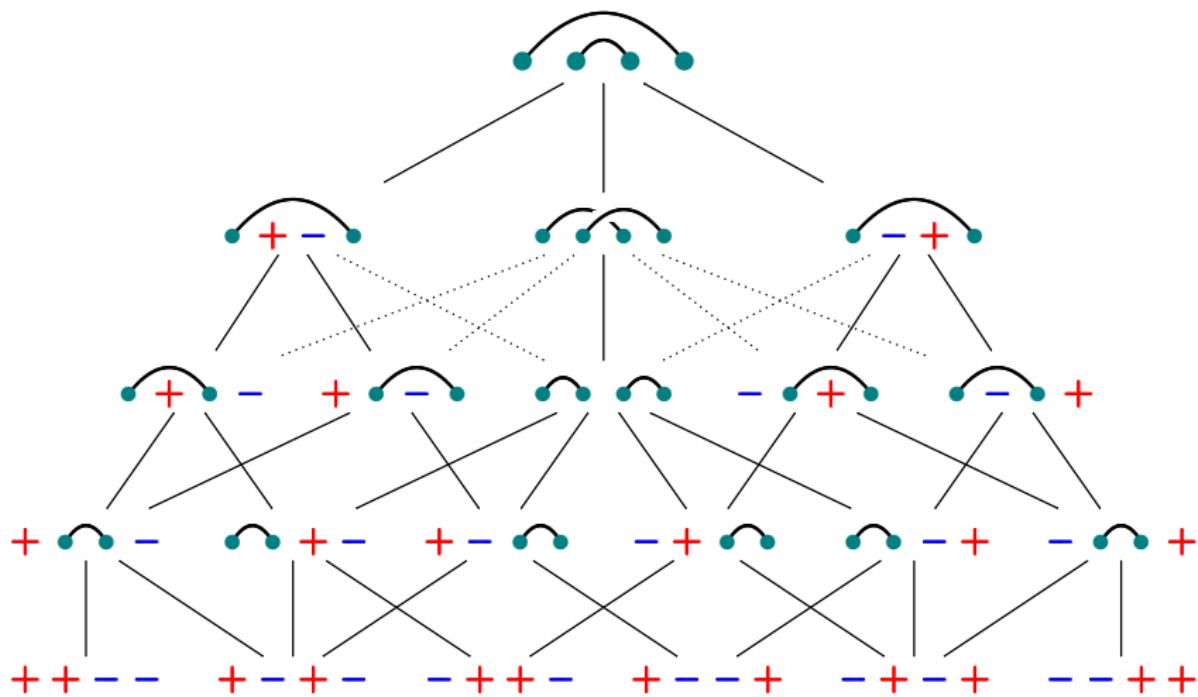
Orders on Clans

The weak order of clans are generated by

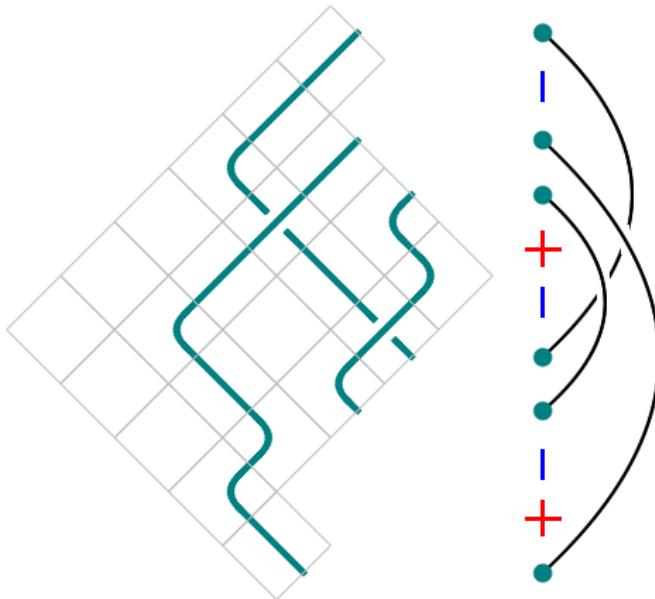


There is also a strong order induced by orbital closure.

Example



BUMPLESS PIPE DREAMS



(BPD meets clans)

Schubert Calculus

In the work of Wyser and Yong [WY14], many fundamental framework was built.

- ▶ **polynomial representations**
- ▶ **non-equivariant Schubert expansion**
- ▶ **commutative algebra interpolations** and **etc.**

However, there remain some questions

- ▶ **combinatorial models of the polynomials**
- ▶ **equivariant Schubert expansion** and **etc.**

We will answer the second question.

- B. J. Wyser and A. Yong. Polynomials for $GL_p \times GL_q$ orbit closures in the flag variety. *Sel. Math. New Ser.* (2014) 20:1083-1110.

Polynomial representatives

The polynomials of [WY14] are characterized by the following two properties:

- ▶ When γ is non-crossing,

$$\Upsilon_\gamma(x; y) = \mathfrak{S}_{u_\gamma}(x; y) \cdot \mathfrak{S}_{v_\gamma}(x; \bar{y}).$$

(Since the closed K -orbit is a Richardson variety)

- ▶ When $s_i * \gamma \neq \gamma$ (weak order)

$$\Upsilon_{s_i * \gamma} = \frac{\Upsilon_\gamma - \Upsilon_\gamma|_{x_i \leftrightarrow x_{i+1}}}{x_i - x_{i+1}}.$$

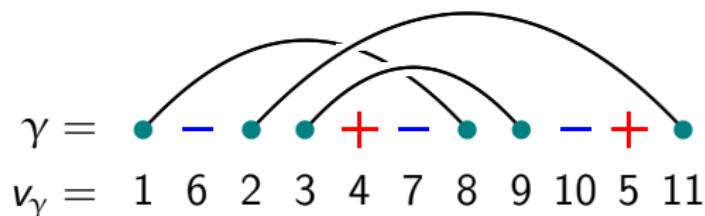
(Follow from the geometry of weak order)

Main result — Localization

Let us denote the localization

$$\Upsilon_\gamma|_w = \Upsilon_\gamma(y_{w(1)}, \dots, y_{w(n)}; y_1, \dots, y_n).$$

Our main result is a combinatorial formula of the localization at the minimal $w = v_\gamma$ such that $\Upsilon_\gamma|_w \neq 0$:

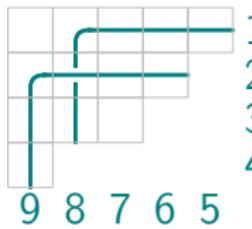
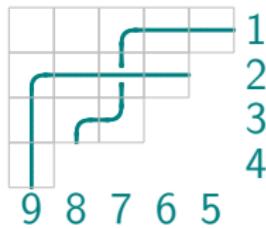
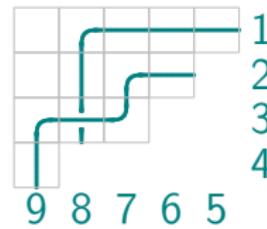


Theorem (Chen–Fan–X.–Yao, 2025+)

The localization $\Upsilon_\gamma|_{v_\gamma} \in \mathbb{Q}[y_1, \dots, y_n]$ is given by **bumpless pipe dream fragments**.

Example

Diagram illustrating a sequence γ and its corresponding v_γ values. The sequence γ is represented by a row of nine dots, with values 1, 5, 2, 6, 3, 7, 8, 4, 9 written below them. Above the sequence, two red '+' signs are placed above the values 6 and 4, indicating specific elements in the sequence.

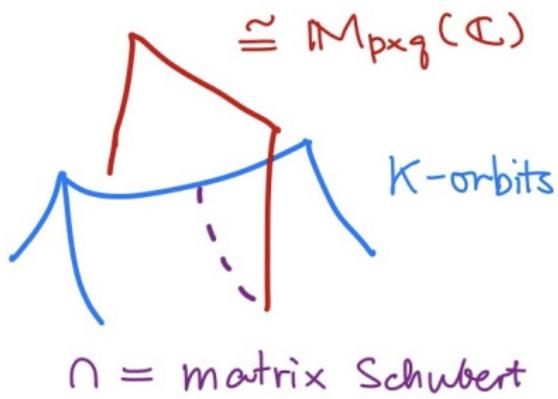


$$\begin{array}{c} y_8-y_4 \\ y_7-y_4 \\ y_6-y_4 \\ y_5-y_4 \end{array} \cdot \begin{pmatrix} y_1-y_9 & 1 & 1 & 1 & 1 & 1 & y_1-y_9 & y_1-y_8 & 1 & 1 & 1 & 1 & y_1-y_9 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & y_3-y_1 & & & & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & & & & & & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} y_2-y_9 & 1 & 1 & 1 & 1 & 1 & y_2-y_9 & 1 & 1 & 1 & 1 & 1 & y_2-y_9 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & & & & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & & & & & & 1 & & & & & & 1 & & & & 1 \end{pmatrix}$$

Idea of the Proof

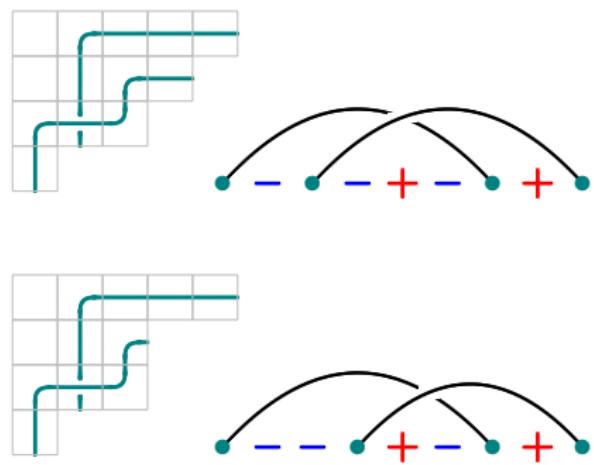
Geometric part of the proof

The initial case is by study the local structure of closed K -orbits at id.



Algebraic part of the proof

The inductive step is by study the local change of a clan.

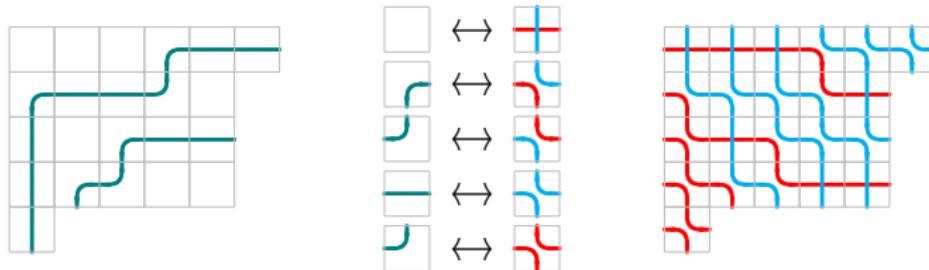


Relation to Billey formula

When γ is matchless, the K -orbit closure is a Richardson variety. In this case,

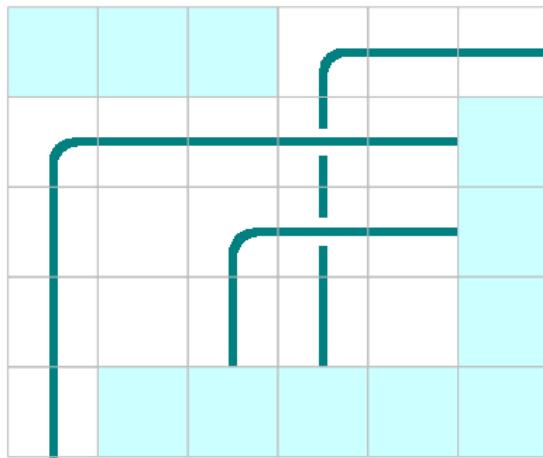
$$\Upsilon_\gamma|_{V_\gamma} = \mathfrak{S}_{V_\gamma}(v_\gamma y, y) \cdot \mathfrak{S}_{U_\gamma}(v_\gamma y, \bar{y}).$$

After some work, one can see our formula agrees with Billey formula. Actually, the key step is a classical bijection of five-vertex model:



Note that $\begin{smallmatrix} & & \\ & \text{+} & \\ & & \end{smallmatrix}$ does not appear since γ is matchless.

APPLICATIONS



(normal T -stable curves at v_γ)

Application — equivariant Schubert expansion

We give a complete answer of [WY14, Question 2].

Assume

$$\Upsilon_\gamma(x; y) = \sum_{w \in S_n} c_{\gamma w}(y) \mathfrak{S}_w(x; y).$$

Theorem (Chen–Fan–X.–Yao, 2025+)

We have

$$c_{\gamma w}(y) = \begin{cases} \text{Schubert polynomial} \\ \text{of a partial permutation} \end{cases} \text{ or } 0$$

where the partial permutation is determined by $w * \gamma$.

Example

$$\gamma_{\gamma=\bullet\bullet\bullet\bullet\bullet} (x, y)$$

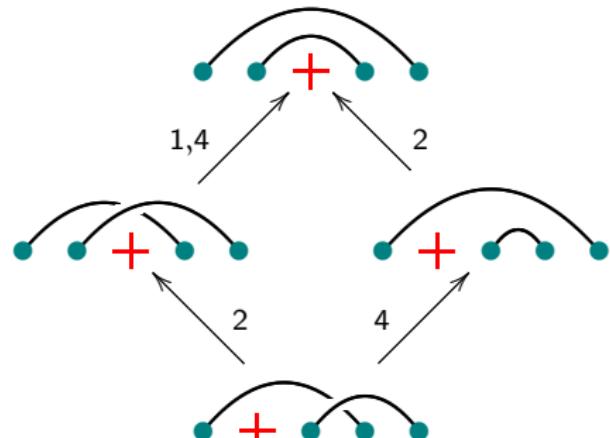
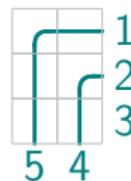
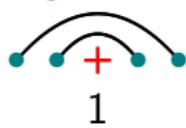
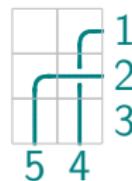
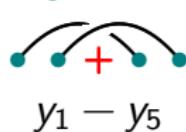
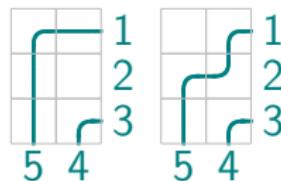
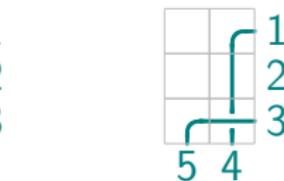
$$= (y_1 - y_5)(y_2 - y_5) \mathfrak{S}_{\text{id}}(x, y)$$

$$+ (y_1 - y_5) \mathfrak{S}_{s_2}(x, y)$$

$$+ (y_2 - y_4 + y_1 - y_5) \mathfrak{S}_{s_4}(x, y)$$

$$+ \mathfrak{S}_{s_1 s_2}(x, y)$$

$$+ \mathfrak{S}_{s_2 s_4 = s_4 s_2}(x, y).$$



Application — structure constants

Since when γ is non-crossing, the K -orbit closure is a Richardson variety, we can obtain the following result.

Corollary (Chen–Fan–X.–Yao, 2025+)

For any non-crossing clan γ and any $v \in S_n$, assume that

$$\mathfrak{S}_{v_\gamma}(x; y) \mathfrak{S}_v(x; y) = \sum \mathbf{d}_{u_\gamma, v}^w(y) \mathfrak{S}_w(x; y).$$

Then the coefficient of $\mathfrak{S}_{w_0 v_\gamma}(x; y)$ is given by

$$\mathbf{d}_{u_\gamma, v}^{w_0 v_\gamma}(y) = c_{\gamma, w_0 v}(\bar{y}).$$

Note that this is a formula of Graham-positivity [Gr].

- William Graham. Positivity in equivariant Schubert calculus. Duke Math. J., 109(3):599–614, 2001.

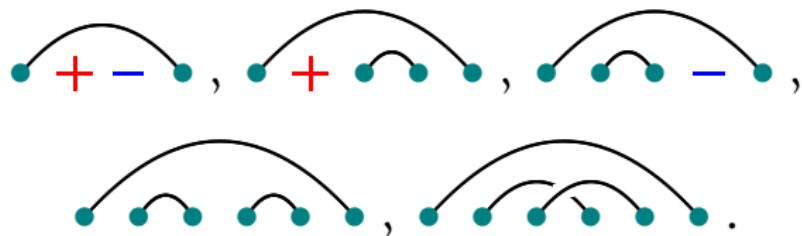
Application — smoothness

Localization can be used to detect smoothness.

Corollary (Chen–Fan–X.–Yao, 2025+)

For a clan γ , the following statements are equivalent:

- ▶ the orbit closure Y_γ is smooth at v_γ ;
- ▶ the clan γ has exactly one BPD fragment;
- ▶ the clan γ avoids the following 5 patterns:



The proof is by comparing the localization and the T -stable curves.

Application — smoothness

We can recover the smoothness criterion of McGovern [1] and Woo and Wyser [2].

Theorem (McGovern, Woo–Wyser)

For a non-crossing γ , the orbit closure Y_γ is smooth if and only if γ avoids the following patterns:

- ❑ W. McGovern, Closures of K -orbits in the flag variety for $U(p, q)$, J. Alg. 322 (2009), 2709–2712.
- ❑ A. Woo and B. J. Wyser. Combinatorial results on $(1, 2, 1, 2)$ -avoiding $GL(p, C) \times GL(q, C)$ -orbit closures on $GL(p + q, C)/B$, Int. Math. Research Notices 24 (2015), 13148–13193.

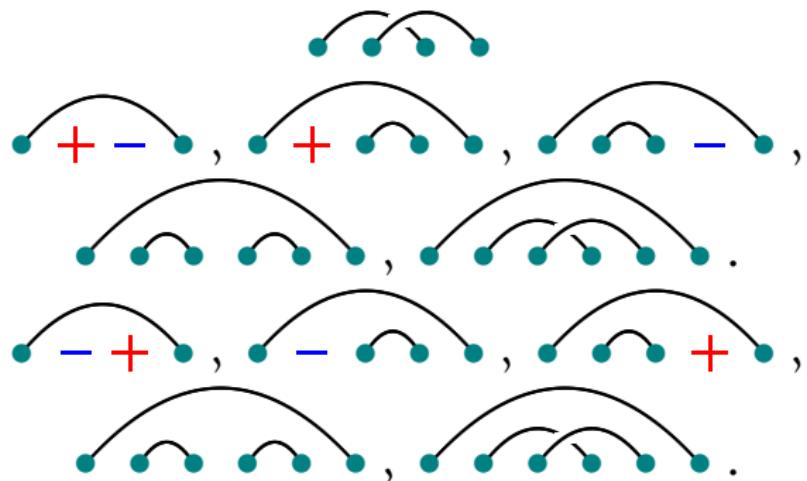
The proof

By [1], a Richardson variety is smooth if and only if it is smooth at the maximal and the minimal permutation.

Richardson

smooth at v_γ
(minimal point)

smooth at $w_0 u_\gamma$
(maximal point)



A. Knutson, A. Woo, and A. Yong. Singularities of Richardson varieties. Mathematical Research Letters.

THANK
YOU

