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Classification of one-dimensional groups

There are three kinds of one-dimensional algebraic groups.

Ga = (C,+)
additive group

Gm = (C×, ·) ≃ C/Z
multiplicative group

C×/qZ ≃ C/(Z+ τZ)
elliptic curves

qZ = -�0c · · ·tq3t q2t qt 1t q−1t q−2t q−3t· · ·t∞c
Recall the genus of an elliptic curve is 1.



Elliptic cohomology

By Quillen, generalized cohomology theory corresponds to
some formal group law. For example,

Ga = (C,+) Gm = (C×, ·) C×/qZ

cohomology
Chow ring

topological/algebraic
K-theory

elliptic
cohomology

CH(X ) = Q[algebraic cycles]
/

rational equivalence;
K (X ) = Q[vector bundles]

/
exact sequences.

Up to now, we still do not know what mathematical objects
elliptic cohomology parameters.



Flag varieties

Let us consider

flag variety G/B
G = a reductive group
B = a Borel subgroup

For example, when G = GLn,

G/B = {0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Cn : dimVi = i } = Fℓ(n)

is the classical flag variety. We want to do Schubert calculus in

ET (G/B) =
equivariant elliptic cohomology

of the flag variety G/B

where T ⊂ B is the maximal torus.



Theta functions

We will use the Jacobi theta function

θ(u) = (x1/2 − x−1/2)
∏
n>0

(1− qnx)(1− qn/x)

where x = e2πiu . This is not a function over E = C×/qZ, but a
global section of a degree-one line bundle.

From the construction, typical elements in elliptic cohomology
are like

θ(a vector bundle) or θ(a manifold).

Actually, elliptic cohomology is constructed such that these
symbols make sense. For example, we could take

ET (X ) = KT (X )[[q]].



Schubert classes

There are two sources of elliptic Schubert classes.
Rimányi and Weber [RW20] introduced the elliptic
characteristic of Schubert varieties twisted by a rational
line bundle.
Aganagic and Okounkov [AO] defined elliptic stable
envelopes for general conic symplectic resolutions,
including Springer resolution T ∗G/B .

It is known that the two families of Schubert classes are
equivalent.

R. Rimányi, A. Weber, Elliptic classes of Schubert varieties via
Bott-Samelson resolution,

M. Aganagic, A. Okounkov. Elliptic stable envelopes.



Schubert classes

Let λ ∈ Pic(G/B)Q be a rational divisor.

For an element of Weyl group w ∈ W , Rimányi and Weber
[RW20] defined a Schubert class (depend on λ)

E(Xw ) ∈ ET×Gm(G/B).

We will study its dual basis under the Poincaré pairing

Ew ∈ ET×Gm(G/B)loc
localization

↪→ Map(W ,ET×Gm(pt))loc.

We denote

zα = equivariant parameter for α ∈ X∗(T ), α is a root
λαv = dynamical parameter for ⟨λ, αv⟩ ∈ Q, αv is a coroot.



Billey-type formula

The following two functions are useful

P(x , y) =
θ(x − y)θ(h̄)

θ(y + h̄)θ(x)
, Q(x , y) =

θ(x + h̄)θ(y)

θ(y + h̄)θ(x)
.

Theorem (Lenart–X.–Zhong)

Let u,w ∈ W . For a decomposition u = si1 · · · siℓ , the localization of
elliptic Schubert class admits the following combinatorial formula

Ew (u) =
∑
J

ℓ∏
j=1

Q(λγ̌J
j
, zβj

), j ∈ J,

P(λγ̌J
j
, zβj

), j /∈ J,


βj = si1 · · · sij−1

αij ,

γ̌J
j = sϵℓiℓ · · · sϵj+1

ij+1
αv
ij
,

ϵj = δKrj∈J

with the sum over J ⊂ {1, . . . , n} such that w = sϵ1i1 · · · sϵℓiℓ .



Example

1

2

3

4

̸s1 s2 ̸s3 s2 s1 ̸s3

P(λ2-λ1, z1-z2)

Q(λ3-λ1, z2-z3)

P(λ1-λ4, z1-z4)

Q(λ1-λ3, z3-z2)

Q(λ1-λ2, z2-z4)

P(λ3 − λ4, z3-z1)

2

1

3

4



3D mirror symmetry

The new feature of elliptic Schubert calculus is the appearance
of dynamical parameters. 3D mirror symmetry, also known as
S(ymplectic) duality, predicts a close relation between

Ew and EL
w for the Langlands dual group GL.

The following is a shadow of 3D mirror symmetry

Theorem
We have (

Ew (u)
)−1

u,w∈W =
(
EL
w−1(u

−1)
)
u,w∈W

under the identification zLαv = λαv and λLα = zα.



How it was proved

From The Farnsworth Parabox, Futurama.

https://tenor.com/zh-CN/view/futurama-farnsworth-farnsworth-parabox-box-parallel-universe-gif-20772621
https://en.wikipedia.org/wiki/The_Farnsworth_Parabox


Proof by diagrams
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Mutation of the leftmost mutable cross gives a cancellation

e

f

a

b d

c

mutable

←→ e

f

a

b

c

d

mutable

e

f

a

b d

c

immutable



Pipe dreams

Now let us restrict to type A.

Theorem (Lernat–X.–Zhong)

For any w ∈ Sn, the class

Ew = an element specialized from Ew×id(u0)

gives a polynomial representative of Ew where u0 ∈ S2n satisfies

u0 : i
transposition←→ n + i , i = 1, . . . , n

and w × id is viewed as an element of S2n.

By Billey formula above, Ew admits a combinatorial formula.



Example

1 0
2 0 0
3 0 1

P(λ1-λ2, y1-x1) Q(λ2-λ3, y2-x1) P(λ2, y3-x1)

P(λ2, y1-x2) Q(-λ3, y2-x2) 1

Q(λ3, y1-x3) P(λ3-h̄, y2-x3) 1

1 0
2 0
3 0

1 0
2 0
3 0

1 0 0
2 0 1
3 0

1 0 0 0
2 0 1
3 0 1

P(λ1, y1-x1) Q(-λ3, y2-x1) Q(λ2, y3-x1)

Q(λ2, y1-x2) Q(λ2-λ3, y2-x2) P(λ1-h̄, y3-x2)

Q(λ3, y1-x3) P(λ3-h̄, y2-x3) 1



Schubert polynomials

We are inspired by the following well-known trick for Schubert
polynomials. It also motivates the definition of matrix Schubert
varietiesi.

For w ∈ Sn, we know the Schubert polynomial

Sw ∈ Z[x1, . . . , xn, y1, . . . , yn].

So the specialization xi 7→ yn+i does not lose any information,
and at the same time can be computed by Billey formula,
Sw×id|u0 . This coincides with the pipe dream model of Schubert
polynomials.

1
2
3

1
2
3

=⇒ 1
2
3

1
2
3



Limit to K-theory

If we (1) substitute λαv = −sτ for all simple roots α and
0 < s ≪ 1 (e2πi = q), (2) take limit q → 0, and (3) twist the class
by a power of y = e2πi h̄, we will get the Segre motivic class

SMCy (X̊
w ) = y−ℓ(w) lim

q→0
Ew

∣∣
λαv=-sτ
∀α∈Σ

∈ KT (G/B)[y ]loc.

If we further set y = 0, we will get the structure sheaf
(Grothendieck polynomial)

OXw = Gw = SMC0(X̊
w ) ∈ KT (G/B).

The combinatorial formula behaves well under the limit.



Representation theory

From the three kinds of solutions of Yang–Baxter equations,
corresponding to three kinds of quantum groups.

Ga = (C,+) Gm = (C×, ·) C×/qZ

rational trigonometric elliptic
Yangian quantized loop group elliptic quantum group

Actually, Billey formula in type A (including all parabolic
subgroups) could be viewed as an application of R-matrices
between two standard representations.

Cn

⊗

Cn

⊗R(z)

ww
Cn Cn

gg

a

b d

c
or

a

b

c

d



Yang–Baxter equation

That is, we define

ei ⊗ ej
R(z ,λ)7−→ {

P(λi-λj , z)ei ⊗ ej + Q(λi-λj , z)ej ⊗ ei , i ̸= j ,

1, i = j .

They satisfy the dynamical Yang–Baxter equation

R12(z1-z2, λ-λ
(3) h̄)R13(z1-z3, λ)R

23(z2-z3, λ-λ
(1) h̄)

= R23(z2-z3, λ)R
13(z1-z3, λ-λ

(2) h̄)R12(z1-z2, λ).

=



Nakajima quiver varieties

The best explanation might be Nakajima quiver varieties. For
G = GLn, we have

T ∗
(

G/P , a partial
flag varieties

)
= M

 n

��
⃝ //⃝ // · · · //⃝ //⃝

 .

The variety corresponds to a weight space of the
GLm-representation (Cm)⊗n. Via stable envelopes, we have a
geometric construction of R-matrices.

In particular, we can package all parabolic cases together to get
a quantum group action, which is a philosophy from
Schur–Weyl duality.



Example

3↓
3 →0

3↓
2 →0

3↓
1 →0

3↓
0 →0

3↓
3 →1

3↓
2 →1

3↓
1 →1

3↓
3 →2

3↓
2 →2

3↓
3 →3

{0 ⊆ V1 ⊆ V2 ⊆ C3}

with dim(V1,V2) =

(0, 3) (1, 3) (2, 3) (3, 3)

(0, 2) (1, 2) (2, 2)

(0, 1) (1, 1)

(0, 0)



THANKS

(modified from a painting in Tianjin Museum)


