Combinatorics, Elliptic Cohomology and Representation Theory

Rui Xiong

(uOttawa)

October 8, 2025

Classification of one-dimensional groups

There are three kinds of **one-dimensional algebraic groups**.

$$q^{\mathbb{Z}} = \underbrace{0 \cdots q^3}_{\bullet \bullet \bullet \bullet} \underbrace{q^2}_{\bullet} \underbrace{q} \underbrace{1}_{\bullet} \underbrace{q^{-1}}_{\bullet \bullet} \underbrace{q^{-2}}_{\bullet \bullet} \underbrace{q^{-3}}_{\bullet \bullet} \cdots \infty$$

Recall the genus of an elliptic curve is 1.

Elliptic cohomology

By Quillen, generalized cohomology theory corresponds to some formal group law. For example,

$$\mathbb{G}_a = (\mathbb{C}, +)$$
 cohomology topological/algebraic K-theory cohomology

$$CH(X) = \mathbb{Q}[\text{algebraic cycles}]/\text{rational equivalence};$$

 $K(X) = \mathbb{Q}[\text{vector bundles}]/\text{exact sequences}.$

Up to now, we still do not know what mathematical objects elliptic cohomology parameters.

Flag varieties

Let us consider

flag variety
$$G/B$$
 $G = a$ reductive group $B = a$ Borel subgroup

For example, when $G = GL_n$,

$$G/B = \{0 \subset V_1 \subset \cdots \subset V_{n-1} \subset \mathbb{C}^n : \dim V_i = i\} = \mathcal{F}\ell(n)$$

is the classical flag variety. We want to do Schubert calculus in

$$E_T(G/B) = {
m equivariant\ elliptic\ cohomology} \over {
m of\ the\ flag\ variety\ } G/B$$

where $T \subset B$ is the maximal torus.

Theta functions

We will use the **Jacobi theta function**

$$\theta(u) = (x^{1/2} - x^{-1/2}) \prod_{n>0} (1 - q^n x) (1 - q^n / x)$$

where $x = e^{2\pi i u}$. This is not a function over $E = \mathbb{C}^{\times}/q^{\mathbb{Z}}$, but a global section of a degree-one line bundle.

From the construction, typical elements in elliptic cohomology are like

$$\theta$$
(a vector bundle) or θ (a manifold).

Actually, elliptic cohomology is constructed such that these symbols make sense. For example, we could take

$$E_T(X) = K_T(X)[[q]].$$

Schubert classes

There are two sources of elliptic Schubert classes.

- Rimányi and Weber [RW20] introduced the elliptic characteristic of Schubert varieties twisted by a rational line bundle.
- Aganagic and Okounkov [AO] defined elliptic stable envelopes for general conic symplectic resolutions, including Springer resolution T^*G/B .

It is known that the two families of Schubert classes are equivalent.

- R. Rimányi, A. Weber, Elliptic classes of Schubert varieties via Bott-Samelson resolution,
- M. Aganagic, A. Okounkov. Elliptic stable envelopes.

Schubert classes

Let $\lambda \in \text{Pic}(G/B)_{\mathbb{Q}}$ be a rational divisor.

For an element of Weyl group $w \in W$, Rimányi and Weber [RW20] defined a Schubert class (depend on λ)

$$\mathfrak{E}(X_w) \in E_{T \times \mathbb{G}_m}(G/B).$$

We will study its dual basis under the Poincaré pairing

$$E_w \in E_{T \times \mathbb{G}_m}(G/B)_{\mathrm{loc}} \stackrel{\mathrm{localization}}{\hookrightarrow} \mathrm{Map}(W, E_{T \times \mathbb{G}_m}(\mathrm{pt}))_{\mathrm{loc}}.$$

We denote

 $z_{\alpha} = \text{equivariant parameter for } \alpha \in X_*(T), \qquad \alpha \text{ is a root}$ $\lambda_{\alpha^{\vee}} = \text{dynamical parameter for } \langle \lambda, \alpha^{\vee} \rangle \in \mathbb{Q}, \quad \alpha^{\vee} \text{ is a coroot.}$

Billey-type formula

The following two functions are useful

$$P(x,y) = \frac{\theta(x-y)\theta(\hbar)}{\theta(y+\hbar)\theta(x)}, \qquad Q(x,y) = \frac{\theta(x+\hbar)\theta(y)}{\theta(y+\hbar)\theta(x)}.$$

Theorem (Lenart-X.-Zhong)

Let $u, w \in W$. For a decomposition $u = s_{i_1} \cdots s_{i_\ell}$, the localization of elliptic Schubert class admits the following combinatorial formula

$$E_{w}(u) = \sum_{J} \prod_{j=1}^{\ell} \begin{cases} Q(\lambda_{\check{\gamma}_{j}^{J}}, z_{\beta_{j}}), & j \in J, \\ P(\lambda_{\check{\gamma}_{j}^{J}}, z_{\beta_{j}}), & j \notin J, \end{cases} \begin{cases} \beta_{j} = s_{i_{1}} \cdots s_{i_{j-1}} \alpha_{i_{j}}, \\ \check{\gamma}_{j}^{J} = s_{i_{\ell}}^{\epsilon_{\ell}} \cdots s_{i_{j+1}}^{\epsilon_{j+1}} \alpha_{i_{j}}^{\mathsf{v}}, \\ \epsilon_{j} = \delta_{j \in J}^{\mathsf{Kr}} \end{cases}$$

with the sum over $J \subset \{1, \ldots, n\}$ such that $w = s_{i_1}^{\epsilon_1} \cdots s_{i_\ell}^{\epsilon_\ell}$.

Example

3D mirror symmetry

The new feature of elliptic Schubert calculus is the appearance of **dynamical parameters**. 3D mirror symmetry, also known as S(ymplectic) duality, predicts a close relation between

 E_w and E_w^L for the Langlands dual group G^L .

The following is a shadow of 3D mirror symmetry

Theorem

We have

$$(E_w(u))_{u,w\in W}^{-1} = (E_{w^{-1}}^L(u^{-1}))_{u,w\in W}$$

under the identification $z_{\alpha^{\nu}}^{L} = \lambda_{\alpha^{\nu}}$ and $\lambda_{\alpha}^{L} = z_{\alpha}$.

How it was proved

From *The Farnsworth Parabox*, Futurama.

Proof by diagrams

Mutation of the leftmost mutable cross gives a cancellation

Pipe dreams

Now let us restrict to type *A*.

Theorem (Lernat-X.-Zhong)

For any $w \in S_n$, the class

$$\mathcal{E}_w =$$
an element specialized from $E_{w \times id}(u_0)$

gives a polynomial representative of E_w where $u_0 \in S_{2n}$ satisfies

$$u_0: i \stackrel{transposition}{\longleftrightarrow} n+i, \qquad i=1,\ldots,n$$

and $w \times id$ is viewed as an element of S_{2n} .

By Billey formula above, \mathfrak{E}_w admits a combinatorial formula.

Example

$$P(\lambda_1 - \lambda_2, y_1 - x_1) \quad Q(\lambda_2 - \lambda_3, y_2 - x_1) \quad P(\lambda_2, y_3 - x_1)$$

$$P(\lambda_2, y_1 - x_2)$$
 $Q(-\lambda_3, y_2 - x_2)$ 1

$$Q(\lambda_3, y_1 - x_3)$$
 $P(\lambda_3 - \hbar, y_2 - x_3)$ 1

$$P(\lambda_1, y_1 - x_1)$$
 $Q(-\lambda_3, y_2 - x_1)$ $Q(\lambda_2, y_3 - x_1)$

$$\mathsf{Q}(\lambda_2,y_1\text{-}x_2)\quad \mathsf{Q}(\lambda_2\text{-}\lambda_3,y_2\text{-}x_2)\quad \mathsf{P}(\lambda_1\text{-}\hbar,y_3\text{-}x_2)$$

$$Q(\lambda_3, y_1-x_3) \quad P(\lambda_3-\hbar, y_2-x_3)$$

Schubert polynomials

We are inspired by the following well-known trick for Schubert polynomials. It also motivates the definition of matrix Schubert varietiesi.

For $w \in S_n$, we know the **Schubert polynomial**

$$\mathfrak{S}_w \in \mathbb{Z}[x_1,\ldots,x_n,y_1,\ldots,y_n].$$

So the specialization $x_i \mapsto y_{n+i}$ does not lose any information, and at the same time can be computed by Billey formula, $\mathfrak{S}_{w \times id}|_{u_0}$. This coincides with the pipe dream model of Schubert polynomials.

Limit to K-theory

If we (1) substitute $\lambda_{\alpha^{\nu}} = -s\tau$ for all simple roots α and $0 < s \ll 1$ ($e^{2\pi i} = q$), (2) take limit $q \to 0$, and (3) twist the class by a power of $y = e^{2\pi i\hbar}$, we will get the **Segre motivic class**

$$\mathsf{SMC}_y(\mathring{X}^w) = y^{-\ell(w)} \lim_{q \to 0} E_w \big|_{\substack{\lambda_{\alpha^v} = -s\tau \\ \forall \, \alpha \in \Sigma}} \in K_T(G/B)[y]_{\mathrm{loc}}.$$

If we further set y = 0, we will get the **structure sheaf** (**Grothendieck polynomial**)

$$\mathcal{O}_{X^w} = \mathfrak{G}_w = \mathsf{SMC}_0(\mathring{X}^w) \in K_T(G/B).$$

The combinatorial formula behaves well under the limit.

Representation theory

From the three kinds of solutions of Yang–Baxter equations, corresponding to three kinds of quantum groups.

$$\mathbb{G}_a = (\mathbb{C}, +)$$
 $\mathbb{G}_m = (\mathbb{C}^{\times}, \cdot)$ $\mathbb{C}^{\times}/q^{\mathbb{Z}}$ rational trigonometric elliptic Yangian quantized loop group elliptic quantum group

Actually, Billey formula in type *A* (including all parabolic subgroups) could be viewed as an application of *R*-matrices between two standard representations.

Yang-Baxter equation

That is, we define

$$e_i \otimes e_j \overset{R(z,\lambda)}{\longmapsto} \begin{cases} \mathsf{P}(\lambda_i - \lambda_j, z) e_i \otimes e_j + \mathsf{Q}(\lambda_i - \lambda_j, z) e_j \otimes e_i, & i \neq j, \\ 1, & i = j. \end{cases}$$

They satisfy the dynamical Yang-Baxter equation

$$\begin{split} R^{12}(z_1-z_2,\lambda-\lambda^{(3)}\hbar)R^{13}(z_1-z_3,\lambda)R^{23}(z_2-z_3,\lambda-\lambda^{(1)}\hbar) \\ &= R^{23}(z_2-z_3,\lambda)R^{13}(z_1-z_3,\lambda-\lambda^{(2)}\hbar)R^{12}(z_1-z_2,\lambda). \end{split}$$

Nakajima quiver varieties

The best explanation might be **Nakajima quiver varieties**. For $G = GL_n$, we have

$$T^* \left(\begin{array}{c} G/P, \text{ a partial} \\ \text{flag varieties} \end{array} \right) = \mathfrak{M} \left(\begin{array}{c} \boxed{n} \\ \downarrow \\ \bigcirc \rightarrow \bigcirc \rightarrow \cdots \rightarrow \bigcirc \rightarrow \bigcirc \end{array} \right).$$

The variety corresponds to a weight space of the GL_m -representation $(\mathbb{C}^m)^{\otimes n}$. Via stable envelopes, we have a geometric construction of R-matrices.

In particular, we can package all parabolic cases together to get a quantum group action, which is a philosophy from Schur–Weyl duality.

Example

$$\{0 \subseteq V_1 \subseteq V_2 \subseteq \mathbb{C}^3\}$$
with dim(V_1, V_2) =
$$(0,3) \quad (1,3) \quad (2,3) \quad (3,3)$$

$$(0,2) \quad (1,2) \quad (2,2)$$

$$(0,1) \quad (1,1)$$

$$(0,0)$$

THANKS

(modified from a painting in Tianjin Museum)