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Geometric Background
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Functors

There are two functors between

Variety/C �! LinearSpace/Q.

For a complex variety X , denote the
space of constructible functions by

Fun(X ) =
X

A ⇢
closed

X

Q · 11A.

For a proper morphism f : X ! Y ,
we define push forward

f⇤(11A)(y) = �(Ay ).

“counting �” along fibres.

For a complex variety X , the
Borel–Moore homology

H•(X ) ◆
X

A ⇢
closed

X

Q · [A].

For a proper morphism f : X ! Y ,
the push forward

f⇤(!) =
R
f
!

“integral” along fibres.
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Chern–Schwartz–MacPherson Classes

For smooth projective variety X , a classical result by Chern relates Euler
characteristic and Chern classes �(X ) =

R
X
c(TX ). So we have the

following diagram

11X_
✏✏

2 Fun(X )

✏✏

H•(X )

✏✏

c(TX ) _ [X ]
_

✏✏

3

�(X ) 2 Fun(pt) H•(pt)
R
X
c(TX )3

Theorem (MacPherson[7], conj. by Grothendieck and Delign)

There is a natural transformation (commuting with push forward)

cSM : Fun �! H•

mapping 11X to c(TX ) _ [X ] when X is smooth.
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Example

For W ⇢ X constructible, let us denote cSM(W ) = cSM(11W ).

Let us consider the projective line P1. Let us identify
(BM-)homology and cohomology by Poincaré duality.

P1 = A1 [ {1}

H•(P1) = Q[x]/hx2i.

cSM(P1) = c1(TP1) = 1 + 2x

cSM({1}) = [1] = x

cSM(A1) = cSM(P1)� cSM({1})

= 1 + x .
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Flag Varieties
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Flag Varieties — Our Best Friends

We will concentrate on the classical flag variety

F`(n) =

⇢
0 = V0

⇢ V1
⇢ · · · ⇢ Vn�1

⇢ Vn
= Cn

���� dimVi = i

�
.

We can decompose F`(n) into disjoint union of Schubert cells

F`(n) =
[

w2Sn

Y (w)�, Y (w)� ⇠= AdimF`(n)�`(w).

The CSM classes of Schubert cells over flag variety are computed by Alu�
and Mihalcea [1] using the Bott–Samelson resolution. They showed CSM
classes can be computed by Demazure–Lusztig operators.
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Pieri Rules

The following is our first main result. Recall that the Chern classes of the
dual of k-th tautological bundle cr (V_

k
) = er (x1, . . . , xk).

Theorem (Fan, Guo and Xiong)

For any permutation u 2 Sn, 1  k  n, and r � 0

cSM(Y (u)�) · cr (V_
k
) =

P
� cSM

�
Y (end(�))�

�

with sum over decreasing path � of length r starting from u in the
following diagram:

u
⌧�! w () w = utab for some a  k < b, and

`(w)� `(u) + 1; moreover, ⌧ = u(a).

Compare with Sottile [16].
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Equivariant Pieri Rules

We prove a “rigidity theorem” which states that the equivariant
coe�cients are controlled by non-equivariant coe�cients. As an
application, we achieve the following equivariant Pieri rule.

Theorem (Fan, Guo and Xiong)

For any permutation u 2 Sn, 1  k  n, and r � 0

cTSM(Y (u)�) · cr (V_
k
) =

P
� er�length(�)(t�k (u,end(�))) · c

T

SM

�
Y (end(�))�

�
,

with the sum over decreasing path from u. Here

�k(u,w) = {u(i) : i 2 [k]} \ {u(i) : u(i) 6= w(i)}.
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Equivariant Murnaghan–Nakayama Rules

We also obtain an equivariant Murnaghan–Nakayama rule for CSM
classes. Recall

pr (x[k]) = x r1 + · · ·+ x r
k
.

Theorem (Fan, Guo and Xiong)

For any permutation u 2 Sn, 0  k  n and r � 1,

cTSM(Y (u)�) · pr (x[k]) = pr (tu[k]) · cTSM(Y (u)�)

+
P

w
hr�r 0(tuM(u,w)) · cTSM(Y (w)�)

with the sum over all w which can be written as u⌘ for an (r 0 + 1)-cycle
(r 0  r) and admit a path from u to u⌘. Here

M(u,w) = {i 2 [n] : u(i) 6= w(i)}.
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Generalization

We proved a more general rule for Schur polynomials of hook shapes
including Segre classes of tautological bundle.

Chern classes of V_
k

Pieri rule for “e” Pieri rule for “hook”

Serge classes of Vk

Pieri rule for “h”

The formulas we obtained are generalization of

The Chevalley formulas for CSM classes by Alu�, Mihalcea,
Schürmann and Su [2]

The Schubert Pieri rules by Sottile [16].

The Equivariant Schubert Pieri formula by Robinson [15], see also
Li, Ravikumar, Sottile and Yang [8].

The Schubert MN rule due to Morrison and Sottile [9].
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Hook Formulas

1 2

3 4
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Hook formulas

An application of our formulas is hook formula. Classically, the number
of standard Young tableaux (= dimension of irreducible representation
of Sn) is given by hook length formula

#

(
1 2 3
4 5

1 2 4
3 5

1 2 5
3 4

1 3 4
2 5

1 3 5
2 4

)
=

5!

4⇥ 3⇥ 1⇥ 2⇥ 1
,

where the denominator is the product of all hook length.

4 3 1
2 1

=
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Naruse Method

Ikeda and Naruse [14] observed that the classical hook formula is a shadow
of equivariant Chevalley formula over Grassmannian

D · [Y (�)]T = D|� · [Y (�)]T +
P

µ=�+⇤ [Y (µ)]T .

It can be generalized to

Classical Types [13],

K-theory [12],

SSM classes [11].

Our generalization goes to
another dimension — we replace
a divisor D by a higher degree
classes.

1 3
2 4

1 2

SSM classes

1 2 5 6
4

3

K-theory

1 2 4 7
3 5 8
6

cohomology

higher degree

KS

ow '/
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Domino Tableaux

There is a hook formula for domino tableaux by Fomin and Lulov [3],
which we will illustrate by two examples.

The number of domino tableaux (relating to representation theory of
BCn = (Z/2Z) oSn) is given by

#

8
<

:

1 2
3 4

1 3
2 4

1 3 4
2

1 2 4
3

1 2 3
4

1 2 3 4

9
=

; =
8!!

4⇥ 2⇥ 4⇥ 2
.

#

⇢
1 2
3 4

1 3
2 4

�
=

8!!

6⇥ 4⇥ 4⇥ 2
.

where the denominator is the product of all even hook lengths.

5 4 3 2
4 3 2 1

,
6 4 3 1
4 2 1
1

.

Rui Xiong CSM classes over Flag Varieties April 24, 2023 15 / 20



Our formulation

Actually, we deal with the general cases of r-rim hook tableaux (donimo
case is when r = 2) using equivariant MN rule.

Theorem (Fan, Guo and Xiong)

For a skew shape ⇤/� of size dr , we have the following
Laurant expansion

[Y (�)]T |⇤
[Y (⇤)]T |⇤

����
ti=zi

=
1

(z r � 1)d

✓
± #RHTr (⇤/�)

rdd!
+ o(1)

◆
,

near a primitive r -th root of unity.

When � = ?, by using Galois theory, we recover Fomin and Lulov [3,
Corollary 2.2].
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Positivity Conjectures
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Schürmann–Simpson–Wang Theorem

Several authors formulated the following conjecture, Mihalcea [10],
Knutson and Paul-Justin [6], Kumar [5].

Conjecture

For any permutations u, v 2 Sn,

cSM(Y (u)�) · cSM(Y (v)�) =
P

w
Z�0 · cSM(Y (w)�).

Just recently, this conjecture is proved by Schürmann Simpson and Wang
[17] using the theory of perverse sheaves.

Precisely, the conjecture should be stated in terms of SSM classes. Over
F`n, non-equivariant CSM and SSM di↵er by certain sign modification.

Rui Xiong CSM classes over Flag Varieties April 24, 2023 17 / 20



Alu�–Mihalcea–Schürmann–Su Theorem

From the recrusion formula, we have

cSM(Y (w)�) = [Y (w)]+
P

u>w
Z · [Y (u)].

Actually, the coe�cients are non-negative.

Theorem (P. Alu�, L. Mihalcea, J. Schürmann and C. Su [2])

For each w 2 Sn, the CSM class cSM(Y (w)�) is e↵ective, i.e.

cSM(Y (w)�) = [Y (w)]+
P

u>w
Z�0 · [Y (u)].

The proof uses the theory of D-modules to relate CSM classes with Verma
D-modules.
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Kumar’s Conjecture

It is natural to ask

Conjecture (Kumar [5])

The CSM class of any Richardson cell cSM(X (u)� \ Y (v)�) is e↵ective, i.e.

cSM(X (u) \ Y (v)�) =
P

w
Z�0 · [Y (w)].

We proved a weaker form of it (in type A):

Theorem (Fan, Guo and Xiong)

The class cSM(X (u)� \ Y (v)�) is monomial-positive i.e.

cSM(X (u) \ Y (v)�) =
P

�(n-1,··· ,1,0) Z�0 · x�.
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Our Conjecture

We actually prove that Kumar’s conjecture is equivalent to the following

Conjecture (Fan, Guo and Xiong)

For any permutations u, v 2 Sn,

cSM(Y (u)�) · [Y (v)] =
P

w
Z�0 · cSM(Y (w)�).

We also formulate the equivariant version of this conjecture.

Conjecture (Fan, Guo and Xiong)

For any permutations u, v 2 Sn,

cTSM(Y (u)�) · [Y (v)]T =
P

w
Z�0[↵]↵>0 · cTSM(Y (w)�).

Our Pieri rule can be used to check for special v ’s.
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Thanks
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