
GEOMETRY OF CHROMATIC SYMMETRIC FUNCTIONS

RUI XIONG

1. CHROMATIC SYMMETRIC FUNCTIONS

1.1. Chromatic symmetric functions. Let G be a graph. We can
construct a symmetric function

XG =
∑
κ

∏
v∈G

xκ(v) ∈ Λ.

where the sum goes over proper coloring κ : G→ {1, 2, 3, . . . } = [∞],
i.e.

v—w =⇒ κ(v) ̸= κ(w).

Example. when G = C3

a• b• c•
Then

XG =
∑

a ̸=b̸=c

xaxbxc =

( ∑
a,b,cdistinct

+
∑

a=c̸=b

)
xaxbxc = 6m111 +m12.

In general, we always have

XG = n! ·m1n + · · · n = |G|.

Example. When G = n{∗}, we have XG = pn
1 .

Example. When G = Kn a complete graph, we have XG = n!en. For
example, when n = 3,

a•

•
b

•
c

XG =
∑

a,b,c distinct

xaxbxc = 6
∑

a<b<c

xaxbxc = 6e3.
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Theorem (Stanley). Using the theory of quasi symmetric functions,
we have

ωXG =
∑

κ:G→[∞]

#

 acyclic orientation O
for anya—b

κ(a) < κ(b)⇒ a→ b

∏
v∈G

xκ(v).

We will use this in our second proof.

Example. when G = K3, there are 8 orientations, and 6 of them are
acyclic:

a•

•
b

//
��

•
c

�� and its permutation, ωXG =
∑

a≤b≤c

xaxbxc + (· · · ) = 6h3.

1.2. Frobenius character. We have Frobenius character

Frob :

∞⊕
n=0

[Rep(Sn)]
∼−→ Λ.

The isomorphism is described in many ways.

In p basis. For a character χ of Sn,

Frob(χ) =
1

n!

∑
w∈Sn

χ(w)ptype(w) =
∑
w∈Sn

1

zλ
χ(λ)pλ.

The notations here:

• For w ∈ S, if the cycle type of w is 1m12m2 · · · , then type(w) is
the partition with m1 many 1’s, m2 many 2’s etc.

• For λ with m1 many 1’s, m2 many 2’s etc., zλ = 1m1m1!2
m2m2! · · ·

which is the number of w ∈ Sn with type(w) = λ.

In h basis. The induced representation

IndSn
Sλ

tri
Frob7−→ hλ

where Sλ = Sλ1 × Sλ2 × · · · ⊂ Sn is the Young subgroup.

In e basis. Similarly,
IndSn

Sλ
sgn

Frob7−→ eλ ′ .
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In s basis. For the irreducible representation Vλ of Sn, we have

Frob(Vλ) = sλ.

In m basis. For a representation V , we have

Frob(V) =
∑
λ⊢n

dim(VSλ)mλ.

This formula is very important when computing the Frobenius char-
acter.

From the description above,

Frob
(
IndSn+m

Sn×Sm
V ⊠U

)
= Frob(V)Frob(U).

Frob
(
ResSn+m

Sn×Sm
W
)
= ∆Frob(W) ∈ Λ⊗Λ.

dimHomSn(V,U) = ⟨Frob(V),Frob(U)⟩

Frob(V ⊗ sgn) = ωFrob(V).

1.3. Hessenberg variety. Let h : [n]→ [n] be a function such that

i ≤ h(i), i ≤ j⇒ h(i) ≤ h(j).

Such a function is called a Hessenberg function. For example,

h = (2, 4, 5, 5, 5)

Note that Hessenberg functions are in bijection with Dyck path of
length n, so the number of them is Cn = 1

n+1

(
2n
n

)
.

Let S ∈ gln be an n×n matrix. We define the Hessenberg variety
to be

Hess(S, h) = {0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = Cn : SVi ⊆ Vh(i)}.

When S is regular semisimple (i.e. with distinct eigenvalues), we
can assume S is diagonal, so Hess(S, h) admits an action of entire
torus T , the subgroup of diagonal matrices in GLn. In this case,
Hess(S, h) is smooth.



4 RUI XIONG

Example. When h(i) = i, the condition SVi ⊆ Vi means each Vi

is an eigensubspace of S. But the eigensubapces of S are all one-
dimensional, so we have Hess(S, h) = Sn = n! · {∗}.

Example. When h(i) = n, we have

Hess(S, h) = Fℓn = full flag variety.

Example. When h(i) = min(i+ 1, n), we have

Hess(S, h) = Permn = permutohedral variety.

It is a toric variety whose fan is the Weyl chambers.

Example. In particular, Perm3 is a del Pezzo surface of degree 6, ob-
tained by blow-up three torus fixed points over P2.

blow-up−→
The moment graph of Hess(S, h) will be a subgraph of that of flag

variety:

u
tu(i)−tu(j)——— w ⇐⇒ w = utij i < j ≤ h(i).

As a result, its cohomology admits the following discription

H∗
T(Hess(S, h)) =

(αw)w∈W :
each αw ∈ Q[t1, . . . , tn]
tu(i) − tu(j) | αw − αu for
w = utij with i < j ≤ h(i)

 .

The symmetric group Sn action on it by

(v · α)w = vαv−1w, v ∈ Sn, α ∈ H∗
T(Hess(S, h)).

This is called the Tymoczko left action. This action reduces to non-
equivariant cohomology.

Example. When h(i) = i, the action is by permuting the points.
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Example. When h(i) = n, the action coincides with the induced ac-
tion from the natural action Sn ⊂ GLn on Fℓn, since GLn is con-
nected, the action on equivariant cohomology is trivial.

Example. When h(i) = min(i + 1, n), the action coincides the Sn-
action induced by the symmetric group action on Weyl chambers.

1.4. Frobenius character of H∗(Hessh(S)). For a Hessenberg func-
tion h, we define a graph G whose vertices set of [n] and for i < j,

i—j ⇐⇒ j ≤ h(i).

Example.

h = (2, 4, 5, 5, 5) • • • • •

Theorem (Brosnan, Chow). We have

ωFrob(H∗(Hess(S, h))) = XG(h).

For later reference, let us denote H(h) = H∗(Hess(S, h)) for S regular
semisimple.

This note is devoted to review the proof of this theorem.

Example. For h(i) = i, G(h) = n{∗}. We know from the previous
examples that

Hess(S, h) = n!{∗}, H∗(n!{∗}) ∼= Q[Sn].

Recall G(h) = n{∗}. We have

XG(h) = pn
1 = ωFrob(H∗(Hess(S, h))).

Example. For h(i) = n, G(h) = Kn. We know from the previous
examples that

Hess(S, h) = Fℓn, H∗(Fℓn) ∼= n! · tri.

Recall G(h) = Kn. We have

XG(h) = n! · hn = ωFrob(H∗(Hess(S, h))).
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Example. For h(i) = min(i, n), G(h) = Cn. When n = 3, we know

H∗(Perm3) =

s ss Q[D1]⊕Q[D2]⊕Q[D3]

• • • H∗(P2)

H0 H1 H2

for three exceptional divisors D1, D2, D3. The symmetric group S3

acts trivially on H∗(P2) and permuting exceptional divisors. So

H∗(Perm3) = 3tri+ tri ↑S3S1×S2
.

That is,
Frob(H∗(Perm3)) = 3h3 + h2h1.

Then
ωFrob(H∗(Perm3)) = 3e3 + e2e1 = 6m111 +m12.

Remark. There is a q-analogy of chromatic symmetric functions, com-
puting the graded Frobenius character.

2. GEOMETRIC PREPARATION

2.1. Monodromy. Let us consider the universal Hessenberg vari-
ety

H(h) = {(S, V•) : S ∈ gln, V• ∈ Hess(S, h)}.

Then we have

H(h)
ρ //

π

��

Fℓn

gln

Note that ρ is a GLn-equivariant vector bundle over Fn with fibre
H =

⊕
1≤j≤h(i) C · Eji at the base point. For example,

h = (2, 4, 5, 5, 5) H =

t

⊂ gln.
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Note that
π−1(glrsn )

��

⊂ H(h)

π

��
glrsn ⊂ gln

is smooth, so there is a fundamental group action on cohomology of
fibre, i.e. monodromy.

When h(i) = i, we usually denote it by H(h) = g̃ln, and g̃l
rs
n → gln

forms an Sn-Galois covering. We have

π−1(S) = {flag of eigen-subspaces of S}.

When S ∈ glrsn , the fiber is just an ordering of one-dimensional eigen-
subspaces of S, and the monodromy action factors through Sn and
it coincides with the permutation action. In particular, for diagonal
S ∈ glrsn , the coordinate subspaces are eigen-subspaces, so the fibre
is naturally identified with Sn.

More general, at each S ∈ glrsn , we have a maximal torus

TS = CG(S).

We have
Hess(S, h)TS = π−1(S)TS //

))

π−1(glrsn )

��
glrsn

is the Sn-Galois covering just mentioned. Since

H∗
TS
(Hess(S, h)) −→ H∗

TS
(Hess(S, h)TS)

is injective, the monodromy action factor through Sn, and is given
by the Tymoczko left action.

2.2. Springer theory. Let N be the nilpotent cone

Nn = {S ∈ gln : Sn = 0}

and Ñn the Springer resolution

Ñn = {(V•, S) ∈ Fℓn×N : SVi ⊆ Vi−1}.
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We have the following diagram

Ñn

( �
55
Fℓn×gln oo

Fourier//

π

��

Fℓn×gln

π

��
g̃ln

6 V
ii

gln oo
Fourier // gln

Here we identify gl∗n and gln by the trace pairing. Since Ñn = g̃l
⊥
n ,

we have

QÑn

� F //
_

π∗

��

Qg̃ln_
π∗

��
π∗QÑn

� F // IC(glrsn ,Q[Sn]).

We have isomorphisms

Sn
∼= End(π∗QÑn

)
F
∼= End(IC(glrsn ,Q[Sn])) ∼= Sn

which twists by a sign w 7→ (−1)ℓ(w)w. Recall Vλ is the irreducible
Sn-representation. Then Vλ 7→ Vλ ′ under this twisting. By decompo-
sition theorem

• On the left-hand-side, we have

π∗QÑn
=
⊕
λ⊢n

Vλ ⊗ IC(Oλ),

where Oλ is a nilpotent orbit of Jordan type λ.
• On the right-hand-side

π∗Qg̃ln
=
⊕
λ⊢n

Vλ ⊗ IC(glrsn , Vλ),

where Vλ are viewed as a local system over glrmn .

This proves

IC(Oλ)
F7−→ IC(glrsn , sgn⊗ Vλ).
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2.3. Sheaf theoretic formulation. Let us turn to our H(h). We simi-
larly have

Ñ(h)
( �

55
Fℓn×gln oo

Fourier//

π

��

Fℓn×gln

π

��
H(h)
6 V

ii

gln oo
Fourier // gln

where
Ñ(h) = {(V•, S) : SVj ⊆ Vg(j)},

where g(i) = max{j < i : h(j) < i}. That is,

h(j) < i ⇐⇒ j ≤ g(i).

Note that Ñ(h) is a GLn-vector bundle over Fℓn with fibre H⊥ =⊕
j≤g(i) CEji at the base point. For example,

H⊥ =

t

⊂ H =

t

⊂ gln.

Using Fourier transformation, we have

QÑ(h)
� F //

_
π∗

��

QH(h)
_

π∗

��
π∗QÑ(h)

� F // IC(glrsn , H(h)).

Recall that H(h) = H∗(Hess(S, h)).
Note that a priori, π∗QH(h) would have summand of IC sheaves

supported on lower stratum. Since we have in type A, the left-hand
side π∗QÑ(h) contains only IC(Oλ). So by Fourier transform, no other
IC sheaves appears in π∗QH(h). It was shown that this is also true for
all types.

Remark. The variety N(h) is used to give a geometric definition of
the Catalan function in MacDonald theory. It is not clear to the
author what is the precise relation between these two pictures.
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3. PROOF FROM THE SPRINGER SIDE

3.1. Topological part. For µ ∈ Oµ,

π∗QÑn
|λ = H∗(Springer fiber) ∼= IndSn

Sµ
tri.

As a result,

IC(Oλ)|µ = HomSn(Vλ, Ind
Sn
Sµ

tri) = V
Sµ
λ .

Thus we have

IC(glrsn , H(h)) =
∑
λ⊢n

HomSn(Vλ, H(h))⊗ IC(glrsn , Vλ)

F7−→∑
λ⊢n

HomSn(Vλ, sign ⊗H(h))⊗ IC(Oλ)

−|µ7−→∑
λ⊢n

HomSn(Vλ, sign ⊗H(h))⊗ V
Sµ
λ = (sign ⊗Hh)

Sµ .

This proves
(sign ⊗H(h))Sµ = π∗QÑ(h)|µ

which is the cohomology group of the fiber Ñ(µ, h) of Ñ(h) at µ.
Let us choose the standard form of µ.

µ = diag(Jµ1
, Jµ2

, · · · ), Jk =

[
0 1
0 1
······
0 1
0

]
k

.

Let us denote the torus

C×
ρ =
{
ρ(t) : t ∈ C×} ⊂ GLn, ρ(t) = diag(tn−1, tn−2, · · · , t, 1).

It is not hard to check

ρ(t) · µ · ρ(t)−1 = t · µ,

so C×
ρ acts on Ñ(µ, h). Since FℓC

×
ρ

n = Sn, we can conclude

Ñ(µ, h)C
×
ρ = Sn ∩ Ñ(µ, h) =

{
w ∈ Sn : w ∈ Ñ(µ, h)

}
=: Sn(µ, h).

In particular,
dimH∗(Ñ(µ, h)) = #Sn(µ, h).
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3.2. Combinatorial part. Let us enumerate Sn(µ, h). Assume µ =
(µ1, . . . , µk) has k parts. Then µ defines a partition of [n] into k parts

[n] = A1 ⊔ · · · ⊔Ak, #Ai = µi, A1 < · · · < Ak.

For i ∈ [n], we denote ind(i) to be the index j such that i ∈ Aj. For a
permutation w ∈ Sn, we view it as a color on G. We shall view µ as
a map

µ : [n]→ [n] ∪ {0}, i 7→ {0, i = µ1, µ1 + µ2, . . . , n

i+ 1, otherwise

That is, it is mapped to i+1 if ind(i) = ind(i+1) and to 0 otherwise.
Then for w ∈ Sn(µ, h), we need to require for any a, b,

w(b) = w(a) + 1
ind(w(a)) = ind(w(b))

⇒ b ≤ g(a),

i.e. h(b) < a i.e.
b < a, b−×− a.

Then
κ : G(h)→ [k], a 7→ ind(w(a))

gives an element in K, where

K =

{
proper coloring G(h)→ [k]

with each color i used µi times

}
.

Conversely, every element κ ∈ K gives a unique element w ∈ Sn(µ, h)
such that

w(a) ∈ Aκ(a), a < b, κ(a) = κ(b)⇒ w(a) > w(b).

Note that
#K = [xµ]XG = [mµ]XG = ⟨hµ, XG⟩.

So,
dim(sign ⊗Hh)

Sµ = [mµ]XG.

This proves
ωFrob(H∗(Hess(S, h))) = XG(h).
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Example. Let us give an example. Take h = (2, 4, 5, 5, 5):

⊂ • • • • •

and µ = (2, 2, 1):
1 7−→ 2 3 7−→ 4 5

Here is an example

•
2

•
4

•
1

•
5

•
3

Vi µ · Vi Vg(i)

2 /0 /0
2 4 /0 /0 /0
2 4 1 /0 /0 2 2
2 4 1 5 /0 /0 2 /0 2
2 4 1 5 3 /0 /0 2 /0 4 2 4

4. PROOF FROM THE GALOIS SIDE

4.1. Topological part. Let us restrict to glrn. Let us denote t the sub-
space of diagonal matrices. We have the following diagram

t

p

��

g̃l
r
n

oo

��

⊂ g̃ln

π

��
t/Sn

pull

glrn
foo ⊂ gln.

So
π∗Qgln |glrn = π∗Qglrn = f∗p∗Qt.

For x ∈ t, the reduced fiber of p at x is naturally identifies with the
Sn orbit of x. So for any regular element x ∈ glrn of type µ, we have

π∗Qgln |x = C[Sn · x] = IndSn
Sµ

tri.

Let us denote −|µ for −|x for any regular element of type µ. Then

IC(glrsn , Vλ)|µ = HomSn(Vλ, Ind
Sn
Sµ

tri) = V
Sµ
λ .

Just similar as the discussion on the Springer side, we have

H(h)Sµ = π∗QH(h)|µ
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which is the cohomology group of the fiber Hess(x, h) of H(h) at
x ∈ glrn of type µ. Let us expand the definition. We have

H∗(Hess(S, h))Sµ = H∗(Hess(x, h))

where S is a regular semisimple element and x is a regular element
of type µ. In particular, H∗(Hess(x, h)) satisfies Poincaré duality.

Now let us study Hess(x, h). We can take

x = diag(s1Iµ1
+ Jµ1

, s2Iµ2
+ Jµ2

, . . .)

for distinct s1, s2, . . . ̸= 0. Let us consider the torus generated by

C×
s = diag(s1Iµ1

, s2Iµ2
, . . .).

Then
Hess(x, h)C

×
s = Hess(µ, h)C

×
s .

Similar as the discussion in the Springer side, we have

dimH∗(Hess(x, h)) = dimH∗(Hess(µ, h)) = #S ′
n(µ, h),

where
S ′
n(µ, h) =

{
w ∈ Sn : w ∈ Hess(µ, h)

}
.

4.2. Combinatorial part. Let us enumerate S ′
n(µ, h). Let us define

Sn →
(O, κ) :

O is an acyclic orientation of G(h)
κ is a weakly increasing G(h)→ [k]
with each color i used µi times

 =: K ′

by w 7→ (O, κ). Here O is the orientation

a −→ b ⇐⇒ w(a) < w(b)

and κ is the coloring

κ : G(h)→ [k], a 7→ ind(w(a)).

From the construction, it is obvious that κ is weakly increasing

a −→ b⇒ κ(a) ≤ κ(b).

This map is many-to-one.
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For a pair (O, κ) as above, we consider Gc = (κ−1(c),≤O) the sub-
graph colored by c. We find the maximal number c1 among the min-
imal element min(Gc). Then we find the maximal number i2 among
the minimal element min(GC \ {c1}) etc. We enumerate elements

Gc = {c1, c2, · · · }.

We define (O, κ) 7→ w such that

κ(a) < κ(b)⇒ w(a) < w(b), w(c1) < w(c2) < · · · for any color c.

This defines a section of the map, i.e. (O, κ) 7→ w 7→ (O, κ). Note
that w 7→ (O, κ) 7→ w ′ is not the identity, and w ′ = wv for some
v ∈ Sµ. The condition of the image, i.e. the condition for w = w ′,
can be described

w(b) = w(a) + 1
κ(b) = κ(a)

⇒ either b < a or a→ b.

That is, b ≤ h(a). This is exactly the condition for w ∈ S ′
n(µ, h).

Similarly, we have

#K ′ = [mµ](ωXG).

As a result,

dimH(h)Sµ = #S ′
n(µ, h) = |K ′|.

This proves

ωFrob(H∗(Hess(S, h))) = XG(h).

Example. Let us give an example. Take h = (2, 4, 5, 5, 5):

• • • • •

and µ = (2, 2, 1):

1 7−→ 2 3 7−→ 4 5.
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Here is an example

•
2

// •
3

// &&•
5

oo xx •
4

oo •
1

Vi µ · Vi Vh(i)

2 /0 2 3
2 3 /0 4 2 3 5 4
2 3 5 /0 4 /0 2 3 5 4 1
2 3 5 4 /0 4 /0 /0 2 3 5 4 1
2 3 5 4 1 /0 4 /0 /0 2 2 3 5 4 1

5. APPENDIX

5.1. Symmetric functions. Let Λ = lim←−Q[x1, . . . , xn]
Sn be the ring of

symmetric functions.

• Recall the monomoical symmetric function for a partition λ
is

mλ =
∑
α∈Snλ

xα =
1

|Sλ|

∑
w∈Sn

xwλ.

• Recall the elementary symmetric function for a partition λ

eλ = eλ ′
1
eλ ′

2
· · · , er =

∑
1≤i1<i2<···

xi1xi2 · · ·

where λ ′ is the conjugation of λ. Another way of determining
er is ∞∑

r=0

trer =

∞∏
i=0

(1+ txi).

• Recall the homogeneous symmetric function for a partition
λ

hλ = hλ1hλ2 · · · , hr =
∑

1≤i1≤i2≤···

xi1xi2 · · · .

Another way of determining hr is
∞∑
r=0

trhr =

∞∏
i=0

1

1− txi
.
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• Recall the power symmetric function for a partition λ of ℓ
rows

pλ = pλ1 · · ·pλℓ , pr = xr1 + xr2 + · · · .

• We denote
sλ =

∑
T∈SSYT(λ)

xT

the Schur function for a partition λ.

We have a Hall inner product ⟨, ⟩ whose kernel is

Ω =

∞∏
i,j=1

1

1− xiyj

=
∑
λ

sλ(x)sλ(y) =
∑
λ

hλ(x)mλ(y) =
∑
λ

1

zλ!
pλ(x)pλ(y).

We have an ω-involution, which is the ring automorphism

hλ ↔ eλ ′ (er ↔ hr), pr ↔ (−1)rpr, sλ ↔ sλ ′ .

5.2. Quasi-symmetric functions. We say a polynomial

f ∈ Q[x1, . . . , xn]

is quasi-symmetric if for all a1, . . . , ak the coefficient in f of xa1

i1
· · · xak

ik

equals the coefficient of xa1

j1
· · · xak

jk
whenever i1 < · · · < ik and j1 <

· · · < jk. We denote

QSym = lim←−Q[x1, . . . , xn]
Quasi-sym.

In stead of using partition, we will use strong composition, i.e. α =
(α1, . . . , αℓ) for positive integers αi > 0. We define |α| := α1 + · · ·αℓ

and ℓ(α) := ℓ. We write β |= α if β refines α. We can illustrate a
strong composition by |α| balls and ℓ− 1 bars:

(4, 1, 3, 1)
1n2n3n4n|

5n|

6n7n8n|

9n
From this, we see the strong composition is in bijection with pairs
(n, S) for S ⊂ [n− 1]. For example,

(4, 1, 3, 1) (9, {4, 5, 8}).
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Monomial. We define the monomial quasi-symmetric function for
a strong composition α

Mα =
∑
β+=α

xβ

with the sum over all compositions β and β+ is obtained by deleting
0’s in β. It could be viewed as generating function of the filling of α,
such that na nb ⇒ a = b, na | nb ⇒ a < b.

For example,
M4131 =

∑
a<b<c<d

x4axbx
3
cxd.

There is an explicit rule for multiplying Mα and Mβ, so in particular,
QSym is a ring.

Fundamental. We define the fundamental (Gessel) quasi-symmetric
function for a strong composition α

Fα =
∑
β|=α

Mβ

with the sum over strong compositions β and β |= α means β is a
refine of α. It could be viewed as generating function of the filling
of α, such that na nb ⇒ a ≤ b, na | nb ⇒ a < b.

For example

F4131 =
∑

i1≤i2≤i3≤i4<i5<i6≤i7≤i8<i9

xi1 · · · xi9.

Moreover, we have

F1n = en, Fn = hn.

We also denote

Fn,S = Fα =
∑

1≤i1≤···≤in
a∈S⇒ ia<ia+1

xi1 · · · xin

for (n, S) corresponding to α.
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Coproduct and involution. We have coproduct

∆ : QSym→ QSym

by using new alphabet

x1 ⊗ 1 < x2 ⊗ 1 < · · · < 1⊗ x1 < 1⊗ x2 < · · · .

We have an ω-involution by

ω(Fα) = Fα ′

where α ′ is the dual composition obtained by

n| n←→ n n.

For example (4, 1, 3, 1) ′ = (1, 1, 1, 3, 1, 2). Compare:

(4, 1, 3, 1) n n n n| n| n n n| n
(1, 1, 1, 3, 1, 2) n| n| n| n n n| n| n n

In terms of monomial quasi-symmetric functions, we have

∆Mα =

ℓ(α)∑
k=0

Mα≤k
⊗M>k, ω(Mα) = (−1)ℓ(α)

∑
α|=β

Mβ.

We define antipode by S(Mα) = ω(Mrev(α)). These equip QSym a
structure of a Hopf algebra. Actually the dual of QSym is the so-
called non-commutative symmetric functions. Note that the co-
product is not commutative. The natural embedding is a Hopf al-
gebras homomorphism

Λ
⊆−→ QSym .

That is, it commutes with coproduct and antipode. Since

mλ =
∑

sort(α)=λ

Mα =
∑

sort(α)=λ

Mrev(α),

the inclusion also commutes with the omega involution.
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Example. Assume we have a partial order P on [n]. We call T : P →
[∞] a P-partition if

a <P b, a > b =⇒ T(a) < T(b),

a <P b, a < b =⇒ T(a) ≤ T(b).
(∗)

For example,

1 3

2
T(1) > T(2) ≤ T(3).

Let A (P) be the set of (P,ω)-partitions. For an abstract poset P, we
need first find a bijection P → [n].

Here are more examples

• When the bijiection is increasing, P-partition is just strictly
increasing map P → [∞].

• When the bijection is decreasing, P-partition is just weakly
increasing map P → [∞].

• When P is a chain {w1 < w2 < · · · < wn}, then

A (P) =

{
[n]

T→ [∞] :
T(i) ≤ T(i+ 1) wi < wi+1

T(i) < T(i+ 1) wi > wi+1

}
the increasing sequence strictly at descent of w.

The fundamental theorem of P-partition is

A (P) =
⊔
P ′

A (P ′)

for all linear extension P ′ of P. For example,

1 3

2
T(2) < T(1)
T(2) ≤ T(3)

=

3

1

2
T(2) < T(1) ≤ T(3)

⊔

1

3

2
T(2) ≤ T(3) < T(1)

The bijection is given by “standardization”. That is, for any P-partition,
we can define a linear extension P ′ by the lexicographic order of
i 7→ (T(i), i). Then T gives a P ′-partition.
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Let us define

FP =
∑

T∈A (P)

xT =
∑

i1,...,in
a<Pb,a<b⇒ia≤ib
a<Pb,a>b⇒ia<ib

xi1 · · · xin =
∑
P ′

FP ′ .

When P ′ is a chain {w1 < · · · < wn}, we have

FP ′ = Fn,des(P ′) where des(P ′) = {i ∈ [n− 1] : wi > wi+1}.

As a result, we have

ωFP =
∑

i1,...,in
a<Pb,a<b⇒ia<ib
a<Pb,a>b⇒ia≤ib

xi1 · · · xin = FQ

for Q the order i <Q j iff n− i <P n− j.

Example. Let us see how it can be used to compute ωsλ. Let n =

|λ|. Given a standard tableaux S ∈ SYT(λ), i+1 must be NE to i

(including its direct right) or SW to i (including its direct down).
We define a compositon α(S) of n between the i-th ball and the (i +
1)-th ball if i+1 is SW to i . Then we have

sλ =
∑

S∈SYT(λ)

Mn,des(S).

Actually, SSYT(λ) is a special case of P-partitions. Explicitly, for
each T ∈ SSYT(λ), we can associate its standardization S = std(T) ∈
SYT(λ) a standard tableaux such that

• if T(□1) < T(□2), then S(□1) < S(□2);
• if T(□1) = T(□2), and □1 is left to the □2, then S(□1) < S(□2).

For each S ∈ SYT(λ), we define its descent set to be

dec(S) =
{
i ∈ [n− 1] : i+1 is lower than i

}
.

It is not hard to figure out the identity:

2 2 5 5 20
5 10 20
10

1 2 4 5 9
3 7 8
6
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n2
1

n2
2

| n5
3

n5
4

n5
5

| n10
6

n10
7

n20
8

n20
9

Then
ωsλ = sλ ′ ,

where the condition of < and ≤ are switched.

Example. Let G be a graph. We have{
proper coloring
κ : G→ [∞]

}
=
⊔
O

{
strictly increasing map

κ : (G,≤O)→ [∞]

}
where O is an acyclic orientation, which equips G a partial order.
This shows

XG =
∑
O

∑
κ:G→[∞]

a→b⇒κ(a)<κ(b)

∏
v∈G

xκ(v).

By the example above, we have

ωXG =
∑
O

∑
κ:G→[∞]

a→b⇒κ(a)≤κ(b)

∏
v∈G

xκ(v).

In other word,

ωXG =
∑

κ:G→[∞]

#

{
acyclic orientation O
κ(a) < κ(b)⇒ a→ b

}∏
v∈G

xκ(v).
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