GEOMETRY OF CHROMATIC SYMMETRIC FUNCTIONS

RUI XIONG

1. CHROMATIC SYMMETRIC FUNCTIONS

1.1. Chromatic symmetric functions. Let G be a graph. We can
construct a symmetric function

Xg = Z HXK(V) e A
K veG

where the sum goes over proper coloring k : G — {1,2,3,...} = [00],
ie.
v—w =— k(v) # k(w).

Example. when G = C3

[ Je]
[ X3
[ Xel

Then

Xg = E XaXpXe = < E + E ) XaXpXe = 6My717 + My2.
a#b#c a,b,cdistinct  a=c#b

In general, we always have

Xg=n!l-mm—+--- n =|G|.
Example. When G = n{x}, we have Xg = pJ.

Example. When G = K, a complete graph, we have Xg = nle,. For
example, whenn = 3,

./_\. Xg = Z XaXpXe = 6 Z XaXpXe = 6€3.

b c a,b,c distinct a<b<c
1
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Theorem (Stanley). Using the theory of quasi symmetric functions,
we have

acyclic orientation O
wXg = Z # for anya—b Hx
k:G—[oo] kK(a) <k(b)=a—=b | vec

We will use this in our second proof.

Example. when G = Kj;, there are 8 orientations, and 6 of them are
acyclic:

a
[ ]

/Y \ andits permutation, wXg = Z XaXpXc + (++-) = 6hs.
; - : a<b<c

1.2. Frobenius character. We have Frobenius character

Frob : @[Rep(sn)] — AL
n=0

The isomorphism is described in many ways.

In p basis. For a Character x of S,,,

1
Frob(x l Z x(w Ptype(w) = Z —X(A)pa.

n: WESH wESH X
The notations here:
e Forw € §, if the cycle type of wis 1T™2™2 ... then type(w) is
the partition with m; many 1’s, m, many 2’s etc.
e For A with my many 1’s, m, many 2’s etc., z), = 1™ m,12™m,! - --
which is the number of w € S,, with type(w) = A.

In h basis. The induced representation

Frob

Inds“ tri — hy,

where Sy = S,, x S), x .-+ C S, is the Young subgroup.

In e basis. Similarly,
Sn Frob
IndgT sgn — ex.
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In s basis. For the irreducible representation V) of S,,, we have

Frob(V,) = sa.

In m basis. For a representation V, we have

Frob(V) = Z dim (V3 )m,.

AFn

This formula is very important when computing the Frobenius char-
acter.

From the description above,
Frob (Indg"% V& U) = Frob(V) Frob(U).

Frob (Resi"z W) = AFrob(W) € A® A.
dim Homs, (V, U) = (Frob(V), Frob(ll))
Frob(V ® sgn) = w Frob(V).

1.3. Hessenberg variety. Let h: [n] — [n] be a function such that
i<h(i), i<j=h(i) <h().

Such a function is called a Hessenberg function. For example,

h= (2)4)5)5)5)

Note that Hessenberg functions are in bijection with Dyck path of

length n, so the number of them is C,, = n+r] (2::)

Let S € gl,, be an n x n matrix. We define the Hessenberg variety
to be

Hess(S,h)={0=Vo, CV; C--- CV,.; C Vo, =C":SV; C Vi)

When S is regular semisimple (i.e. with distinct eigenvalues), we
can assume S is diagonal, so Hess(S, h) admits an action of entire
torus T, the subgroup of diagonal matrices in GL,,. In this case,
Hess(S, h) is smooth.
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Example. When h(i) = 1i, the condition SV; C V; means each V;
is an eigensubspace of S. But the eigensubapces of S are all one-
dimensional, so we have Hess(S,h) = S, =n! - {x}.
Example. When h(i) =n, we have

Hess(S, h) = J¢, = full flag variety.

Example. When h(i) = min(i + 1,n), we have
Hess(S, h) = Perm,, = permutohedral variety.

It is a toric variety whose fan is the Weyl chambers.

Example. In particular, Perm; is a del Pezzo surface of degree 6, ob-
tained by blow-up three torus fixed points over P2.

blow-up
—

The moment graph of Hess(S, h) will be a subgraph of that of flag
variety:

u MO e w=uty i< < h(i).
As a result, its cohomology admits the following discription

each «,, € Q[ty,...,t,]
H?(Hess(S, h)) = (“W)WEW : tu(i] - tu(j) | Ky — Xy for
w = uty withi <j < h(i)

The symmetric group S, action on it by
(V- o)y = VOt -14y, v e Sy, x € Hi(Hess(S,h)).
This is called the Tymoczko left action. This action reduces to non-

equivariant cohomology.

Example. When h(i) = i, the action is by permuting the points.
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Example. When h(i) = n, the action coincides with the induced ac-
tion from the natural action S, C GL, on F¢,, since GL, is con-
nected, the action on equivariant cohomology is trivial.

Example. When h(i) = min(i 4+ 1,mn), the action coincides the S,-
action induced by the symmetric group action on Weyl chambers.

1.4. Frobenius character of H*(Hessy(S)). For a Hessenberg func-

tion h, we define a graph G whose vertices set of [n] and for i < j,
i— & j <h(i).

Example.

h =(2,4,5,5,5) ) ° ° ° °

Theorem (Brosnan, Chow). We have
w Frob(H*(Hess(S,h))) = Xgm)-

For later reference, let us denote H(h) = H*(Hess(S, h)) for S regular
semisimple.

This note is devoted to review the proof of this theorem.

Example. For h(i) = 1, G(h) = n{x}. We know from the previous
examples that

Hess(S,h) = n!{x}, H*(n!{*}) = QI[S..].
Recall G(h) = n{x}. We have

Xgm) =Py = wFrob(H*(Hess(S,h))).

Example. For h(i) = n, G(h) = K,. We know from the previous
examples that

Hess(S,h) = F(,,, H*(F{,) = n! - tri.
Recall G(h) = K,,. We have

Xgm) =n! - h, = wFrob(H"(Hess(S,h))).
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Example. For h(i) = min(i,n), G(h) = C,,. When n = 3, we know

a¥ Q[D;] & Q[D,] & QD3]
H*(Perms) = o o H*(P?)
HO H! H?

for three exceptional divisors Dy, D;, D3;. The symmetric group S;
acts trivially on H*(P?) and permuting exceptional divisors. So
H*(Perm;) = 3tri + tri ngxsz .
That is,
Frob(H*(Perms)) = 3h; + hyh,.
Then
w Frob(H*(Perms)) = 3e; + e;e; = 6myqy + mys.

Remark. Thereis a q-analogy of chromatic symmetric functions, com-
puting the graded Frobenius character.

2. GEOMETRIC PREPARATION

2.1. Monodromy. Let us consider the universal Hessenberg vari-

ety
H(h) ={(S,V.): S €gl,, V. € Hess(S,h)}.

Then we have

H(h) == 7,

Tt

gly

Note that p is a GL,-equivariant vector bundle over F,, with fibre
H = ®,.j<ni C - Eji at the base point. For example,

T t

h=(2,4,555 H= C gl,..
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Note that
w(glhy) < $Hh)

gy < gl
is smooth, so there is a fundamental group action on cohomology of
tibre, i.e. monodromy.
When h(i) = i, we usually denote it by $(h) = gl,,, and gl.’ — gl,
forms an S,,-Galois covering. We have

7' (S) = {flag of eigen-subspaces of S}.

When S € gl}, the fiber is just an ordering of one-dimensional eigen-
subspaces of S, and the monodromy action factors through S,, and
it coincides with the permutation action. In particular, for diagonal
S € gl the coordinate subspaces are eigen-subspaces, so the fibre
is naturally identified with S,,.

More general, at each S € gl}}, we have a maximal torus
Ts = Cg(S).

We have
Hess(S,h)™s =t 1(S)Ts ——= 7 1(gl?¥)

\ L
gly
is the S,-Galois covering just mentioned. Since
H7 (Hess(S,h)) — H?S(Hess(S,h)TS)
is injective, the monodromy action factor through S,, and is given
by the Tymoczko left action.
2.2. Springer theory. Let N be the nilpotent cone
No={Segl,:S"=0}

and N, the Springer resolution

Ny ={(Ve,S) € Fly xN:SV; C Vi_; L



8 RUI XIONG

We have the following diagram

Fe, xgl, 2 FO xgl,
S

Here we identify gl and gl, by the trace pairing. Since N,, = gt
we have

Qs —— Qg
m,Q5, = IC(gl¥, Q[S,)).

We have isomorphisms

S, = End(m.Qy, ) = End(IC(gL, QIS,))) = S,

which twists by a sign w — (—1)"™w. Recall V, is the irreducible
Sn-representation. Then V), — V). under this twisting. By decompo-
sition theorem

e On the left-hand-side, we have

m.Qx, = PV @ IC(O),
AFn
where Q) is a nilpotent orbit of Jordan type A.
e On the right-hand-side
W*Qﬁ[n = @V)\ & IC(Q[;S) V)\))
Abn
where V), are viewed as a local system over gl

This proves

IC(0) 55 IC(gl, sgn & Vy).
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2.3. Sheaf theoretic formulation. Let us turn to our $)(h). We simi-
larly have

Fe, xgl, 2 FO, xgl,

where
N(h) ={(Vs,S) : SV; C Vgl
where g(i) = max{j < i: h(j) < i}. That s,
h(j) <i &= j < g(i).

Note that N(h) is a GL,-vector bundle over F¢, with fibre Ht =
®j§9(i) CE;; at the base point. For example,

t T t
Ht = CH= C gl,.

Using Fourier transformation, we have

z
Qi ———— Qo)

ml n{

7 Qs > IC (gl H(R)).

Recall that H(h) = H*(Hess(S, h)).

Note that a priori, 71,Qgn) would have summand of IC sheaves
supported on lower stratum. Since we have in type A, the left-hand
side 7. Q5 contains only IC(Qj). So by Fourier transform, no other
IC sheaves appears in m.Qgn). It was shown that this is also true for
all types.

Remark. The variety N(h) is used to give a geometric definition of
the Catalan function in MacDonald theory. It is not clear to the
author what is the precise relation between these two pictures.
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3. PROOF FROM THE SPRINGER SIDE
3.1. Topological part. For un € O,
7.Qg, [» = H*(Springer fiber) = Indg’: tri.
As a result,
IC(0))|, = Homs, (V, Indg" tri) = Vy*.
Thus we have
IC(gly, H(h)) = ) Homs, (Vi, H(h)) ® IC(gl, Va)

AFn
75 Y Homs, (Vi, sign ® H(h)) © IC(0y)
AFn
% 3" Homg, (Vy,sign @ H(h)) ® V}* = (sign ® Hy) .
AFn

This proves
(sign ® H(h))™ = 7. Qs

which is the cohomology group of the fiber N(p, h) of N(h) at .
Let us choose the standard form of p.

01
n=diag(Ju;s Jupy =+ ), Jx = [ ------ ] .
k

Let us denote the torus
Cr={p(t):teC*} C GL,, p(t) = diag(t™ ", "2 .-, t, 1),
It is not hard to check
p(t) - p-p(t) " =t-u,
so C) acts on N(w, h). Since S"BC; = S,,, we can conclude
N(g, h)% =S, N N(w, h) ={we Sy:weN(h)} = Sa(p,h).

In particular,
dim H* (N, h)) = # S, (1, h).
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3.2. Combinatorial part. Let us enumerate S, (p, h). Assume p =
(t1y. .., ) has k parts. Then p defines a partition of [n] into k parts

[TL]:A1|_|"'|_|Ak, #Aizuia A]<"'<Ak.

For i € [n], we denote ind(i) to be the index j such that i € A;. For a
permutation w € S,,, we view it as a color on G. We shall view p as
a map

0, =, +Hy,...,n

. U O) '
w: [l — [n] U{o} v {i—i— 1, otherwise

That is, it is mapped to i+1if ind(i) = ind(i+1) and to 0 otherwise.
Then for w € S, (u, h), we need to require for any a, b,

indv(vvg()i)) " gﬁlﬂ:(b)) = b < gla),
ie. h(b) < ai.e.
b < a, b = a.
Then
k:G(h) — [k, a— ind(w(a))
gives an element in K, where

K — proper coloring G(h) — [k
~ | with each color i used y; times

Conversely, every element k € K gives a unique elementw € S, (i, h)
such that

w(a) € Aga), a < b,k(a) =«k(b) = w(a) >w(b).
Note that
#K = [x"]Xg = m X = (hy, Xe).
So,
dim(sign ® H,)% = [mJXg.

This proves
w Frob(H*(Hess(S,h))) = Xgn)-
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Example. Let us give an example. Take h = (2,4,5,5,5):

and pn=(2,2,1):
1—2 3—4 5
Here is an example

Vi w- Vi vg(i)
2 ) )
o el T e >, 24 K g
2 4 1 5 3 241 Q@Z 2
2415 o220 2
2415310020424

4. PROOF FROM THE GALOIS SIDE

4.1. Topological part. Let us restrict to gl},. Let us denote t the sub-
space of diagonal matrices. We have the following diagram

t——gl, < gl,
pl pull l/ j“
t/Sp<~—gl" < gl
So

7T>|<(@g[n’g[1r1 — 7-[*(@9[171 — f*p*Qt
For x € t, the reduced fiber of p at X is naturally identifies with the
S, orbit of x. So for any regular element x € gl of type pu, we have

7.Qq, lx = CISy - x] = Indg" tri.

Let us denote —|, for —|, for any regular element of type p. Then
IC(gly¥, Vi)l = Homs, (Va, Indg™ tri) = V3™

Just similar as the discussion on the Springer side, we have

H(h)* = Qg m)ly
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which is the cohomology group of the fiber Hess(x, h) of $(h) at
x € gl of type p. Let us expand the definition. We have

H*(Hess(S,h))* = H*(Hess(x, h))

where S is a regular semisimple element and x is a regular element
of type p. In particular, H*(Hess(x, h)) satisfies Poincaré duality.

Now let us study Hess(x, h). We can take

x = diag(si Ly, + Juyy S2ly, + iy e o)

for distinct sy, s,,... # 0. Let us consider the torus generated by
Cy = diag(si1y,, s20,,. . ).
Then
Hess(x, h)‘csX — Hess(, h)(csx.
Similar as the discussion in the Springer side, we have
dim H*(Hess(x, h)) = dim H*(Hess(u, h)) = #S/ (1, h),
where
Sn(mh) ={w e S,:w e Hess(u,h)}.
4.2. Combinatorial part. Let us enumerate S/ (i, h). Let us define
(

O is an acyclic orientation of G(h)
Sn — < (O,k) : kisaweakly increasing G(h) — [k] » =K’
with each color 1 used ; times

by w — (O, k). Here O is the orientation
a— b & w(a) <w(b)
and « is the coloring
kK:G(h) — [k, a— ind(w(a)).
From the construction, it is obvious that k is weakly increasing
a— b= «k(a) <«k(b).

This map is many-to-one.



14 RUI XIONG

For a pair (O, k) as above, we consider G, = (k'(c), <o) the sub-
graph colored by c. We find the maximal number ¢; among the min-
imal element min(G.). Then we find the maximal number i, among
the minimal element min(Gc \ {c1}) etc. We enumerate elements

Ge ={cny e, 1
We define (O, k) — w such that
kK(a) < k(b) = w(a) < w(b), w(cy) <w(cy) < --- for any color c.

This defines a section of the map, i.e. (O,k) — w — (O,k). Note
that w — (O, k) — W' is not the identity, and w’ = wv for some
v € S,. The condition of the image, i.e. the condition for w = w’,
can be described

= eitherb< aora—b.

That is, b < h(a). This is exactly the condition for w € S/ (u,h).
Similarly, we have

#K' = [m,J(wXg).
As a result,
dim H(h)** = #S/ (u, h) = [K'].
This proves
w Frob(H*(Hess(S,h))) = Xgm)-

Example. Let us give an example. Take h = (2,4,5,5,5):

and u = (2,2,1):

1—2 3—4 5.
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Here is an example
V; - Vi Vi
2 1) 23
e YRS
° ° ° ° ° 23 04 2354
2 3 > 4 ! 235 d340 23541
2354 g439 23541
23541 (04002123541
5. APPENDIX
5.1. Symmetric functions. Let A = @1 Qlx1,...,xn)5" be the ring of

symmetric functions.
e Recall the monomoical symmetric function for a partition A

1S
1
my = E x* = m E XW)\.

xESHA WESH

e Recall the elementary symmetric function for a partition A

y e, = E Xﬁ Xiz s

1<ii<iz<--

e)\ e eA{eAé . e

where A’ is the conjugation of A. Another way of determining

e, is
o0 [e.@]
Z t'e, = H(] + txy).
=0 i=0
e Recall the homogeneous symmetric function for a partition
A
hy =hyhy, - h, = Z Xy Xiy oo
1<t <ip<--

Another way of determining h, is

> en=]]
=0 i=0

1—tXi.
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e Recall the power symmetric function for a partition A of ¢
rows

PA=Pa P D=

e We denote
SA = Z XT
TESSYT(A)

the Schur function for a partition A.

We have a Hall inner product (,) whose kernel is

a=]] Ty, gSA(X)SA(y) = ;hy\(x)mA(y) => z_;\!m(x)m(y)'

ij=1 A

We have an w-involution, which is the ring automorphism

hy & ey (GT — hr), Pr & (—])YPT, S)n & Sar.

5.2. Quasi-symmetric functions. We say a polynomial

feQxyy...,xnl
ay

is quasi-symmetric if for all ay, .. ., ay the coefficientin f of x{ - - - x{
equals the coefficient of x{? . -xj‘f whenever i; < --- < iy and j; <
-+ + < jk. We denote

QSym = Jim Qlxy, ..., x| 2™,

In stead of using partition, we will use strong composition, i.e. o« =
(otry..., ) for positive integers o; > 0. We define |«| := o; + - - - ¢
and {(x) := {. We write 3 E « if 3 refines «. We can illustrate a
strong composition by |«| balls and ¢ — 1 bars:

12 3 4 5 6 7 8 9
41,31 OOO00IOIOOOIO
From this, we see the strong composition is in bijection with pairs

(n, S) for S C [n — 1]. For example,
4,1,3,1)  (9,{4,5,8}).
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Monomial. We define the monomial quasi-symmetric function for
a strong composition o
M, = Z xP

Bt=o

with the sum over all compositions 3 and 3 is obtained by deleting
0’sin . It could be viewed as generating function of the filling of «,

such that
(@W@®) =a=b (D)= a<b.

For example,
Z 4, 3
M4131 = XoXpXcXg-

a<b<c<d
There is an explicit rule for multiplying M and Mg, so in particular,
QSym is a ring.

Fundamental. We define the fundamental (Gessel) quasi-symmetric
function for a strong composition «

Fa=) Mg
BEo

with the sum over strong compositions 3 and = « means {3 is a
refine of «. It could be viewed as generating function of the filling
of «, such that

(@W@®) =a<b, ()= a<h.
Faz = Z X, Xig-

11 <1 <i3<iy<is<ig<ir<ig<io

For example

Moreover, we have
F]n — en, Fn — hn.
We also denote

Fn,S = Foc - E Xip 0 Xy,

1<iy<-<in
a€S=ia<igyq

for (n, S) corresponding to «.
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Coproduct and involution. We have coproduct
A QSym — QSym
by using new alphabet
X1R1<xel< - <1 <TRx < .
We have an w-involution by
w(Fa) = Fa
where o is the dual composition obtained by

O10+— 0O0:-

For example (4,1,3,1)' = (1,1,1,3,1,2). Compare:

4,1,3,1) O O O OI0I0 O OO
(1,1,1,3,1,2). Q101010 O O1010 O

In terms of monomial quasi-symmetric functions, we have

(x)
AMy =) Mo, ®Moy,  @(My) = (1) M,.
k=0 o=p

We define antipode by S(My) = W(Miev(«)). These equip QSym a
structure of a Hopf algebra. Actually the dual of QSym is the so-
called non-commutative symmetric functions. Note that the co-
product is not commutative. The natural embedding is a Hopf al-
gebras homomorphism
A -5 QSym.
That is, it commutes with coproduct and antipode. Since
= ) Me= ) M,
sort(o)=A sort(a)=A

the inclusion also commutes with the omega involution.
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Example. Assume we have a partial order P on [n]. Wecall T: P —
[co] a P-partition if
a<pb,a>b=— T(a) <T(b), )
*
a<pbya<b= T(a) <T(b).

For example,

1 3
NS T(1) > T(2) <T(3).
2

Let <7 (P) be the set of (P, w)-partitions. For an abstract poset P, we
need first find a bijection P — [n].

Here are more examples

e When the bijiection is increasing, P-partition is just strictly
increasing map P — [o0].

e When the bijection is decreasing, P-partition is just weakly
increasing map P — [o0].

e When P is a chain {w; <w; < --- <w,}, then

T TR STEA+T) wi<wy
M(P)Z{[“]H[OO]- TA)<TE+1) Wi>wi-t: }

the increasing sequence strictly at descent of w.

The fundamental theorem of P-partition is

A (P)=| | (P
-

for all linear extension P’ of P. For example,
T(2) < T(1) N, 7
T2)=T@) 72 <TM)<TB) TR <TB) <T(N)

The bijection is given by “standardization”. That is, for any P-partition,
we can define a linear extension P’ by the lexicographic order of
i+ (T(i),1). Then T gives a P’-partition.



20 RUI XIONG

Let us define

Zx

Ted/ (P

2

Wyeying
a<pb,a<b=iq<ip
a<pb,a>b=iq<iy

When P’ is a chain {w; < --- < w,}, we have

where des(P

2

Hyenln
a<pb,a<b=iq<ip
a<pb,a>b=1q<iy

FP’ = Fn,des(P’)
As a result, we have

(UFP =

for Q the orderi <qg jiffn —1i <pn —j.

N={ieh-

== ZFPI.
P’

1] W > Wi+1}.

Xi, = FQ

Example. Let us see how it can be used to compute wsy. Letn =
IAl. Given a standard tableaux S € SYT(?\) 1| must be NE to -

(including its direct right) or SW to (mcludmg its direct down).
We define a compositon oc(S) of n between the i-th ball and the (i +

1)-th ball if[i+1]is SW to| i | Then we have
Z Mn des(S

SESYT(A

Actually, SSYT(A) is a special case of P-partitions. Explicitly, for
each T € SSYT(A), we can associate its standardization S = std(T) €

SYT(A) a standard tableaux such that

o if T(O;) < T(O,), then S(O
o if T(h) = T(O;

1) < S(0y);
), and [J; is left to the [J,, then S([,

) < S(0,).

For each S € SYT(A), we define its descent set to be

dec(S) = {i €n

It is not hard to figure out the identity:

—1]: is lower than }

212[5]520] 1]2]4

5]9]

5110j20

10

3
6]



GEOMETRY OF CHROMATIC SYMMETRIC FUNCTIONS 21

20000
Then
WS) = Syvy
where the condition of < and < are switched.

Example. Let G be a graph. We have

proper coloring | |_| strictly increasing map
K:G — [00] N K: (G, <o) — [00]

where O is an acyclic orientation, which equips G a partial order.

This shows
Xg = Z Z HXK(V)

k:G—[oo veG
a—b=k(a)< K(b)

By the example above, we have

we=Y Y [T

k:G—[oo] veG
a—b=k(a)<k(b)

In other word,

_ acyclic orientation O
wXo = ) ]#{ k(a) < k(b) = a— b }HX

k:G—[oco veG
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