GEOMETRY OF CHROMATIC SYMMETRIC FUNCTIONS

RUI XIONG

1. CHROMATIC SYMMETRIC FUNCTIONS

1.1. **Chromatic symmetric functions.** Let G be a graph. We can construct a symmetric function

$$X_{G} = \sum_{\kappa} \prod_{\nu \in G} x_{\kappa(\nu)} \in \Lambda.$$

where the sum goes over proper coloring $\kappa: G \to \{1,2,3,\ldots\} = [\infty],$ i.e.

$$v \longrightarrow w \Longrightarrow \kappa(v) \neq \kappa(w).$$

Example. when $G = C_3$

$$\overset{a}{\bullet}$$
 — $\overset{b}{\bullet}$ — $\overset{c}{\bullet}$

Then

$$X_{G} = \sum_{a \neq b \neq c} x_{a} x_{b} x_{c} = \left(\sum_{a,b,cdistinct} + \sum_{a=c \neq b}\right) x_{a} x_{b} x_{c} = 6m_{111} + m_{12}.$$

In general, we always have

a

$$X_G = n! \cdot m_{1^n} + \cdots \qquad n = |G|.$$

Example. When $G = n\{*\}$, we have $X_G = p_1^n$.

Example. When $G = K_n$ a complete graph, we have $X_G = n!e_n$. For example, when n = 3,

$$\bigwedge_{b}^{\bullet} \sum_{c} X_{G} = \sum_{a,b,c \text{ distinct}} x_{a} x_{b} x_{c} = 6 \sum_{a < b < c} x_{a} x_{b} x_{c} = 6e_{3}.$$

Theorem (Stanley). Using the theory of quasi symmetric functions, we have

$$\omega X_G = \sum_{\kappa: G \to [\infty]} \# \left\{ \begin{array}{c} \text{acyclic orientation O} \\ \text{for anya} - b \\ \kappa(a) < \kappa(b) \Rightarrow a \to b \end{array} \right\} \prod_{\nu \in G} x^{\kappa(\nu)}.$$

We will use this in our second proof.

Example. when $G = K_3$, there are 8 orientations, and 6 of them are acyclic:

1.2. Frobenius character. We have Frobenius character

Frob :
$$\bigoplus_{n=0}^{\infty} [\operatorname{Rep}(S_n)] \xrightarrow{\sim} \Lambda.$$

The isomorphism is described in many ways.

In p basis. For a character χ of S_n ,

$$\operatorname{Frob}(\chi) = \frac{1}{n!} \sum_{w \in S_n} \chi(w) p_{\operatorname{type}(w)} = \sum_{w \in S_n} \frac{1}{z_{\lambda}} \chi(\lambda) p_{\lambda}.$$

The notations here:

- For *w* ∈ S, if the cycle type of *w* is 1^{m1}2^{m2} · · · , then type(*w*) is the partition with m₁ many 1's, m₂ many 2's etc.
- For λ with m_1 many 1's, m_2 many 2's etc., $z_{\lambda} = 1^{m_1} m_1 ! 2^{m_2} m_2 ! \cdots$ which is the number of $w \in S_n$ with type $(w) = \lambda$.

In h basis. The induced representation

$$\operatorname{Ind}_{S_{\lambda}}^{S_n} \operatorname{tri} \stackrel{\operatorname{Frob}}{\longmapsto} h_{\lambda}$$

where $S_{\lambda} = S_{\lambda_1} \times S_{\lambda_2} \times \cdots \subset S_n$ is the Young subgroup.

In e basis. Similarly,

$$\operatorname{Ind}_{S_{\lambda}}^{S_n} \operatorname{sgn} \overset{\operatorname{Frob}}{\longmapsto} e_{\lambda'}.$$

In s basis. For the irreducible representation V_{λ} of S_n , we have

$$\mathbf{Frob}(V_{\lambda}) = s_{\lambda}.$$

In m basis. For a representation V, we have

$$\operatorname{Frob}(V) = \sum_{\lambda \vdash n} \dim(V^{S_{\lambda}}) \mathfrak{m}_{\lambda}.$$

This formula is very important when computing the Frobenius character.

From the description above,

$$\begin{aligned} & \textbf{Frob}\left(\operatorname{Ind}_{S_n\times S_m}^{S_{n+m}}V\boxtimes U\right)=\textbf{Frob}(V)\,\textbf{Frob}(U).\\ & \textbf{Frob}\left(\operatorname{Res}_{S_n\times S_m}^{S_{n+m}}W\right)=\Delta\,\textbf{Frob}(W)\in\Lambda\otimes\Lambda.\\ & \dim\operatorname{Hom}_{S_n}(V,U)=\langle\textbf{Frob}(V),\textbf{Frob}(U)\rangle\\ & \textbf{Frob}(V\otimes\textbf{sgn})=\omega\,\textbf{Frob}(V). \end{aligned}$$

1.3. **Hessenberg variety.** Let $h : [n] \to [n]$ be a function such that

 $\mathfrak{i} \leq h(\mathfrak{i}), \qquad \mathfrak{i} \leq \mathfrak{j} \Rightarrow h(\mathfrak{i}) \leq h(\mathfrak{j}).$

Such a function is called a Hessenberg function. For example,

$$h = (2, 4, 5, 5, 5)$$

Note that Hessenberg functions are in bijection with Dyck path of length n, so the number of them is $C_n = \frac{1}{n+1} {\binom{2n}{n}}$.

Let $S \in \mathfrak{gl}_n$ be an $n \times n$ matrix. We define the Hessenberg variety to be

$$\textbf{Hess}(S,h) = \{0 = V_0 \subset V_1 \subset \cdots \subset V_{n-1} \subset V_n = \mathbb{C}^n : SV_i \subseteq V_{h(i)}\}.$$

When S is regular semisimple (i.e. with distinct eigenvalues), we can assume S is diagonal, so Hess(S,h) admits an action of entire torus T, the subgroup of diagonal matrices in GL_n . In this case, Hess(S,h) is smooth.

RUI XIONG

Example. When h(i) = i, the condition $SV_i \subseteq V_i$ means each V_i is an eigensubspace of S. But the eigensubapces of S are all onedimensional, so we have **Hess** $(S, h) = S_n = n! \cdot \{*\}$.

Example. When h(i) = n, we have

Hess(S, h) = $\mathcal{F}\ell_n$ = full flag variety.

Example. When $h(i) = \min(i + 1, n)$, we have

 $Hess(S, h) = Perm_n = permutohedral variety.$

It is a toric variety whose fan is the Weyl chambers.

Example. In particular, **Perm**³ is a del Pezzo surface of degree 6, obtained by blow-up three torus fixed points over \mathbb{P}^2 .

The moment graph of $\mathbf{Hess}(S, h)$ will be a subgraph of that of flag variety:

$$\mathfrak{u} \stackrel{\mathfrak{t}_{\mathfrak{u}(\mathfrak{i})}-\mathfrak{t}_{\mathfrak{u}(\mathfrak{j})}}{\longleftrightarrow} w \iff w = \mathfrak{u}\mathfrak{t}_{\mathfrak{i}\mathfrak{j}} \quad \mathfrak{i} < \mathfrak{j} \leq \mathfrak{h}(\mathfrak{i}).$$

As a result, its cohomology admits the following discription

$$\mathsf{H}^*_{\mathsf{T}}(\operatorname{\textbf{Hess}}(\mathsf{S},\mathsf{h})) = \left\{ \begin{array}{ll} \operatorname{each} \alpha_w \in \mathbb{Q}[\mathsf{t}_1,\ldots,\mathsf{t}_n] \\ (\alpha_w)_{w \in W} \colon \ \mathsf{t}_{\mathfrak{u}(\mathfrak{i})} - \mathsf{t}_{\mathfrak{u}(\mathfrak{j})} \mid \alpha_w - \alpha_\mathfrak{u} \text{ for} \\ w = \mathfrak{ut}_{\mathfrak{i}\mathfrak{j}} \text{ with } \mathfrak{i} < \mathfrak{j} \leq \mathfrak{h}(\mathfrak{i}) \end{array} \right\}.$$

The symmetric group S_n action on it by

$$(v \cdot \alpha)_w = v \alpha_{v^{-1}w}, \quad v \in S_n, \alpha \in H^*_T(\mathbf{Hess}(S,h)).$$

This is called the **Tymoczko left action**. This action reduces to non-equivariant cohomology.

Example. When h(i) = i, the action is by permuting the points.

Example. When h(i) = n, the action coincides with the induced action from the natural action $S_n \subset GL_n$ on $\mathcal{F}\ell_n$, since GL_n is connected, the action on equivariant cohomology is trivial.

Example. When $h(i) = \min(i + 1, n)$, the action coincides the S_n -action induced by the symmetric group action on Weyl chambers.

1.4. Frobenius character of $H^*(\text{Hess}_h(S))$. For a Hessenberg function h, we define a graph G whose vertices set of [n] and for i < j,

 \mathfrak{i} - $\mathfrak{j} \iff \mathfrak{j} \le h(\mathfrak{i}).$

Example.

$$h = (2,4,5,5,5) \qquad \bullet \longrightarrow \bullet \textcircled{\bullet} \frown \bullet \textcircled{\bullet} \bullet \textcircled{\bullet}$$

Theorem (Brosnan, Chow). We have

 ω **Frob**(H*(**Hess**(S,h))) = X_{G(h)}.

For later reference, let us denote $H(h) = H^*(\text{Hess}(S, h))$ for S regular semisimple.

This note is devoted to review the proof of this theorem.

Example. For h(i) = i, $G(h) = n\{*\}$. We know from the previous examples that

Hess(S,h) = n!{*}, $H^*(n!{*}) \cong \mathbb{Q}[S_n].$

Recall $G(h) = n\{*\}$. We have

 $X_{G(h)} = p_1^n = \omega \operatorname{Frob}(H^*(\operatorname{Hess}(S,h))).$

Example. For h(i) = n, $G(h) = K_n$. We know from the previous examples that

$$\mathbf{Hess}(S,h) = \mathbf{F}\ell_n, \qquad \mathbf{H}^*(\mathbf{F}\ell_n) \cong n! \cdot \mathbf{tri}.$$

Recall $G(h) = K_n$. We have

$$X_{G(h)} = n! \cdot h_n = \omega \operatorname{Frob}(H^*(\operatorname{Hess}(S, h))).$$

RUI XIONG

Example. For $h(i) = \min(i, n)$, $G(h) = C_n$. When n = 3, we know

 $H^{*}(\mathbf{Perm}_{3}) = \bullet \underbrace{\qquad }_{H^{0}} \bullet \underbrace{\qquad }_{H^{1}} H^{2} \qquad H^{2} \qquad H^{0} H^{1} H^{2}$

for three exceptional divisors D_1, D_2, D_3 . The symmetric group S_3 acts trivially on $H^*(\mathbb{P}^2)$ and permuting exceptional divisors. So

$$\mathsf{H}^*(\operatorname{\mathbf{Perm}}_3) = 3\mathbf{tri} + \mathbf{tri} \uparrow_{S_1 \times S_2}^{S_3}$$
.

That is,

$$\mathbf{Frob}(\mathsf{H}^*(\mathbf{Perm}_3)) = 3\mathsf{h}_3 + \mathsf{h}_2\mathsf{h}_1.$$

Then

$$\omega \operatorname{Frob}(\mathsf{H}^*(\operatorname{Perm}_3)) = 3e_3 + e_2e_1 = 6\mathfrak{m}_{111} + \mathfrak{m}_{12}.$$

Remark. There is a q-analogy of chromatic symmetric functions, computing the graded Frobenius character.

2. GEOMETRIC PREPARATION

2.1. Monodromy. Let us consider the universal Hessenberg variety

$$\mathfrak{H}(\mathfrak{h}) = \{(S, V_{\bullet}) : S \in \mathfrak{gl}_n, V_{\bullet} \in \mathbf{Hess}(S, \mathfrak{h})\}.$$

Then we have

$$\mathfrak{H}(\mathfrak{h}) \xrightarrow{\rho} \mathfrak{F}\ell_{\mathfrak{n}} \\
\downarrow^{\pi} \\
\mathfrak{gl}_{\mathfrak{n}}$$

Note that ρ is a GL_n -equivariant vector bundle over F_n with fibre $H = \bigoplus_{1 < j < h(i)} \mathbb{C} \cdot E_{ji}$ at the base point. For example,

$$h = (2,4,5,5,5) \qquad H = \bigoplus_{n=1}^{t} \subset \mathfrak{gl}_{n}.$$

Note that

is smooth, so there is a fundamental group action on cohomology of fibre, i.e. monodromy.

When h(i) = i, we usually denote it by $\mathfrak{H}(h) = \widetilde{\mathfrak{gl}}_n$, and $\widetilde{\mathfrak{gl}}_n^{rs} \to \mathfrak{gl}_n$ forms an S_n -Galois covering. We have

 $\pi^{-1}(S) = \{ \text{flag of eigen-subspaces of } S \}.$

When $S \in \mathfrak{gl}_n^{rs}$, the fiber is just an ordering of one-dimensional eigensubspaces of S, and the monodromy action factors through S_n and it coincides with the permutation action. In particular, for diagonal $S \in \mathfrak{gl}_n^{rs}$, the coordinate subspaces are eigen-subspaces, so the fibre is naturally identified with S_n .

More general, at each $S \in \mathfrak{gl}_n^{rs}$, we have a maximal torus

$$\mathsf{T}_{\mathsf{S}}=\mathsf{C}_{\mathsf{G}}(\mathsf{S}).$$

We have

$$\operatorname{Hess}(S,h)^{T_{S}} = \pi^{-1}(S)^{T_{S}} \longrightarrow \pi^{-1}(\mathfrak{gl}_{n}^{r_{S}})$$

is the S_n-Galois covering just mentioned. Since

$$H^*_{T_{S}}(\mathbf{Hess}(S,h)) \longrightarrow H^*_{T_{S}}(\mathbf{Hess}(S,h)^{T_{S}})$$

is injective, the monodromy action factor through S_n , and is given by the Tymoczko left action.

2.2. Springer theory. Let \mathcal{N} be the nilpotent cone

$$\mathcal{N}_n = \{S \in \mathfrak{gl}_n : S^n = 0\}$$

and $\tilde{\mathcal{N}}_n$ the Springer resolution

$$\widetilde{\mathbb{N}}_{n} = \{(V_{\bullet}, S) \in \mathfrak{F}\ell_{n} \times \mathbb{N} : SV_{i} \subseteq V_{i-1}\}.$$

We have the following diagram

Here we identify \mathfrak{gl}_n^* and \mathfrak{gl}_n by the trace pairing. Since $\tilde{\mathbb{N}}_n = \tilde{\mathfrak{gl}}_n^{\perp}$, we have

We have isomorphisms

$$S_n \cong \operatorname{End}(\pi_* \mathbb{Q}_{\tilde{\mathbf{N}}_n}) \stackrel{\mathscr{F}}{\cong} \operatorname{End}(\mathbf{IC}(\mathfrak{gl}_n^{rs}, \mathbb{Q}[S_n])) \cong S_n$$

which twists by a sign $w \mapsto (-1)^{\ell(w)}w$. Recall V_{λ} is the irreducible S_n -representation. Then $V_{\lambda} \mapsto V_{\lambda'}$ under this twisting. By decomposition theorem

• On the left-hand-side, we have

$$\pi_*\mathbb{Q}_{ ilde{\mathcal{N}}_n} = igoplus_{\lambda \vdash n} V_\lambda \otimes \mathbf{IC}(\mathbb{O}_\lambda),$$

where \mathbb{O}_{λ} is a nilpotent orbit of Jordan type λ .

• On the right-hand-side

$$\pi_*\mathbb{Q}_{\widetilde{\mathfrak{gl}}_n}= \bigoplus_{\lambda\vdash n} V_\lambda\otimes \mathbf{IC}(\mathfrak{gl}_n^{rs},V_\lambda),$$

where V_{λ} are viewed as a local system over \mathfrak{gl}_n^{rm} .

This proves

$$\mathbf{IC}(\mathbb{O}_{\lambda}) \stackrel{\mathscr{F}}{\longmapsto} \mathbf{IC}(\mathfrak{gl}_{\mathfrak{n}}^{\mathrm{rs}}, \mathbf{sgn} \otimes V_{\lambda}).$$

2.3. Sheaf theoretic formulation. Let us turn to our $\mathfrak{H}(h)$. We similarly have

where

$$\tilde{\mathbb{N}}(h) = \{ (V_{\bullet}, S) : SV_j \subseteq V_{g(j)} \},\$$

where $g(i) = \max\{j < i : h(j) < i\}$. That is,

$$h(j) < i \iff j \leq g(i).$$

Note that $\tilde{\mathcal{N}}(h)$ is a GL_n -vector bundle over $\mathcal{F}\ell_n$ with fibre $H^{\perp} = \bigoplus_{j < q(i)} \mathbb{C}E_{ji}$ at the base point. For example,

$$\mathsf{H}^{\perp} = \bigsqcup_{i=1}^{\mathsf{t}} \subset \mathsf{H} = \bigsqcup_{i=1}^{\mathsf{t}} \subset \mathfrak{gl}_{\mathfrak{n}}.$$

Using Fourier transformation, we have

Recall that $H(h) = H^*(\text{Hess}(S, h))$.

Note that a priori, $\pi_*\mathbb{Q}_{\mathfrak{H}(h)}$ would have summand of IC sheaves supported on lower stratum. Since we have in type A, the left-hand side $\pi_*\mathbb{Q}_{\tilde{N}(h)}$ contains only $\mathbf{IC}(\mathbb{O}_{\lambda})$. So by Fourier transform, no other IC sheaves appears in $\pi_*\mathbb{Q}_{\mathfrak{H}(h)}$. It was shown that this is also true for all types.

Remark. The variety $\mathcal{N}(h)$ is used to give a geometric definition of the Catalan function in MacDonald theory. It is not clear to the author what is the precise relation between these two pictures.

3. PROOF FROM THE SPRINGER SIDE

3.1. Topological part. For $\mu \in \mathbb{O}_{\mu}$,

$$\pi_* \mathbb{Q}_{\tilde{\mathbf{N}}_n}|_{\lambda} = \mathsf{H}^*(\text{Springer fiber}) \cong \text{Ind}_{S_u}^{S_n}$$
 tri.

As a result,

$$\mathbf{IC}(\mathbb{O}_{\lambda})|_{\mu} = \operatorname{Hom}_{S_{\mu}}(V_{\lambda}, \operatorname{Ind}_{S_{\mu}}^{S_{\mu}} tri) = V_{\lambda}^{S_{\mu}}.$$

Thus we have

$$\begin{split} \mathbf{IC}(\mathfrak{gl}_n^{rs},\mathsf{H}(h)) &= \sum_{\lambda \vdash n} \operatorname{Hom}_{S_n}(V_{\lambda},\mathsf{H}(h)) \otimes \mathbf{IC}(\mathfrak{gl}_n^{rs},V_{\lambda}) \\ & \stackrel{\mathscr{F}}{\longmapsto} \sum_{\lambda \vdash n} \operatorname{Hom}_{S_n}(V_{\lambda},\operatorname{\boldsymbol{sign}} \otimes \mathsf{H}(h)) \otimes \mathbf{IC}(\mathbb{O}_{\lambda}) \\ & \stackrel{-|_{\mu}}{\longmapsto} \sum_{\lambda \vdash n} \operatorname{Hom}_{S_n}(V_{\lambda},\operatorname{\boldsymbol{sign}} \otimes \mathsf{H}(h)) \otimes V_{\lambda}^{S_{\mu}} = (\operatorname{\boldsymbol{sign}} \otimes \mathsf{H}_h)^{S_{\mu}}. \end{split}$$

This proves

$$(\mathbf{sign}\otimes H(h))^{S_{\mu}} = \pi_*\mathbb{Q}_{\tilde{N}(h)}|_{\mu}$$

which is the cohomology group of the fiber $\tilde{\mathcal{N}}(\mu, h)$ of $\tilde{\mathcal{N}}(h)$ at μ .

Let us choose the standard form of μ .

$$\boldsymbol{\mu} = \operatorname{diag}(J_{\mu_1}, J_{\mu_2}, \cdots), \qquad J_k = \begin{bmatrix} \begin{smallmatrix} 0 & 1 \\ 0 & 1 \\ & & \vdots \\ & & 0 \end{bmatrix}_k.$$

Let us denote the torus

$$\label{eq:constraint} \begin{split} \mathbb{C}_{\rho}^{\times} &= \left\{\rho(t): t\in \mathbb{C}^{\times}\right\}\subset GL_n, \qquad \rho(t) = \mathrm{diag}(t^{n-1},t^{n-2},\cdots,t,1). \end{split}$$
 It is not hard to check

$$\rho(t)\cdot\mu\cdot\rho(t)^{-1}=t\cdot\mu,$$

so $\mathbb{C}^{\times}_{\rho}$ acts on $\tilde{\mathbb{N}}(\mu, h)$. Since $\mathfrak{Fl}_{n}^{\mathbb{C}^{\times}_{\rho}} = S_{n}$, we can conclude

 $\tilde{\mathbb{N}}(\mu, h)^{\mathbb{C}_{\rho}^{\times}} = S_n \cap \tilde{\mathbb{N}}(\mu, h) = \left\{ w \in S_n : w \in \tilde{\mathbb{N}}(\mu, h) \right\} =: S_n(\mu, h).$ In particular,

$$\dim H^*(\mathcal{N}(\mu, h)) = \# S_n(\mu, h).$$

3.2. **Combinatorial part.** Let us enumerate $S_n(\mu, h)$. Assume $\mu = (\mu_1, \dots, \mu_k)$ has k parts. Then μ defines a partition of [n] into k parts

$$[n] = A_1 \sqcup \cdots \sqcup A_k, \qquad \text{#} A_i = \mu_i, \qquad A_1 < \cdots < A_k.$$

For $i \in [n]$, we denote ind(i) to be the index j such that $i \in A_j$. For a permutation $w \in S_n$, we view it as a color on G. We shall view μ as a map

$$\mu : [n] \to [n] \cup \{0\}, \qquad i \mapsto \begin{cases} 0, & i = \mu_1, \mu_1 + \mu_2, \dots, n \\ i + 1, & otherwise \end{cases}$$

That is, it is mapped to i+1 if ind(i) = ind(i+1) and to 0 otherwise.

Then for $w \in S_n(\mu, h)$, we need to require for any a, b,

$$w(b) = w(a) + 1$$

 $ind(w(a)) = ind(w(b)) \Rightarrow b \le g(a),$

i.e. h(b) < a i.e.

b < a, $b \rightarrow a$.

Then

 $\kappa: G(h) \to [k], \qquad a \mapsto \text{ind}(w(a))$

gives an element in K, where

$$\mathsf{K} = \left\{ \begin{array}{l} \text{proper coloring } \mathsf{G}(h) \to [k] \\ \text{with each color } i \text{ used } \mu_i \text{ times } \end{array} \right\}.$$

Conversely, every element $\kappa \in K$ gives a unique element $w \in S_n(\mu,h)$ such that

$$w(\mathfrak{a}) \in A_{\kappa(\mathfrak{a})}, \qquad \mathfrak{a} < \mathfrak{b}, \kappa(\mathfrak{a}) = \kappa(\mathfrak{b}) \Rightarrow w(\mathfrak{a}) > w(\mathfrak{b}).$$

Note that

$$\#\mathsf{K} = [\mathfrak{x}^{\mu}]X_{\mathsf{G}} = [\mathfrak{m}_{\mu}]X_{\mathsf{G}} = \langle \mathfrak{h}_{\mu}, X_{\mathsf{G}} \rangle.$$

So,

$$\dim(\operatorname{sign} \otimes H_h)^{S_\mu} = [\mathfrak{m}_\mu] X_G.$$

This proves

$$\omega$$
 Frob $(\mathsf{H}^*(\mathbf{Hess}(\mathsf{S},\mathsf{h}))) = \mathsf{X}_{\mathsf{G}(\mathsf{h})}$

Example. Let us give an example. Take h = (2, 4, 5, 5, 5):

Here is an example

Vi	$\mu \cdot V_i$	$V_{g(i)}$
2	Ø	Ø
24	ØØ	Ø
241	ØØ2	2
2415	ØØ2Ø	2
24153	ØØ2Ø4	24

4. PROOF FROM THE GALOIS SIDE

4.1. **Topological part.** Let us restrict to \mathfrak{gl}_n^r . Let us denote t the subspace of diagonal matrices. We have the following diagram

t ←	$ \widetilde{\mathfrak{gl}}_n^r$	\subset	$\widetilde{\mathfrak{gl}}_n$
p	pull		π
\mathfrak{t}/S_n -	$\stackrel{f}{\longleftarrow} \mathfrak{gl}_n^r$	C	\mathfrak{gl}_n .

So

$$\pi_*\mathbb{Q}_{\mathfrak{gl}_n}|_{\mathfrak{gl}_n^r}=\pi_*\mathbb{Q}_{\mathfrak{gl}_n^r}=f^*p_*\mathbb{Q}_{\mathfrak{t}}.$$

For $x \in t$, the reduced fiber of p at \overline{x} is naturally identifies with the S_n orbit of x. So for any regular element $x \in \mathfrak{gl}_n^r$ of type μ , we have

$$\pi_*\mathbb{Q}_{\mathfrak{gl}_n}|_{\mathfrak{x}}=\mathbb{C}[S_n\cdot\mathfrak{x}]=\mathrm{Ind}_{S_\mu}^{S_n}$$
tri.

Let us denote $-|_{\mu}$ for $-|_{x}$ for any regular element of type μ . Then

$$\mathbf{IC}(\mathfrak{gl}_n^{r_s},V_\lambda)|_{\mu}=\mathrm{Hom}_{S_n}(V_\lambda,\mathrm{Ind}_{S_\mu}^{S_n}\,\mathbf{tri})=V_\lambda^{S_\mu}.$$

Just similar as the discussion on the Springer side, we have

$$H(h)^{S_{\mu}} = \pi_* \mathbb{Q}_{\mathfrak{H}(h)}|_{\mu}$$

which is the cohomology group of the fiber Hess(x,h) of $\mathfrak{H}(h)$ at $x \in \mathfrak{gl}_n^r$ of type μ . Let us expand the definition. We have

$$\mathsf{H}^*(\mathbf{Hess}(\mathsf{S},\mathsf{h}))^{\mathsf{S}_{\mu}} = \mathsf{H}^*(\mathbf{Hess}(\mathsf{x},\mathsf{h}))$$

where S is a regular semisimple element and x is a regular element of type μ . In particular, H*(**Hess**(x, h)) satisfies Poincaré duality.

Now let us study Hess(x, h). We can take

$$x = {\rm diag}(s_1 I_{\mu_1} + J_{\mu_1}, s_2 I_{\mu_2} + J_{\mu_2}, \ldots)$$

for distinct $s_1, s_2, \ldots \neq 0$. Let us consider the torus generated by

$$\mathbb{C}_s^{\times} = \operatorname{diag}(s_1 I_{\mu_1}, s_2 I_{\mu_2}, \ldots).$$

Then

$$\mathbf{Hess}(\mathbf{x},\mathbf{h})^{\mathbb{C}_{\mathbf{s}}^{\times}} = \mathbf{Hess}(\mathbf{\mu},\mathbf{h})^{\mathbb{C}_{\mathbf{s}}^{\times}}$$

Similar as the discussion in the Springer side, we have

 $\dim \mathsf{H}^*(\operatorname{\textbf{Hess}}(x,h)) = \dim \mathsf{H}^*(\operatorname{\textbf{Hess}}(\mu,h)) = \#\, S_n'(\mu,h),$

where

$$S'_n(\mu, h) = \{ w \in S_n : w \in \mathbf{Hess}(\mu, h) \}.$$

4.2. **Combinatorial part.** Let us enumerate $S'_n(\mu, h)$. Let us define

$$S_n \rightarrow \left\{ \begin{array}{c} O \text{ is an acyclic orientation of } G(h) \\ (O,\kappa): \ \kappa \text{ is a weakly increasing } G(h) \rightarrow [k] \\ \text{ with each color } i \text{ used } \mu_i \text{ times} \end{array} \right\} =: K'$$

by $w \mapsto (O, \kappa)$. Here O is the orientation

 $\mathfrak{a} \longrightarrow \mathfrak{b} \iff \mathfrak{w}(\mathfrak{a}) < \mathfrak{w}(\mathfrak{b})$

and κ is the coloring

$$\kappa: G(h) \rightarrow [k], \quad a \mapsto ind(w(a)).$$

From the construction, it is obvious that κ is weakly increasing

$$a \longrightarrow b \Rightarrow \kappa(a) \leq \kappa(b).$$

This map is many-to-one.

For a pair (O, κ) as above, we consider $G_c = (\kappa^{-1}(c), \leq_0)$ the subgraph colored by c. We find the maximal number c_1 among the minimal element $\min(G_c)$. Then we find the maximal number i_2 among the minimal element $\min(G_c \setminus \{c_1\})$ etc. We enumerate elements

$$\mathbf{G}_{\mathbf{c}} = \{\mathbf{c}_1, \mathbf{c}_2, \cdots\}.$$

We define $(O, \kappa) \mapsto w$ such that

 $\kappa(\mathfrak{a}) < \kappa(\mathfrak{b}) \Rightarrow w(\mathfrak{a}) < w(\mathfrak{b}), \qquad w(\mathfrak{c}_1) < w(\mathfrak{c}_2) < \cdots \text{ for any color } \mathfrak{c}.$

This defines a section of the map, i.e. $(O, \kappa) \mapsto w \mapsto (O, \kappa)$. Note that $w \mapsto (O, \kappa) \mapsto w'$ is not the identity, and w' = wv for some $v \in S_{\mu}$. The condition of the image, i.e. the condition for w = w', can be described

That is, $b \leq h(a)$. This is exactly the condition for $w \in S'_n(\mu, h)$. Similarly, we have

$$\#\mathbf{K}' = [\mathfrak{m}_{\mu}](\omega X_{\mathrm{G}}).$$

As a result,

$$\dim \mathsf{H}(\mathsf{h})^{\mathsf{S}_{\mu}} = \# \mathsf{S}'_{\mathsf{n}}(\mu, \mathsf{h}) = |\mathsf{K}'|.$$

This proves

$$\omega$$
 Frob(H^{*}(**Hess**(S, h))) = X_{G(h)}.

Example. Let us give an example. Take h = (2, 4, 5, 5, 5):

and $\mu = (2, 2, 1)$:

$$1 \longmapsto 2 \qquad 3 \longmapsto 4 \qquad 5$$

Here is an example

Vi	$\mu \cdot V_i$	$V_{h(i)}$
2	Ø	23
23	Ø 4	2354
235	Ø4Ø	23541
2354	Ø4ØØ	23541
23541	Ø4ØØ2	23541

5. Appendix

5.1. **Symmetric functions.** Let $\Lambda = \varprojlim \mathbb{Q}[x_1, \dots, x_n]^{S_n}$ be the ring of symmetric functions.

• Recall the **monomoical symmetric function** for a partition λ is

$$\mathfrak{m}_{\lambda} = \sum_{\alpha \in S_n \lambda} x^{\alpha} = rac{1}{|S_{\lambda}|} \sum_{w \in S_n} x^{w\lambda}.$$

• Recall the **elementary symmetric function** for a partition λ

$$e_{\lambda} = e_{\lambda'_1} e_{\lambda'_2} \cdots, \qquad e_r = \sum_{1 \leq i_1 < i_2 < \cdots} x_{i_1} x_{i_2} \cdots$$

where λ' is the conjugation of λ . Another way of determining e_r is

$$\sum_{r=0}^{\infty} t^r e_r = \prod_{i=0}^{\infty} (1 + t x_i).$$

• Recall the homogeneous symmetric function for a partition λ

$$h_{\lambda} = h_{\lambda_1} h_{\lambda_2} \cdots, \qquad h_r = \sum_{1 \leq i_1 \leq i_2 \leq \cdots} x_{i_1} x_{i_2} \cdots.$$

Another way of determining h_r is

$$\sum_{r=0}^{\infty}t^rh_r=\prod_{i=0}^{\infty}\frac{1}{1-tx_i}.$$

RUI XIONG

• Recall the **power symmetric function** for a partition λ of ℓ rows

$$p_{\lambda} = p_{\lambda_1} \cdots p_{\lambda_{\ell}}, \qquad p_r = x_1^r + x_2^r + \cdots.$$

• We denote

$$s_{\lambda} = \sum_{T \in \mathrm{SSYT}(\lambda)} x^T$$

the **Schur function** for a partition λ .

We have a Hall inner product \langle, \rangle whose kernel is

$$\Omega = \prod_{i,j=1}^{\infty} \frac{1}{1 - x_i y_j} = \sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y) = \sum_{\lambda} h_{\lambda}(x) m_{\lambda}(y) = \sum_{\lambda} \frac{1}{z_{\lambda}!} p_{\lambda}(x) p_{\lambda}(y)$$

We have an ω -involution, which is the ring automorphism

$$h_{\lambda} \leftrightarrow e_{\lambda'} \quad (e_r \leftrightarrow h_r), \qquad p_r \leftrightarrow (-1)^r p_r, \qquad s_{\lambda} \leftrightarrow s_{\lambda'}.$$

5.2. Quasi-symmetric functions. We say a polynomial

$$f \in \mathbb{Q}[x_1, \dots, x_n]$$

is quasi-symmetric if for all a_1, \ldots, a_k the coefficient in f of $x_{i_1}^{a_1} \cdots x_{i_k}^{a_k}$ equals the coefficient of $x_{j_1}^{a_1} \cdots x_{j_k}^{a_k}$ whenever $i_1 < \cdots < i_k$ and $j_1 < \cdots < j_k$. We denote

$$\operatorname{QSym} = \varprojlim \mathbb{Q}[x_1, \dots, x_n]^{\operatorname{Quasi-sym}}$$

In stead of using partition, we will use **strong composition**, i.e. $\alpha = (\alpha_1, \ldots, \alpha_\ell)$ for positive integers $\alpha_i > 0$. We define $|\alpha| := \alpha_1 + \cdots + \alpha_\ell$ and $\ell(\alpha) := \ell$. We write $\beta \models \alpha$ if β refines α . We can illustrate a strong composition by $|\alpha|$ balls and $\ell - 1$ bars:

From this, we see the strong composition is in bijection with pairs (n, S) for $S \subset [n - 1]$. For example,

$$(4, 1, 3, 1)$$
 $(9, \{4, 5, 8\}).$

Monomial. We define the **monomial quasi-symmetric function** for a strong composition α

$$\mathsf{M}_{\alpha} = \sum_{\beta^+ = \alpha} x^{\beta}$$

with the sum over all compositions β and β^+ is obtained by deleting 0's in β . It could be viewed as generating function of the filling of α , such that

$$(a)(b) \Rightarrow a = b, \qquad (a)(b) \Rightarrow a < b.$$

For example,

$$\mathsf{M}_{4131} = \sum_{a < b < c < d} \mathsf{x}_a^4 \mathsf{x}_b \mathsf{x}_c^3 \mathsf{x}_d.$$

There is an explicit rule for multiplying M_{α} and $M_{\beta},$ so in particular, $\rm QSym$ is a ring.

Fundamental. We define the **fundamental (Gessel) quasi-symmetric function** for a strong composition α

$$F_{\alpha} = \sum_{\beta \models \alpha} M_{\beta}$$

with the sum over strong compositions β and $\beta \models \alpha$ means β is a refine of α . It could be viewed as generating function of the filling of α , such that

$$(a) (b) \Rightarrow a \le b, \qquad (a) | (b) \Rightarrow a < b.$$

For example

$$F_{4131} = \sum_{i_1 \leq i_2 \leq i_3 \leq i_4 < i_5 < i_6 \leq i_7 \leq i_8 < i_9} x_{i_1} \cdots x_{i_9}.$$

Moreover, we have

$$F_{1^n} = e_n, \qquad F_n = h_n.$$

We also denote

$$F_{n,S} = F_{\alpha} = \sum_{\substack{1 \le i_1 \le \dots \le i_n \\ \alpha \in S \Rightarrow i_\alpha < i_{\alpha+1}}} x_{i_1} \cdots x_{i_n}$$

for (n, S) corresponding to α .

Coproduct and involution. We have coproduct

 $\Delta:\operatorname{QSym}\to\operatorname{QSym}$

by using new alphabet

 $x_1 \otimes 1 < x_2 \otimes 1 < \cdots < 1 \otimes x_1 < 1 \otimes x_2 < \cdots$.

We have an ω -involution by

$$\omega(\mathsf{F}_{\alpha}) = \mathsf{F}_{\alpha'}$$

where α' is the dual composition obtained by

$$\bigcirc |\bigcirc \longleftrightarrow \bigcirc \bigcirc .$$

For example (4, 1, 3, 1)' = (1, 1, 1, 3, 1, 2). Compare:

In terms of monomial quasi-symmetric functions, we have

$$\Delta M_{\alpha} = \sum_{k=0}^{\ell(\alpha)} M_{\alpha_{\leq k}} \otimes M_{>k}, \qquad \omega(M_{\alpha}) = (-1)^{\ell(\alpha)} \sum_{\alpha \models \beta} M_{\beta}.$$

We define antipode by $S(M_{\alpha}) = \omega(M_{rev(\alpha)})$. These equip QSym a structure of a Hopf algebra. Actually the dual of QSym is the so-called **non-commutative symmetric functions**. Note that the co-product is not commutative. The natural embedding is a Hopf algebras homomorphism

$$\Lambda \xrightarrow{\subseteq} \operatorname{QSym}$$
.

That is, it commutes with coproduct and antipode. Since

$$m_{\lambda} = \sum_{sort(\alpha) = \lambda} M_{\alpha} = \sum_{sort(\alpha) = \lambda} M_{rev(\alpha)},$$

the inclusion also commutes with the omega involution.

Example. Assume we have a partial order P on [n]. We call $T : P \to [\infty]$ a P-partition if

For example,

$$1 \begin{array}{c} 3 \\ 2 \end{array} \quad T(1) > T(2) \le T(3).$$

Let $\mathscr{A}(P)$ be the set of (P, ω) -partitions. For an abstract poset P, we need first find a bijection $P \to [n]$.

Here are more examples

- When the bijiection is increasing, P-partition is just strictly increasing map $P \rightarrow [\infty]$.
- When the bijection is decreasing, P-partition is just weakly increasing map $P \rightarrow [\infty]$.
- When P is a chain $\{w_1 < w_2 < \cdots < w_n\}$, then

$$\mathscr{A}(\mathsf{P}) = \left\{ [\mathsf{n}] \xrightarrow{\mathsf{T}} [\infty] : \begin{array}{c} \mathsf{T}(\mathfrak{i}) \leq \mathsf{T}(\mathfrak{i}+1) & w_{\mathfrak{i}} < w_{\mathfrak{i}+1} \\ \mathsf{T}(\mathfrak{i}) < \mathsf{T}(\mathfrak{i}+1) & w_{\mathfrak{i}} > w_{\mathfrak{i}+1} \end{array} \right\}$$

the increasing sequence strictly at descent of *w*.

The fundamental theorem of P-partition is

$$\mathscr{A}(\mathsf{P}) = \bigsqcup_{\mathsf{P}'} \mathscr{A}(\mathsf{P}')$$

for all linear extension P' of P. For example,

The bijection is given by "standardization". That is, for any P-partition, we can define a linear extension P' by the lexicographic order of $i \mapsto (T(i), i)$. Then T gives a P'-partition.

Let us define

$$F_{P} = \sum_{T \in \mathscr{A}(P)} x^{T} = \sum_{\substack{i_{1}, \dots, i_{n} \\ a < pb, a < b \Rightarrow i_{a} \leq i_{b} \\ a < pb, a > b \Rightarrow i_{a} < i_{b}}} x_{i_{1}} \cdots x_{i_{n}} = \sum_{P'} F_{P'}.$$

When P' is a chain $\{w_1 < \cdots < w_n\}$, we have

 $F_{P'} = F_{n,des(P')} \quad \text{where} \quad des(P') = \{i \in [n-1] : w_i > w_{i+1}\}.$ As a result, we have

$$\omega F_P = \sum_{\substack{i_1, \dots, i_n \\ a <_P b, a < b \Rightarrow i_a < i_b \\ a <_P b, a > b \Rightarrow i_a \leq i_b}} x_{i_1} \cdots x_{i_n} = F_Q$$

for Q the order $i <_Q j$ iff $n - i <_P n - j$.

Example. Let us see how it can be used to compute ωs_{λ} . Let $n = |\lambda|$. Given a standard tableaux $S \in SYT(\lambda)$, i+1 must be NE to i (including its direct right) or SW to i (including its direct down). We define a compositon $\alpha(S)$ of n between the i-th ball and the (i + 1)-th ball if i+1 is SW to i. Then we have

$$s_{\lambda} = \sum_{S \in \operatorname{SYT}(\lambda)} M_{n,des(S)}.$$

Actually, $SSYT(\lambda)$ is a special case of P-partitions. Explicitly, for each $T \in SSYT(\lambda)$, we can associate its standardization $S = std(T) \in SYT(\lambda)$ a standard tableaux such that

- if $T(\Box_1) < T(\Box_2)$, then $S(\Box_1) < S(\Box_2)$;
- if $T(\Box_1) = T(\Box_2)$, and \Box_1 is left to the \Box_2 , then $S(\Box_1) < S(\Box_2)$.

For each $S \in SYT(\lambda)$, we define its descent set to be

$$dec(S) = \left\{ i \in [n-1] : \underbrace{i+1} \text{ is lower than } i \right\}.$$

It is not hard to figure out the identity:

 $(2)_{1}(2)_{2}|(5)_{3}(5)_{4}(5)_{5}|(10)_{6}(10)_{7}(20)_{8}(20)_{9}$

Then

$$\omega s_{\lambda} = s_{\lambda'},$$

where the condition of < and \leq are switched.

Example. Let G be a graph. We have

$$\left\{ \begin{array}{c} \text{proper coloring} \\ \kappa: \mathsf{G} \to [\infty] \end{array} \right\} = \bigsqcup_{\mathsf{O}} \left\{ \begin{array}{c} \text{strictly increasing map} \\ \kappa: (\mathsf{G}, \leq_{\mathsf{O}}) \to [\infty] \end{array} \right\}$$

where O is an acyclic orientation, which equips G a partial order. This shows

$$X_{G} = \sum_{0} \sum_{\substack{\kappa: G \to [\infty] \\ a \to b \Rightarrow \kappa(a) < \kappa(b)}} \prod_{\nu \in G} x_{\kappa(\nu)}.$$

By the example above, we have

$$\omega X_{G} = \sum_{O} \sum_{\kappa: G \to [\infty] \atop \alpha \to b \Rightarrow \kappa(\alpha) \le \kappa(b)} \prod_{\nu \in G} x_{\kappa(\nu)}.$$

In other word,

$$\omega X_G = \sum_{\kappa: G \to [\infty]} \# \left\{ \begin{array}{l} \text{acyclic orientation O} \\ \kappa(\mathfrak{a}) < \kappa(\mathfrak{b}) \Rightarrow \mathfrak{a} \to \mathfrak{b} \end{array} \right\} \prod_{\nu \in G} x^{\kappa(\nu)}.$$

References.

- R.P. Stanley. A Symmetric Function Generalization of the Chromatic Polynomial of a Graph.
- P. Brosnan, Y. Chow. Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties. [arXiv]
- K. Vilonen, T. Xue. A note on Hessenberg varieties. [arXiv]
- M. Precup, E. Sommers. Perverse sheaves, nilpotent Hessenberg varieties, and the modular law. [arXiv]
- D. Grinberg, V. Reiner, Hopf Algebras in Combinatorics. [arXiv]