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A Classical Source of Hopf Algebras

Let G be a topological group, the cohomology ring

H•(G )

is a Hopf algebra with

algebra structure
cup product

H•(G )⊗ H•(G )
⌣−→ H•(G )

coalgebra structure
from group multiplication

H•(G )
∆−→ H•(G )⊗ H•(G )

This seems to be the motivation for the definition of Hopf
algebras.
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Generalization

There are numerous generalized cohomology theories other
than usual cohomology, for example, K-theory, cobordism,
etc. On the algebraic geometry side, parallel stories also
exist. Here is a mini-dictionary:

Topology Algebra

topological

Groups
algebraic

Groups

cohomology Chow ring
intersection theory

topological

K-theory
algebraic

K-theory
topological

cobordism
algebraic

cobordism
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Example I — SO(2)

SO2 =
{
2-dimensional rotations

}
≃ S1.

0 1 2

H•(SO2) = Z ⊕ Zξ ⊕ 0 ⊕ · · ·
∪ ∪ ∪ ∪

CH•(SO2) = Z ⊕ 0 ⊕ 0 ⊕ · · ·

∆(ξ) = 1⊗ ξ + ξ ⊗ 1.
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Example II — SO(3)

SO3 =
{
3-dimensional rotations

}
≃ RP3.

0 1 2 3 4

H•(SO3) =Z⊕ 0 ⊕F2x ⊕Zξ⊕ 0 ⊕ · · ·
∪ ∪ ∪ ∪ ∪ ∪

CH•(SO3) =Z⊕ 0 ⊕F2x ⊕ 0 ⊕ 0 ⊕ · · ·

∆(x) = 1⊗ x + x ⊗ 1.

∆(ξ) = 1⊗ ξ + ξ ⊗ 1.
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Dynkin diagrams

We shall focus on semisimple Lie groups, which is classified by
Dynkin diagrams.

An ◦ ··· ◦ ◦

Bn ◦ ··· ◦ +3 ◦

Cn ◦ ··· ◦ ks ◦

Dn ◦ ··· ◦ ◦
◦

E6 ◦ ◦
◦p◦ ◦ ◦

E7 ◦ ◦
◦p◦ ◦ ◦ ◦

E8 ◦ ◦
◦p◦ ◦ ◦ ◦ ◦

F4 ◦ ◦ +3◦ ◦
G2 ◦ *4◦
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Root systems

Each Dynkin diagram has a corresponding root system.

For example, for G = SL4
∗ □ ∗ ∗
∗ ∗ ♡ ∗
∗ ∗ ∗ ♢
∗ ∗ ∗ ∗


□ = x1 − x2
♡ = x2 − x3
♢ = x3 − x4

◦ −−− ◦ −−− ◦

Roughly speaking, each node ◦ stands for a vector and each
edge means a non-orthogonal angle between vectors.
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Weyl Groups

Each Dynkin diagram corresponds to a Weyl group.

For example, for G = SL4,

□ = x1 − x2 ←→ swap x1 and x2
♡ = x2 − x3 ←→ swap x2 and x3
♢ = x3 − x4 ←→ swap x3 and x4

 generate S4.

In general, the Weyl group is a discrete group generated by
reflections (a Coxeter group).

However, not all Coxeter groups are Weyl groups.
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Coxeter Diagrams

The following is the classification of finite Coxeter groups.

An ◦ ··· ◦ ◦

Bn ◦ ··· ◦ ◦
∥
Cn ◦ ··· ◦ ◦

Dn ◦ ··· ◦ ◦
◦

I2(p) ◦ p ◦

E6 ◦ ◦
◦p◦ ◦ ◦

E7 ◦ ◦
◦p◦ ◦ ◦ ◦

E8 ◦ ◦
◦p◦ ◦ ◦ ◦ ◦

F4 ◦ ◦ ◦ ◦
G2 ◦ ◦
H3 ◦ ◦ 5 ◦
H4 ◦ ◦ 5 ◦ ◦
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Structure Algebras

For any generalized cohomology theory (or more precisely
formal group law F), we can construct for each root system Λ a
structure algebra

Z =
{
(zw ) ∈ SymF(Λ)

ΠW : xα | zw − zwsα

}
.

Geometrically, we have

Z = hT (G/B) =

(
generalized T -equivariant
cohomology of flag varieties

)
.
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Example I — SL2

G = SL2,

T = [∗ ∗]
∼= C×

B = [∗ ∗
∗]

G/B ≃ CP1 = C ∪ {∞}

Z =

{
(z0, z∞) : x | z0 − z∞

}
.
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Example II — SL3

G = SL3,

T =
[∗

∗
∗

]
B =

[∗ ∗
∗
∗
∗
∗

]
G/B ≃ {0 ⊂ ℓ ⊂ P ⊂ C3}.

Z =

{
(z123 , · · · , z321) : · · ·

}
.

321

312

x2⊖x3ee

231

x1⊖x2

99

213

x2⊖x3
OO x1⊖x3

88

132

x1⊖x2

OO

x1⊖x3

ee

123

x1⊖x2

ee

x2⊖x3

99

x1⊖x3

OO
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Duoidal Category

Denote S = SymF(Λ). Actually, the structure algebra Z sits in
the category of S-bimodules under Hecke action and Weyl
action.

In the category of S-bimodules, there are two tensor structures

X ⊗ Y with sxr ⊗ y = x ⊗ syr .

X ⊗̂ Y with xs ⊗ y = x ⊗ sy .

They form a duoidal category under the natural interchange

(X1 ⊗̂ X2)⊗ (Y1 ⊗̂ Y2) −→ (X1 ⊗ Y1) ⊗̂ (X2 ⊗ Y2).

Roughly, a duoidal category is a category with two compatible
monoidal structures.
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Bimonoid

Theorem (Lanini, Xiong, Zainouline)

The structure algebra Z is a Hopf algebroid:

1 Z is an algebra under ⊗;
2 Z is an coalgebra under ⊗̂;
3 Z satisfies diagrams of compatibility of two structures.

For example,

Z ⊗ Z prod //

coprod⊗coprod
��

Z coprod // Z ⊗̂ Z

(Z ⊗̂ Z)⊗ (Z ⊗̂ Z) interchange // (Z ⊗ Z) ⊗̂ (Z ⊗ Z)

prod⊗̂prod

OO
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Geometric meaning

Our construction of the coproduct is motivated by geometry.

B\G/B

B\G ×
B
G/B

multiplication

OO

projection1
~~

projection2
  

B\G/B B\G/B

induces

Z
coproduct
��

Z⊗̂Z

Z
inclusion1

>>

where Z = hT (G/B)
and S = hT (pt)

Z
inclusion2

``
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Double Quotient

We have an augmented map

0 −→ I −→ SymF(Λ)
ring−→

(base
ring

)
−→ 0.

Note that base change to the base ring makes two tensor
structures ⊗ and ⊗̂ coincide. Thus, the double quotient

Z/
IZ+ZI , ⊗ ≡ ⊗̂ mod I

is a Hopf algebra. By a theorem of Grothendieck, its geometric
meaning is h(G ) the generalized cohomology of a semisimple
group.
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Dihedral Combinatorics

We obtain a purely algebraic proof of the fact h(G ) is a Hopf
algebra. Moreover, it works for any finite Coxeter groups!

Let us illustrate when it is a dihedral group and Chow
ring/cohomology

I2(n) : ◦ n ◦
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Dihedral Combinatorics

I2(5) : ◦ 5 ◦

W = dihedral group of order 10

CH•(”I2(5)”) =
Z/
IZ+ZI

∼= Z
[√

5−1
2

]
[x ]/⟨x5,

√
5⟩

=

0

Z
[√

5−1
2

]
⊕

1

F5x⊕
2

F5x
2⊕

3

F5x
3⊕

4

F5x
4
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Dihedral Combinatorics

I2(4) : ◦ 4 ◦

W = dihedral group of order 8

CH•(”I2(4)”)F2 =
Z/
IZ+ZI

∼= F2[x , y , z ]/⟨x2, y2, z2⟩

=

0

F2⊕
1

F2x
F2y
⊕

2

F2xy
F2z
⊕

3

F2xz
F2yz

⊕
4

F2xyz

B2 = C2 : ◦ ks ◦

W = dihedral group of order 8

CH•(SO5)F2 =
Z/
IZ+ZI

∼= F2[x ]/⟨x4⟩

=

0

F2⊕
1

F2x⊕
2

F2x
2⊕

3

F2x
3
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Dihedral Combinatorics

I2(8) : ◦ 8 ◦

W = dihedral group of order 8

CH•(”I2(8)”)F2 =
Z/
IZ+ZI

∼= F2[y1, x1, x2, x4]/⟨y21 , x21 , x22 , x24 ⟩

I2(8) : ◦ 8ks ◦

W = dihedral group of order 8

CH•(”I2(8)”)F2 =
Z/
IZ+ZI

∼= F2[y , x4]/⟨y41 , x24 ⟩
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Thanks

S ⊗
SW
S⊗S ⊗

SW
S

ρ⊗ρ

$$

∇ //

∆⊗∆

��

S ⊗
SW
S

ρ

$$

∆ // S ⊗
SW
S ⊗̂S ⊗

SW
S

ρ⊗ρ

$$
Z⊗Z ∇ //

∆⊗∆

��

Z ∆ // Z ⊗Z(
S ⊗
SW
S ⊗̂S ⊗

SW
S
)
⊗
(
S ⊗
SW
S ⊗̂S ⊗

SW
S
)

ρ⊗ρ⊗ρ⊗ρ
$$

//
(
S ⊗
SW
S⊗S ⊗

SW
S
)
⊗̂
(
S ⊗
SW
S⊗S ⊗

SW
S
)

ρ⊗ρ⊗ρ⊗ρ
$$

∇⊗∇

OO

(
Z⊗̂Z

)
⊗
(
Z⊗̂Z

) interchange //
(
Z⊗Z

)
⊗̂
(
Z⊗Z

)
∇⊗∇

OO
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