CMS

Topology Lie theory Geometry Category

Combinatorics

Structure algebras, Hopf algebroids and oriented cohomology of a group arXiv:2303.02409

(Joint work with Martina Lanini and Kirill Zainoulline)

Rui Xiong

(uOttawa)

April 27, 2023

A Classical Source of Hopf Algebras

Topology Lie theory Geometry Category

Combinatorics

Let G be a topological group, the cohomology ring $H^{\bullet}(G)$

is a Hopf algebra with

ALGEBRA STRUCTURE cup product $H^{\bullet}(G) \otimes H^{\bullet}(G) \xrightarrow{\smile} H^{\bullet}(G)$ COALGEBRA STRUCTURE from group multiplication $H^{\bullet}(G) \xrightarrow{\Delta} H^{\bullet}(G) \otimes H^{\bullet}(G)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

This seems to be the **motivation** for the definition of Hopf algebras.

Generalization

Topology

Lie theory

Geometry

Category

Combinatorics

There are numerous generalized cohomology theories other than usual cohomology, for example, **K-theory**, **cobordism**, etc. On the **algebraic geometry** side, parallel stories also exist. Here is a mini-dictionary:

TOPOLOGY	Algebra
topological	algebraic
Groups	Groups
cohomology	Chow ring intersection theory
topological	^{algebraic}
K-theory	K-theory
topological	algebraic
cobordism	cobordism

Example I — SO(2)

Topology Lie theory Geometry Category

Combinatorics

$$SO_2 = \{2 \text{-dimensional rotations}\} \simeq S^1.$$

$$0 \quad 1 \quad 2$$

$$H^{\bullet}(SO_{2}) = \mathbb{Z} \oplus \mathbb{Z} \xi \oplus 0 \oplus \cdots$$

$$\bigcup \quad \bigcup \quad \bigcup \quad \bigcup \quad \bigcup$$

$$CH^{\bullet}(SO_{2}) = \mathbb{Z} \oplus 0 \oplus 0 \oplus \cdots$$

$$\Delta(\xi) = 1 \otimes \xi + \xi \otimes 1.$$

$$270^{\circ}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example II — SO(3)

Topology Lie theory

Category

Combinatorics

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Dynkin diagrams

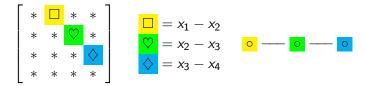
Topology Lie theory Geometry Category We shall focus on semisimple Lie groups, which is classified by Dynkin diagrams.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Root systems

Topology Lie theory Geometry Category Combinatori

Each Dynkin diagram has a corresponding root system. For example, for $G = SL_4$



Roughly speaking, each node \circ stands for a vector and each edge means a non-orthogonal angle between vectors.

Weyl Groups

Topology Lie theory Geometry Category Combinatori Each Dynkin diagram corresponds to a Weyl group. For example, for $G = SL_4$,

$$\begin{array}{c|cccc} \square &= x_1 - x_2 & \longleftrightarrow & \mathsf{swap} \ x_1 \ \mathsf{and} \ x_2 \\ \hline &= x_2 - x_3 & \longleftrightarrow & \mathsf{swap} \ x_2 \ \mathsf{and} \ x_3 \\ \hline &= x_3 - x_4 & \longleftrightarrow & \mathsf{swap} \ x_3 \ \mathsf{and} \ x_4 \end{array} \right\} \mathsf{generate} \ \mathfrak{S}_4.$$

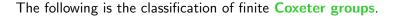
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

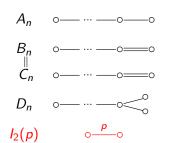
In general, the Weyl group is a discrete group generated by reflections (a **Coxeter group**).

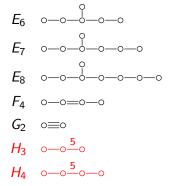
However, not all Coxeter groups are Weyl groups.

Coxeter Diagrams

Topology Lie theory Geometry Category







Structure Algebras

Topology Lie theory Geometry Category For any generalized cohomology theory (or more precisely formal group law F), we can construct for each root system Λ a **structure algebra**

$$\mathcal{Z} = \left\{ (z_w) \in \mathsf{Sym}_{\mathsf{F}}(\Lambda)^{\Pi W} : x_\alpha \mid z_w - z_{ws_\alpha} \right\}$$

Geometrically, we have

$$\mathcal{Z} = h_T(G/B) = \begin{pmatrix} \text{generalized } T \text{-equivariant} \\ \text{cohomology of flag varieties} \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example I — SL_2

- Topology Lie theory Geometry
- Combinatorics

$$G = SL_2,$$

$$T = [*_*] \cong \mathbb{C}^{\times}$$

$$B = [*_*]$$

$$G/B \simeq \mathbb{C}P^1 = \mathbb{C} \cup \{\infty\}$$

$$\mathcal{Z} = \left\{ (z_0, z_\infty) : x \mid z_0 - z_\infty \right\}$$

Example II — SL₃

$$G = SL_3,$$

$$T = \begin{bmatrix} * & * \\ * & * \end{bmatrix}$$

$$B = \begin{bmatrix} * & * & * \\ * & * \\ * & * \end{bmatrix}$$

$$G/B \simeq \{0 \in \ell \in P \in \mathbb{C}^3\}.$$

$$\mathcal{Z} = \left\{ (z_{123}, \cdots, z_{321}) : \cdots \right\}.$$

$$312$$

$$x_1 \ominus x_2$$

$$x_1 \ominus x_3$$

$$x_1 = x_3$$

$$x_1 = x_3$$

$$x_1 = x_3$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Duoidal Category

Topology Lie theory Geometry Category Denote $S = \text{Sym}_F(\Lambda)$. Actually, the structure algebra \mathcal{Z} sits in the category of *S*-bimodules under **Hecke action** and **Weyl** action.

In the category of *S*-bimodules, there are two tensor structures $X \otimes Y$ with $sxr \otimes y = x \otimes syr$.

•
$$X \otimes Y$$
 with $xs \otimes y = x \otimes sy$.

They form a duoidal category under the natural interchange

 $(X_1 \mathbin{\hat{\otimes}} X_2) \otimes (Y_1 \mathbin{\hat{\otimes}} Y_2) \longrightarrow (X_1 \otimes Y_1) \mathbin{\hat{\otimes}} (X_2 \otimes Y_2).$

Roughly, a duoidal category is a category with two compatible monoidal structures.

Bimonoid

Theorem (Lanini, Xiong, Zainouline)

The structure algebra \mathcal{Z} is a Hopf algebroid:

- **1** \mathcal{Z} is an algebra under \otimes ;
- **2** \mathcal{Z} is an coalgebra under $\hat{\otimes}$;

Z satisfies diagrams of compatibility of two structures.
 For example,

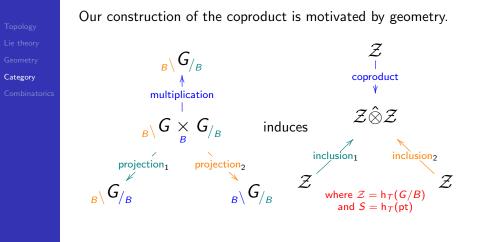
◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Topology Lie theory Geometry

Category

Combinatorics

Geometric meaning



Double Quotient

Topology Lie theory Geometry Category Combinatorics We have an augmented map

$$0 \longrightarrow \mathcal{I} \longrightarrow \mathsf{Sym}_F(\Lambda) \xrightarrow{\mathsf{ring}} \begin{pmatrix} \mathsf{base} \\ \mathsf{ring} \end{pmatrix} \longrightarrow 0.$$

Note that base change to the base ring makes two tensor structures \otimes and $\hat{\otimes}$ coincide. Thus, the **double quotient**

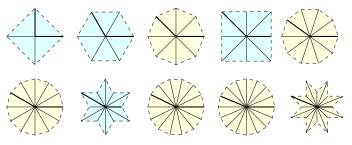
$$\mathcal{Z}/_{\mathcal{IZ}+\mathcal{ZI}},\qquad \otimes\equiv\hat{\otimes}\ \mathsf{mod}\ \mathcal{I}$$

is a Hopf algebra. By a theorem of Grothendieck, its geometric meaning is h(G) the generalized cohomology of a semisimple group.

Topology Lie theory Geometry Category Combinatorics We obtain a purely algebraic proof of the fact h(G) is a Hopf algebra. Moreover, it works for any finite **Coxeter groups**!

Let us illustrate when it is a dihedral group and Chow ring/cohomology

 $I_2(n): \circ \xrightarrow{n} \circ$



Topology Lie theory Geometry Category <u>Combinatorics</u>

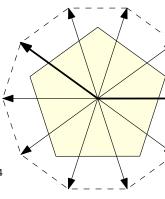
$$I_2(5): \circ - 5 \circ$$

 $W = dihedral \ group \ of \ order \ 10$

$$CH^{\bullet}("I_{2}(5)") = \mathcal{Z}/_{\mathcal{IZ}+\mathcal{ZI}}$$

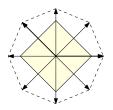
$$\cong \mathbb{Z}\left[\frac{\sqrt{5}-1}{2}\right][x]/\langle x^{5}, \sqrt{5}\rangle$$

$$= \mathbb{Z}\left[\frac{\sqrt{5}-1}{2}\right] \oplus \mathbb{F}_{5}x \oplus \mathbb{F}_{5}x^{2} \oplus \mathbb{F}_{5}x^{3} \oplus \mathbb{F}_{5}x^{4}$$



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

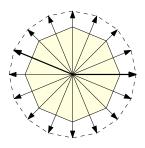
Combinatorics



$$B_2 = C_2 : \circ = \bullet$$

 $W = \text{dihedral group of order 8} \qquad W = \text{dihedral group of order 8}$ $CH^{\bullet}("I_{2}(4)")_{\mathbb{F}_{2}} = \frac{\mathcal{Z}}{/\mathcal{IZ} + \mathcal{ZI}} \qquad CH^{\bullet}(SO_{5})_{\mathbb{F}_{2}} = \frac{\mathcal{Z}}{/\mathcal{IZ} + \mathcal{ZI}}$ $\cong \mathbb{F}_{2}[x, y, z]/\langle x^{2}, y^{2}, z^{2} \rangle \qquad \cong \mathbb{F}_{2}[x]/\langle x^{4} \rangle$ $= \mathbb{F}_{2} \oplus \mathbb{F}_{2}^{2} x \oplus \mathbb{F}_{2}^{2} xy \oplus \mathbb{F}_{2}^{2} xz \oplus \mathbb{F}_{2}^{2} xyz \qquad = \mathbb{F}_{2} \oplus \mathbb{F}_{2}^{2} x \oplus \mathbb{F}_{2}^{2} x^{2} \oplus \mathbb{F}_{2}^{2} x^{3}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ



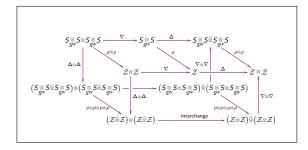


$$\begin{split} W &= \text{dihedral group of order 8} \qquad W = \text{dihedral group of order 8} \\ CH^{\bullet}("l_{2}(8)")_{\mathbb{F}_{2}} &= \mathcal{Z}/_{\mathcal{IZ}+\mathcal{ZI}} \qquad CH^{\bullet}("l_{2}(8)")_{\mathbb{F}_{2}} &= \mathcal{Z}/_{\mathcal{IZ}+\mathcal{ZI}} \\ &\cong \mathbb{F}_{2}[y_{1}, x_{1}, x_{2}, x_{4}]/\langle y_{1}^{2}, x_{1}^{2}, x_{2}^{2}, x_{4}^{2} \rangle &\cong \mathbb{F}_{2}[y, x_{4}]/\langle y_{1}^{4}, x_{4}^{2} \rangle \end{split}$$

Topology Lie theory Geometry Category

Combinatorics

Thanks



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで