QHTFDL

TF

Automorphisms of Quantum Cohomology of Springer Resolution arXiv:2304.07173

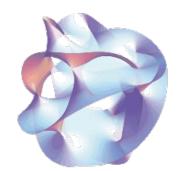
(Joint work with Changjian Su and Changzheng Li)

Rui Xiong

(uOttawa)

April 30, 2023

$Q_{\mathsf{uantum}} \ \mathsf{co}\mathcal{H}_{\mathsf{omology}}$



Let X be an quasi-projective variety. The **quantum** cohomology is a deformation of usual cohomology ring $H^{\bullet}(X)$

$$QH^{\bullet}(X) = H^{\bullet}(X; \mathbb{Q})[[q^{\beta}]]_{\beta \in \mathsf{Eff}(X)}$$

with quantum product * such that

$$\left\langle \llbracket \mathit{C}_1 \rrbracket * \llbracket \mathit{C}_2 \rrbracket, \llbracket \mathit{C}_3 \rrbracket \right\rangle_{\text{poincar\'e}} = \sum_{\beta} \# \left\{ egin{array}{l} \text{rational curves} \\ \text{going through} \\ \mathit{C}_1, \mathit{C}_2, \mathit{C}_3 \text{ of class } \beta \end{array} \right\} q^{\beta}.$$

The formal definition uses the moduli space $\overline{M}_{0,3}(X,\beta)$.

Projective Line

QHTFDL

QH TF

Denote the class of a point

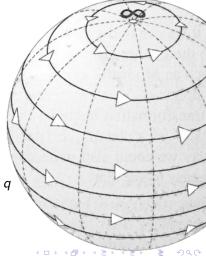
$$x = [\infty] = [0]$$

$$0 \cap \omega = \emptyset \quad \Rightarrow \quad x \cdot x = 0$$

$$H^{\bullet}(\mathbb{P}^1) = \mathbb{Q}[x]/\langle x^2 \rangle$$

 $\exists \text{ rational curve} \\ \text{through } 0, \infty \Rightarrow x \cdot x = q$

$$QH^{\bullet}(\mathbb{P}^1) = \mathbb{Q}[x,q]/\langle x^2 = q \rangle$$



Let $\mathcal{F}\ell_n$ be the classical flag variety

$$\mathcal{F}\ell_n = \Big\{ 0 = \phi_0 \subset \phi_1 \subset \cdots \subset \phi_{n-1} \subset \phi_n = \mathbb{C}^n \mid \dim \phi_i = i \Big\}.$$

By Borel [1]

$$H^{\bullet}(\mathfrak{F}\ell_n) = \frac{\mathbb{Q}[x_1,\ldots,x_n]}{\langle e_1(x),\ldots,e_n(x) \rangle},$$

where $e_i(x)$ is the *i*-th elementary symmetric polynomials.

$$e_1(x) = x_1 + \dots + x_n$$

$$e_2(x) = \sum_{i < j} x_i x_j$$

$$\dots = \dots$$

$$e_n(x) = x_1 \dots x_n$$

Let $\mathcal{F}\ell_n$ be the classical flag variety

$$\mathcal{F}\ell_n = \Big\{ 0 = \phi_0 \subset \phi_1 \subset \cdots \subset \phi_{n-1} \subset \phi_n = \mathbb{C}^n \mid \dim \phi_i = i \Big\}.$$

By Givental and Kim [4],

$$QH^{\bullet}(\mathcal{F}\ell_n) = \frac{\mathcal{O}[x_1, \dots, x_n]}{(E_1(x), \dots, E_n(x))}$$

the tridiagonal matrix

$$QH^{\bullet}(\mathcal{F}\ell_n) = \frac{\mathbb{O}[x_1,\dots,x_n]}{(E_1(x),\dots,E_n(x))} \begin{bmatrix} x_1 & -1 & 0 & \cdots & 0 \\ \frac{q_1}{q_2} & x_2 & -1 & \cdots & 0 \\ 0 & \frac{q_2}{q_3} & x_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & x_n \end{bmatrix}$$
where $E_i(x)$ is the coefficient of the characteristic polynomial of the tridiagonal matrix

co $\mathcal{T}_{\mathsf{angent}}$ bundle of $\mathcal{F}_{\mathsf{lag}}$ variety

Symplectic Resolutions

QHTFDL

QH T**F** Symplectic resolutions are the Lie algebras of the 21st century

-Andrei Okounkov

Symplectic resolution is a resolution of singularities

$$\begin{array}{c} \text{(holomorphic manifold)} \quad X \\ \text{(proper)} \quad \downarrow \\ \text{(affine Poisson variety)} \quad Y \end{array}$$

It includes Springer resolutions, hypertoric varieties, Nakajima quiver varieties, affine Grassmannian slices as examples. See [5]. Recall the flag variety

$$\mathcal{F}\ell_n = \Big\{ 0 = \phi_0 \subset \phi_1 \subset \cdots \subset \phi_{n-1} \subset \phi_n = \mathbb{C}^n \, \Big| \, \dim \phi_i = i \Big\}.$$

Denote the nilpotent cone

$$\mathcal{N} = \Big\{ A \in \mathbb{M}_n(\mathbb{C}) \, \big| \, A^n = \mathbf{0} \Big\}.$$

The cotangent bundle of $\mathcal{F}\ell_n$

$$T^* \mathcal{F}\ell_n = \Big\{ (A, \phi_{\bullet}) \in \mathcal{N} \times \mathcal{F}\ell_n \mid A(\phi_i) \subset \phi_i \Big\}.$$

forms a resolution of N, i.e. **Springer resolution**.

Cotangent bundle of projective line

QHTFDL

QH TF

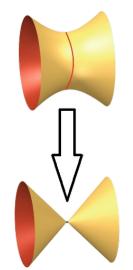
$$\mathcal{N} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| \begin{array}{c} a+d=0, \\ ad-bc=0 \end{array} \right\}$$

At the point 0, the fibre is

$$\mathcal{F}\ell_n = \mathbb{P}^1$$

■ At a nonzero $A \in \mathcal{N}$, the fibre is

$$\big\{*\big\} = \Big\{ \; (0 {\subset} \ker(A) {\subset} \mathbb{C}^2) \; \Big\}.$$



OHTFDL

Theorem (Li, Su and Xiong)

$$QH_{\mathbb{C}^*}^{\bullet}(T^*\mathfrak{F}\ell_n) = \frac{\mathfrak{O}[\hbar, x_1, \dots, x_n]}{(\mathfrak{E}_1(\chi), \dots, \mathfrak{E}_n(\chi))}$$

where $\mathcal{E}_i(x)$ is the coefficient of the characteristic polynomial of the matrix

$$\begin{bmatrix} \chi_1 & \frac{\hbar}{1-q_1/q_2} & \frac{\hbar}{1-q_1/q_3} & \cdots & \frac{\hbar}{1-q_1/q_n} \\ \frac{\hbar}{1-q_2/q_1} & \chi_2 & \frac{\hbar}{1-q_2/q_3} & \cdots & \frac{\hbar}{1-q_2/q_n} \\ \frac{\hbar}{1-q_3/q_1} & \frac{\hbar}{1-q_3/q_2} & \chi_3 & \cdots & \frac{\hbar}{1-q_3/q_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\hbar}{1-q_n/q_1} & \frac{\hbar}{1-q_n/q_2} & \frac{\hbar}{1-q_n/q_3} & \cdots & \chi_n \end{bmatrix}$$

$$\chi_i = x_i + \hbar \sum_{a < i} \frac{q_a/q_i}{1 - q_a/q_i} - \hbar \sum_{i < b} \frac{q_i/q_b}{1 - q_i/q_b}$$

Geometrically, we can recover $QH^{\bullet}(\mathcal{F}\ell_n)$ by taking the **Toda limit**, roughly speaking,

$$QH_{\mathbb{C}^*}^{\bullet}(T^*\mathfrak{F}\ell_n)\stackrel{\hbar\to\infty}{\longrightarrow} QH^{\bullet}(\mathfrak{F}\ell_n).$$

By taking entry-wise limit, we can recover the tridiagonal matrix for $QH^{\bullet}(\mathcal{F}\ell_n)$.

Similar description can be given for all types, and it agrees with [3] after taking Toda limit by case.

Question

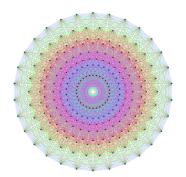
Is there any type-free connection between both descriptions?

QHTFDL

We give a combinatorial formula of $\mathcal{E}_k(\chi)$. For example, if k=3 and n=4

1 2 3 4 1 2 3 4 1 2 3 4 $\frac{\hbar^2 q_1 q_2}{(a_1 - a_2)^2} \chi_4 \frac{\hbar^2 q_1 q_4}{(a_1 - a_4)^2} \chi_3 \frac{\hbar^2 q_2 q_4}{(a_2 - a_4)^2} \chi_3 \frac{\hbar^2 q_1 q_2}{(a_1 - a_2)^2} \frac{\hbar^2 q_3 q_4}{(a_3 - a_4)^2}$ $\chi_1\chi_2\chi_4$ 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 $\frac{\hbar^2 q_1 q_3}{(q_1 - q_3)^2} \chi_2 \frac{\hbar^2 q_2 q_3}{(q_2 - q_3)^2} \chi_1 \frac{\hbar^2 q_3 q_4}{(q_3 - q_4)^2} \chi_1 \frac{\hbar^2 q_1 q_3}{(q_1 - q_3)^2} \frac{\hbar^2 q_2 q_4}{(q_2 - q_4)^2}$ $\chi_1\chi_3\chi_4$ $\frac{\hbar^2 q_1 q_3}{(g_2 - g_2)^2} \chi_4 \frac{\hbar^2 q_2 q_3}{(g_2 - g_2)^2} \chi_4 \frac{\hbar^2 q_3 q_4}{(g_2 - g_2)^2} \chi_2$ $\chi_2\chi_3\chi_4$

quantum ${\mathfrak D}_{\mathsf{emazure}}$ - ${\mathcal L}_{\mathsf{usztig}}$ operators



$$\mathbf{St} = T^* \, \mathfrak{F}\ell_n \times_{\mathbb{N}} T^* \, \mathfrak{F}\ell_n \\ = \left\{ (A, \phi_{\bullet}, \psi_{\bullet}) \, \middle| \, A(\phi_i) \subset \phi_i, A(\psi_i) \subset \psi_i \right\}.$$

Then

$$H^{BM}_{\mathbb{C}^*}(\mathbf{St})$$
 acts on $H^{ullet}_{\mathbb{C}^*}(\mathfrak{F}\ell_n)$ via convolution.

Moreover, classical Springer theory tells

middle term of
$$H^{BM}_{\mathbb{C}^*}(\mathbf{St}) = \mathbb{C}[\mathfrak{S}_n].$$

Thus, there is a symmetric group action over $H^{\bullet}_{\mathbb{C}^*}(T^*\mathfrak{F}\ell_n)$.

The symmetric group action is given by a **Demazure–Lusztig type operator** defined by

$$s_i = 1 + (\hbar - (x_i - x_{i+1}))\partial_i,$$

which is never a ring automorphism except for the trivial case.

Definition (Quantum Demazure-Lusztig operators)

Let us denote quantum Demazure-Lusztig operators for each $w \in W$

$$T_w = w \otimes w$$

where the first w is from Springer theory, and the second w permutes the quantum parameters.

Our main theorem is the following unexpected result.

Theorem (Li, Su, Xiong)

For any $w \in W$ and $\gamma_1, \gamma_2 \in QH_{\mathbb{C}^*}^{\bullet}(T^* \mathfrak{F}\ell_n)$,

$$T_w(\gamma_1 * \gamma_2) = T_w(\gamma_1) * T_w(\gamma_2).$$

As a result, T_w is a ring automorphism with respect to the quantum product.

Note that T_w would create a pole at the origin of the quantum variables, e.g.

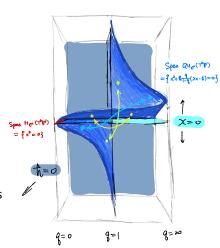
$$T_{s_i}q^{\alpha_i^{\mathsf{v}}}=q^{-\alpha_i^{\mathsf{v}}},$$

thus they cannot descent to the $H_{\mathbb{C}^*}^{\bullet}(T^*\mathfrak{F}\ell_n)$.

We have

$$= \frac{\mathcal{Q}H_{\mathbb{C}^*}(T^*\mathbb{P}^1)}{\left\langle x^2 + \hbar \frac{q}{1-q}(2x-\hbar) \right\rangle}. \quad \text{Spec that (PP)}$$

The action of quantum Demazure–Lusztig operator is illustrated on the right.



QHTFDL

Our proof is motivated by the following suspicious identity

$$\left. \begin{array}{rcl}
 1 + q + q^2 + \cdots & = & \frac{1}{1 - q} \\
 q^{-1} + q^{-2} + \cdots & = & \frac{q^{-1}}{1 - q^{-1}}
 \end{array} \right\} \Longrightarrow \sum_{n \in \mathbb{Z}} q^n = 0$$

Of course this does not make sense at all. But it tells that under the involution $q\mapsto q^{-1}$ over $\mathbb{Q}(q)$, we have

$$q + q^2 + \cdots \longmapsto -1 - q - q^2 - \cdots$$

This is what we need in the proof.

The main tool in the proof is the **stable basis** introduced by Maulik and Okounkov [6]. To be precise, we have a family of classes

$$\Big\{\operatorname{\mathsf{Stab}}_-(w)\in H^{2\dim\mathfrak{F}\ell_n}_{\mathsf{T} imes\mathbb{C}^*}(\mathsf{T}^*\,\mathfrak{F}\ell_n)\,ig|\,w\in W\Big\}$$

which satisfies the following properties:

- Stab_ $(w)|_u = 0$ unless $u \ge w$;
- Stab₋ $(w)|_{w} = \prod_{\alpha>0, w\alpha>0} (w\alpha \hbar) \prod_{\alpha>0, w\alpha<0} w\alpha;$
- Stab_ $(w)|_u$ is divisible by \hbar , for any u > w.

Moreover, the stable basis forms a basis of $H^*_{T \times \mathbb{C}^*}(T^* \mathcal{F}\ell_n)$ after inverting the equivariant parameters. See [8].

By [7], we have the following Chevalley formula

$$\begin{split} D_{\lambda} * \mathsf{Stab}_{-}(w) &= w(\lambda) \, \mathsf{Stab}_{-}(w) \\ &- \hbar \sum_{\alpha > 0, w\alpha > 0} \langle \lambda, \alpha^{\vee} \rangle \, \mathsf{Stab}_{-}(w s_{\alpha}) \\ &- \hbar \sum_{\alpha > 0} \langle \lambda, \alpha^{\vee} \rangle \, \frac{q^{\alpha^{\vee}}}{1 - q^{\alpha^{\vee}}} \big(\, \mathsf{Stab}_{-}(w) + \mathsf{Stab}_{-}(w s_{\alpha}) \big). \end{split}$$

where

$$\frac{q^{\alpha^{\mathsf{v}}}}{1-q^{\alpha^{\mathsf{v}}}}=q^{\alpha^{\mathsf{v}}}+q^{2\alpha^{\mathsf{v}}}+\cdots.$$

Thus the $\left[\sum q^n=0\right]$ perfectly applies to the last term, so that we can prove the quantum Demazure–Lusztig operator is a ring automorphism.

$\mathcal{T}_{\mathsf{hank}} \ \mathcal{Y}_{\mathsf{ou}}$

- Armand Borel. Sur la cohomologie des espaces fibrés principaux et des espaces homog'enes de groupes de Lie compacts. Ann. of Math. (2), 57:115-207, 1953.
- Alexander Braverman, Davesh Maulik, and Andrei Okounkov. Quantum cohomology of the Springer resolution. Adv. Math., 227(1):421-458, 2011.
- Bumsig Kim. Quantum cohomology of flag manifolds G/Band quantum Toda lattices. Ann. of Math. (2), 149(1):129–148, 1999.
- Alexander Givental and Bumsig Kim. Quantum cohomology of flag manifolds and Toda lattices. Comm. Math. Phys., 168(3):609-641, 1995

- Joel Kamnitzer. Symplectic resolutions, symplectic duality, and Coulomb branches. arXiv preprint arXiv::2202.03913, 2022.
- Davesh Maulik and Andrei Okounkov. Quantum groups and quantum cohomology. Astérisque, (408):ix+209, 2019.
- Changjian Su. Equivariant quantum cohomology of cotangent bundle of G/P. Adv. Math., 289:362–383, 2016.
- Changjian Su. Restriction formula for stable basis of the Springer resolution. Selecta Math. (N.S.), 23(1):497–518, 2017.