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1 Lecture 1 — Borel–Weil Theorem
1.1. Let G be a reductive group over C, and B be its Borel subgroup. We call
G/B the flag variety of G.

• G/B only depends on the Dynkin type of G.
• If K is the compact form of G, then G/B ∼= K/S with S = K∩B

the maximal torus of K.
• G/B is a projective variety. An explicit embedding can be con-

structed by Plücker embedding.
For example, GLn,SLn,PGLn has the same flag variety. One can also

construct the flag manifold from U(n) or SU(n).

1.2. For type A, we take GLn, we take B =
(∗ ··· ∗

∗

)
the group of invertible

upper triangular matrices then we can identify G/B with

Fℓ(n) = Fℓ(Cn) =

{
0 = V0 ⊆ V1 ⊆ · · · ⊆ Vn = Cn : dimVi = i.

}
1.3. For other classic types, we take the symmetric form over Cn defining
SO(n) to be

B(x, y) = yt(
1

1 )x = x1yn + · · ·+ xny1,

and the symplectic form over Cn defining Sp(n) to be

ω(x, y) = yt(
−1

1 )x = x1yn + · · · − xny1

Then the Borel subgroup is exactly of the form B =
(∗ ··· ∗

∗

)
. In these cases,

G/B can be identifies with{
V0 ⊆ V1 ⊆ · · · ⊆ Vn : dimVi = i, V ⊥

i = Vn−i.

}
.

1.4. Denote the maximal torus of B to be T , and the unipotent radical of B
to be U . Recall that B = U o T , that is, we have a split short exact sequence
of groups

0−→U −→B−→T −→ 0.

As a result, any representation of T can be extended to B (with trial U -action).

2



1.5. We denote Gm = C× the algebraic group with natural multiplication.
Let T be a torus. An algebraic group homomorphism λ : T →Gm is called
a character of T . We denote X(T ) the group of all character, we will write
them additively

(λ+ µ)(t) = λ(t)µ(t), (−λ)(t) = λ(t)−1.

Sometimes, we may write eλ to avoiding abuse of notations.

1.6. Let λ be a character of T , that is an algebraic group homomorphism
T →Gm = C×. It corresponds to a one-dimenisonal representation C(λ) with
t ∈ T acts by λ(t)−1. It naturally extended to B.

Consider the space ξ(λ) = G ×B C(λ). It is a G-equivariant line bundle
over G/B. Let us denote the corresponding sheaf to be O(λ).

Actually, all the G-equivariant line bundle over G/B comes from this con-
struction. since the fibre of 1 ·B/B is an one-dimensional representation of B
(thus factor through T ).

1.7. For G = GLn, the maximal torus T =
(∗

∗

)
is the group of diagonal

matrices. We denote x1, . . . , xn ∈ X(T ) the coordinate of indices.
Let us denote the tautological bundle ϕk over Fℓ(n) to be the k-

dimensional vector bundle whose fibre at the flag (V0 ⊆ · · · ⊆ Vn) is Vk.
Then by explicit computation ϕk/ϕk−1

∼= O(−xk).
In particular, for n = 2, Fℓ(2) = P1, O(x1) = O(1).

1.8. Borel–Weil Theorem For any character λ ∈ X(T ),

H0(G/B;O(λ))∗ =

{
L(λ) λ is dominant
0 otherwise

where L(λ) the the finite dimensional representation of G with the highest
weight λ.

Proof We have a G-bimodule decomposition

C[G] =
⊕

λ dominant
L(λ)∗ ⊗ L(λ).
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Since HomG(V (λ),C[G]) ∼= HomC(V (λ),C). On the other hand, a section of
O(λ) is exactly a map f : G→C with f(g) = λ−1(b)f(gb) = λ−1(b)(rbf)(g)
where rb is the right multiplication by b.

G× C(λ) //

��

G×B C(λ)

��
G //

II

G/B

II

As a result, there only rest L(λ)∗. Q.E.D.

1.9. The tangent bundle of G/B is given by G ×B g/b with the action by
adjoint action. Note that U does not acts g/b trivially, but there is a filtration,
such that

grΩ1
G/B =

⊕
αi∈∆+

O(−αi)

where ∆+ the set of positive roots. In particular, the canonical bundle ω =
O(−2ρ) where ρ is the half sum of positive roots. By Serre duality,

HN−i(G/B;O(−2ρ− λ)) = Hi(G/B;O(λ))∗,

where N = dimG/B. The dual is the dual of G-representation when G is
semi-simple.

☕
1.10. Let P be a standard parabolic subgroup. That is, there is a subset
J ⊆ I such that P =

⋃
w∈WJ

BwB, where WJ is the Weyl group generated by
{sj : j ∈ J}. We denote Pi = B ∪BsiB the minimal parabolic subgroup.

1.11. For the case of type A. A subset of I = {1, . . . , n− 1} cuts the Dynkin
diagram into pieces. Assume it is

n−1︷ ︸︸ ︷
• − · · · − •︸ ︷︷ ︸

λ1−1

− ◦ −• − · · · − •︸ ︷︷ ︸
λ2−1

− ◦ − · · · − ◦ − • − · · · − •︸ ︷︷ ︸
λs−1
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Then n = λ1 + · · ·+ λs, and the corresponding

P =


GLλ1 ∗ · · · ∗

GLλ2 · · · ∗

GLλs

 .

Furthermore, G/P is identified with the partial flag variety

Fℓλ(n) = Fℓλ(Cn) =

{
0 ⊆ V1 ⊆ · · · ⊆ Vs : dimVi/Vi−1 = λi.

}
.

In particular, G/Pi is identified with{
0 ⊆ V1 ⊆ · · · V̂i · · · ⊆ Vn : dimVi = i.

}
For the case n = k+(n−k), then G/P is identified with the Grassmannian

Gr(k, n) =
{
V ⊆ Cn : dimV = k

}
.

1.12. Plücker Embedding Let ρ be the half sum of simple roots. Let L(ρ)
be the finite dimensional representation of G with the highest vector v0. The
orbit map

G−→P(L(ρ)) g 7−→ g[v0]

factors through an embedding of G/B. This is called the Plücker embed-
ding. In general, for any λ ∈ X(T ),

G−→P(L(λ)) g 7−→ g[v0]

factors through an embedding of G/P for P the stablizer of [v0].

1.13. For example, when λ = ωi the fundamental weight, then the correspond-
ing P is maximal parabolic. In GLn, for λ = ωk = x1+ . . .+xk, L(ωk) = ΛkV
where V is the natural representation. It gives the classic Plücker embedding
for Gr(k, n).

1.14. For each i, we have a natrual map SL2 →G with image in Pi. This
inducing an isomorphism P1 ∼= SL2 /

(∗ ∗
∗
) ∼= Pi/B. The restriction of O(λ) to

Pi/B corresponds to O(d) over P1 with d = 〈α∨
i , λ〉.

The natrual projection G/B→G/P is a fibre bundle with fibre P/B. In
particular, when P = Pi, it is a P1 bundle.
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1.15. Recall that over P1, we have

O(n) · · · O(−4) O(−3) O(−2) O(−1) O(0) O(1) O(2) · · ·
dimH0 · · · 0 0 0 0 1 2 3 · · ·
dimH1 · · · 3 2 1 0 0 0 0 · · ·

Actually the pairing

Hi(P1;O(−1 + d))×H1−i(P1;O(−1− d))→H1(P1;O(−2))

is a perfect pairing.

1.16. Borel–Weil Theorem When 〈α∨
i , λ〉 ≥ −1,

Hi(G/B;O(λ)) = Hi+1(G/B;O(si • λ)).

Recall: for w ∈ W and λ ∈ X(T ), we denote w • λ = w(λ+ ρ)− ρ.

1.17. Proof of the case 〈α∨
i , λ〉 = −1 Consider the Serre–Leray spectral

sequence for
G/B

##F
FF

FF
FF

F
// SpecC

G/Pi

::vvvvvvvvv

Since G/B→G/Pi is a fibre bundle, it suffices to see the cohomology of the
fibre. But by the computation of P1, it is identical zero. Q.E.D.

1.18. Proof of the case 〈α∨
i , λ〉 = 0 Denote p : G/B→G/P . Consider the

natural map
p∗p∗O(λ+ ρ)−→O(λ+ ρ).

This is surjective by fibrewise computation. The kernel of this map is O(si(λ+
ρ)) by direct computation. So we get

0−→O(si • λ)−→ p∗p∗O(λ+ ρ)⊗O(−ρ)−→O(λ)−→ 0.

Use the spectral sequence argument again, we get from the long exact sequence
that

Hi(G/B;O(si • λ) = Hi+1(G/B;O(λ)).

We get the assertion. Q.E.D.
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1.19. Proof of the general case The general case is similar, but technical.
We can construct a filtration of p∗p∗O(λ+ ρ) with subquotients

O(si(λ+ ρ)), p∗p∗O(λ− αi + ρ), O(λ+ ρ).

By the spectral sequence argument, we can ignore p∗p∗O(· · · ) after tensoring
with −ρ. Q.E.D.

1.20. Principal Block Assume G is semisimple. We denote O(w) = O(w•0),
then

dimHi(G/B;O(w)) =

{
1 i = ℓ(w)

0 otherwise

☕
1.21. Assume the smooth projective variety X is acted by algebraic torus T
with discrete fixed points XT . For a T -equivariant vector bundle F over X,
we have the Atyiah–Bott Localization for t ∈ T ,∑

(−1)i tr(t;Hi(X;F)) =
∑

x∈XT

tr(t;F|x)
det(1− t|T∗

xX)

where T ∗
xX is the cotangent space of X at x, and F|x = Fx/mxFx is the fibre

at x.

1.22. At any point xB/B ∈ G/B, the tangent space is naturally identified
with adx g/b. We know at point 1 ·B/B, T ∗

x =
⊕

α∈∆+ C(−α) as T -space. So

det(1− t|T∗
xX) = w ·

∏
α∈∆+

(
1− eαi

)
.

Similarly, tr(t;O(λ)|x) = w · e−λ. Thus

tr(t;Hi(X;O(λ))) =
∑
w∈W

w
e−λ∏

α∈∆+

(
1− eαi

) =

∑
w∈W (−1)ℓ(w)ew(−λ−ρ)∏
α∈∆+(e−αi/2 − eαi/2)

.

Then taking the dual, we get

ch(L(λ)) =
∑

w∈W (−1)ℓ(w)ew(λ+ρ)∏
α∈∆+(eαi/2 − e−αi/2)

.

We get the Weyl character formula.
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1.23. In the case GLn. We denote Xi = exi . Then the Weyl character formula
gives

ch(L(λ)) =
∑

(−1)ℓ(w)Xw(λ+ρ)∏
i<j(Xi −Xj)

=
det(Xλj+n−j

i )

det(Xn−j
i )

the Schur polynomial.

References
• Knutson. Lie groups. [notes]
• Sepanski. Compact Lie Groups.

2 Lecture 2 — Demazure Character Formula
2.1. Let w0 be the longest word in Wely group. Then the opposite Borel
subgroup B− is w0Bw0. We denote the Schubert variety to be

Σw = BwB/B ⊆ G/B, Σw = B−wB/B ⊆ G/B.

Then dimΣw = codimΣw = ℓ(w). In particular, Σsi = Pi/B, Σid = Σw0 is
the point 1 ·B/B, and Σw0

= Σid = G/B.

2.2. For standard parabolic subgroup P defined by J ⊆ I, define the Schu-
bert variety for w which is shortest among wWJ ∈ W/WJ

Σw = BwP/P ⊆ G/P, Σw = B−wP/P .

Then dimΣw = codimΣw = ℓ(w).

2.3. Denote KG(G/B) the G-equivariant K-theory. It is naturally isomorphic
to the group algebra of X(T ). We denote the class of O(λ) by eλ.

Assume P is standard parabolic corresponding to J ⊆ I. Then KG(G/P )
is the WJ -invariant subalgebra of KG(G/B).

2.4. Let pi : G/B→G/Pi be the natural projection. We define the De-
mazure operator πi to be the composition

KG(G/B)
(pi)∗−→KG(G/Pi)

(pi)
∗

−→KG(G/B).
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We denote the class of O(λ) by eλ. By the compuation in cohomology and
Grothendieck–Riemann–Roch, we have

∀f ∈ KG(G/B), πif =
f − e−αisif

1− e−αi
.

By direct computation, πi satisfies Braid relations and π2
i = πi. Thus we can

define πw for any element w ∈ W by

πw = πi1 ◦ · · · ◦ πir , w = si1 · · · sir (any reduced word)

2.5. Demazure Character Formula For dominant λ ∈ X(T ),

ch
(
H0(Σw;O(λ))∗

)
= πwe

λ,

and
∀i ≥ 1, Hi(Σw;O(λ)) = 0.

The proof is difficult and will not be given here.

2.6. Roughly speaking, push forward is “taking global section along fibres”.
Actually, when ℓ(wsi) = ℓ(w) + 1, p : Σw →ΣP

w is birational, and Σwsi =
p−1(ΣP

w). But K-theory is very sensitive with respect to birational morphisms.
• When w = id, H0(1 · B/B;O(λ)) is nothing but C(λ). So the

character is eλ.
• When w = w0, one can compute

πw0f =

∑
(−1)ℓ(w)w(feρ)∏

α∈∆+(eα/2 − e−α/2)

Thus with Borel–Weil theorem, we have

ch(L(λ)) =
∑

(−1)ℓ(w)w(eλ+ρ)∏
α∈∆+(eα/2 − e−α/2)

So this recovers Weyl character formula.

2.7. For the case SL2, denote e = eω1 = ex1 , then eα1 = e2.
−n

0

−n+2

0 · · ·
n−2

0

n

1
π17−→

−n

1

−n+2

1 · · ·
n−2

1

n

1

en
π17−→ en − e−2e−n

1− e−2
= e−n + · · ·+ en
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−n

1

−n+2

1 · · ·
n−2

1

n

1
π17−→

−n

1

−n+2

1 · · ·
n−2

1

n

1

e−n + · · ·+ en
π17−→ e−n + · · ·+ en

Then for example,
−5

0

−3

0

−1

1

1

2

3

1

5

1
π17−→

−5

1

−3

2

−1

4

1

4

3

2

5

1

since we can decompose (001211) = (001100)+(000100)+(000010)+(000001).

2.8. Consider the case SL3, see Figure 1.

2.9. For GLn a series (i.e. composition) λ = (λ1, . . . , λn), we can define the
Key polynomial by

κλ = Xλ1
1 · · ·Xλn

n if λ1 ≥ · · · ≥ λn

κsiλ(X) = πiκλ(X) if λi ≥ λi+1

This is essentially the Demazure character formula πwe
λ. Note that in this

case, πif = Xif−si(Xif)
Xi−Xi+1

.

☕
2.10. Let us also lift everything to G-version. The G-orbit of G/B×G/B are
one-to-one corresponding to B-orbit of G/B. Let us denote

Λw = {(xB, yB) : xy−1 ∈ BwB} ⊆ G/B ×G/B.

Note that when w = si, we have a pull back square

G/B ×G/B
pr2

""

pr1

��

Λsi

⊇
??
i

__??

h //

h
��

G/B

p

��
G/B

p
// G/Pi

πiα = p∗p∗α = h∗h
∗α

= (pr1)∗i∗i∗ pr∗2 α
= (pr1)∗

(
[OΛsi

] · pr∗2 α
)

:= [OΛsi
] ∗ α

So the Demazure operator πi : KG(G/B)−→KG(G/B) is actually given by
convolution with [OΛsi

] ∈ KG(G/B). In general, the Demazure operator πw

is given by convlution with [OΛw ].
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Figure 1: Example of SL3

2.11. In the case of GLn,

Λsi =

{
0 ⊆ V1 ⊆ · · · ⊆

⊆

V 1
i

V 2
i

⊆

⊆
· · · ⊆ Vn : dimV ···

i = i

}

2.12. Tits system Recall Tits system

BsiB ·BwB =

{
BwsiB ℓ(wsi) = ℓ(w) + 1

BwB ∪BwsiB otherwise
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Actually, we can say more that if ℓ(uv) = ℓ(u) + ℓ(v),

BuB ×B BvB−→BuvB

is an isomorphism.

2.13. For an element w ∈ W , we pick a reduced word w = (si1 , . . . , sir ) for
w. Define the Bott–Samelson variety to be

BS(w) = Pi1 ×B Pi2 ×B · · · ×B Pir/B.

• Note that BS(w) is smooth, since it is iterated P1 bundle over
P1 ∼= Pir/B.

• the map µ : BS(w)−→Σw induced by multiplication is bira-
tional by Tits system.

2.14. When ℓ(wsi) = ℓ(w) + 1, then we have the following pull back square

· · · × P• ×B Pi/B BS(w ⊕ si) //

��

BS(w)

��

· · · × P•/B

G/B // G/Pi

2.15. We may also consider

B̂S(w) = G/B ×
G/Pi1

G/B ×
G/Pir

· · · ×
G/Pir

G/B

= Pi1 ×B G/B ×
G/Pir

· · · ×
G/Pir

G/B = · · ·

= Pi1 ×B Pi2 ×B · · · ×B Pir ×B G/B

So BS(w) is the fibre at 1 ·B/B of

B̂S(w)−→G/B.

2.16. We can also define the line bundle O(λ) on BS(w) by pull back from
G/B. Actually, its total space is

Pi1 ×B Pi2 ×B · · · ×B Pir ×B C(λ).
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2.17. Demazure Character Formula For any reduced word w for w, for
dominant λ ∈ X(T ),

ch
(
H0(BS(w);O(λ))∗

)
= πwe

λ,

and
∀i ≥ 1, Hi(BS(w);O(λ)) = 0.

2.18. Sketch of the Proof Actually, the second assertion can be proved
by spectral sequence argument as before. The first argument follows from
the definition of Demazure operator — Bott–Samelson variety is the variety-
theoretical composition of push forward and pull back.

☕
2.19. For two flags (0 ⊆ V1 ⊆ · · · ⊆ Vn) and (0 ⊆ U1 ⊆ · · · ⊆ Un), we can
assume a permutation w(U, V ) as follows. There exists a set of basis v1, . . . , vn
such that Vi = span(v1, . . . , vi), and Ui = span(vw−1(1), . . . , vw−1(i)). See
Figure 2. Equivalently, w(U, V ) is the unique permutation w with

V︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷︸︸︷

U






{{

•

•

•

•

•

(
12345

23541

)

Figure 2: Relative Position

dim Vi + Uj+1 ∩ Vi+1

Vi + Uj ∩ Vi+1
=

{
1, w(i) = j,

0, otherwise.
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Besides, it is also equivalent to the condition

dim(Uj ∩ Vi) = #{b ≤ j, a ≤ i : w(a) = b}.

We pick a standard flag (0 ⊆ V 0
1 ⊆ · · · ⊆ V 0

n ). Then

BwB/B =

{
0 ⊆ U1 ⊆ · · · ⊆ Un : w(U, V 0) = w

}
.

Its closure

Σw =

{
0 ⊆ U1 ⊆ · · · ⊆ Un : dim(Uj ∩ V 0

i ) ≥ #{b ≤ j, a ≤ i : w(a) = b}
}
.

If we pick the opposite standard flag (0 ⊆ V ′
1 ⊆ · · · ⊆ V ′

n), then

Σw =

{
0 ⊆ U1 ⊆ · · · ⊆ Un : (dimUj ∩ V ′

i ) ≥ #{b ≤ j, a ≤ i : w0w(a) = b}
}
.

2.20. For the case Gr(k, n), the shortest representive are in one-to-one corre-
spondence with Young diagrams inside k×(n−k). To be exact, for a partition
λ1 ≥ · · · ≥ λk ≥ 0, the map i 7→ λk+1−i+i naturally extends to a permutation
which is monotonous on {k + 1, . . . , n}. In this case,

Σλ =

{
V ∈ Gr(k, n) : dim(V ∩ V 0

λk+1−i+i) ≥ i

}
,

Σλ =

{
V ∈ Gr(k, n) : dim(V ∩ V ′

n−k+i−λi
) ≥ i

}
.

See Figure 3

2.21. In the case GLn, we may regard B̂S(w) as flags of a given shape. For
example, for GL6, for w = s5s3s4s1s2s3s2, B̂S(w) is

V2 ⊆

s2

V3

⊆
??

??

s3V1

⊆��

��

⊆

⊆
??

??

s1

V ′
2

⊆
??

??

⊆��

��

s2

V4

⊆
??

??

s40

⊆��

��

⊆
??

??

V ′′
2 ⊆

⊆
??

??

V ′
3

⊆
??

??

⊆��

��

s3

V5 ⊆

s5

V6

V ′
1

⊆��

��

V ′′
3 ⊆ V ′

4

⊆��

��

⊆ V ′
5

⊆��

��

: dimV ···
i = i
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V︷ ︸︸ ︷

V 0
















{{ □ □ □ □

□ □ □ □

•

□ □ □

•

□ □

□ □

•

□

•

Figure 3: Schubert Cells

The map B̂S(w)→G/B corresponds to the topmost flag.

References
• Kumar. Kac-Moody Groups, their Flag Varieties and Represen-

tation Theory.

3 Lecture 3 — Schur–Weyl Modules
3.1. Let Gr(k, n) be the Grassmaniann. There is a line bundle O(1) defining
plücker embedding. Let V be the tautological bundle of Gr(k, n), that is, the
fibre at V ∈ Gr(k, n) is V itself. Then O(1) = ΛkV∗.

Denote the natural map p : G/B−→G/P , that is, p : Fℓ(n)−→Gr(k, n)
by picking k-th space. Then p∗V is exactly the k-th tautological bundle ϕk.
Thus it is not hard to p∗O(1) = O(ωk), with ωk = x1 + · · ·+ xk.
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3.2. There is a

H0(Gr(k, n);O(d))−→H0(Fℓ(n);O(dωk)).

It is injective, G-equivariant, and nonzero. So

H0(Gr(k, n);O(d))∗ = L(dωk)

This can also be seen from the proof of Borel–Weil theorem.

3.3. We have another point view of Grassmannian, that

Gr(k, n) = St(k, n)/GLk

where St(k, n) is Stiefel variety, the space of n × k full rank matrices (geo-
metrically, the space of all k-frames in Cn). Then the total space of O(1)
is

St(k, n)×GLk
C(det),

where C(det) is the one-dimensional representation with g ∈ GLk acts by
(det g)−1.

3.4. Let us fix the coordinate

X =


x11 · · · x1k

xn1 · · · xnk

 ∈ St(k, n).

A section of O(1) is then a map f : St(k, n)→C with f(Xg) = det(g)f(X).
Such f has to be linear combination of ∆I := det

(
xij : i∈I

j∈[k]

)
for a subset

I ∈
(
[n]
k

)
. That is, f can be view as alternating k-linear map on Cn, sending

x1 ⊗ · · · ⊗ xk to f(X) where the j-th column of X is xj . Thus, taking the
dual, we get

L(ωk) = ΛkCn,

as we expected.
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3.5. In general, a section of O(d) is linear combination of ∆I1∆I2 · · ·∆Id for
I1, . . . , Id ∈

(
[n]
k

)
. Thus

L(dωk)
∗ = span(∆I1∆I2 · · ·∆Id) ⊆ C

[
xij :

1≤i≤n
1≤j≤k

]
⊆ C[St(k, n)]

Note that ∆I ’s are not linear independent, the relation defining them is
Plücker relations. So formally,

L(dωk) = Sd
(
ΛkCn

)/
Plücker relations.

This is also as we expected.

3.6. Then consider the diagonal embedding

Fℓ(n)−→Gr(1, n)× · · · × Gr(n, n) =: Gr(1, . . . , n).

The the pull back O(c1, . . . , cn) := O(c1) ⊠ · · · ⊠ O(cn) is exactly O(c1ω1 +
· · ·+ cnωn). Denote λ = c1ω1 + · · ·+ cnωn. We get a restriction map

H0(Gr(1, · · · , n);O(c1, . . . , cn))−→H0(Fℓ(n);O(λ)).

This is nonzero, G-equivariant, thus is surjective. Then we can compute over
a dense subset. One choice is n− ∼= w0Bw0B/B. But it turns out, the next
choice is the most convenient.

3.7. We use the map for the dense orbit

κ : B−→G/B b 7−→ bw0 ·B/B.

Then clear
H0(Fℓ(n);O(λ))

κ∗

−→H0(B;κ∗O(λ))

is injective. We use the coordinate x11 · · · x1n

xnn

 ∈ B.

Then the map B→Fℓ(n)→Gr(k, n) factor through St(k, n) by

 x11 · · · x1n

xnn

 7−→


x1n · · · x1,n−k

· · · xn−k,n−k

xnn
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Thus as T -module,

L(λ)∗ ∼= span
(
∆I1(xijw0) · · ·∆Ih(xijw0)

)∣∣∣∣
i>j⇒xij=0

⊆ C
[
xij

]
1≤i≤j≤n

⊆ C[B],

where h = c1 + . . .+ cn−1, I1, . . . , Ic1 ∈
(
[n]
1

)
, Ic1+1, . . . , Ic1+c2 ∈

(
[n]
2

)
, etc.

3.8. For example, consider the case λ = = 2x1 + x2 whose c1 = c2 = 1.
Then the two maps factor through St(1, 3) and St(2, 3) is

(x13
x23
x33

)
,
(x13 x12
x23 x22
x33

)
, hence

L(λ)∗ = span

x13 · (x13x22 − x12x23) x13 · x22x33 x13 · x12x33

x23 · (x13x22 − x12x23) x23 · x22x33 x23 · x12x33

x33 · (x13x22 − x12x23) x23 · x22x33 x23 · x12x33


Note that we have one relation

(x33)(x13x22 − x12x23) = (x13)(x22x33)− (x23)(x12x33).

The dimension is 9− 1 = 8. The action of T is on left, so t ·X = t−1X. The
character of is just the row number,

ch(L(λ)) = (ex1 + ex2 + ex3)(ex1ex2 + ex2ex3 + ex1ex3)− ex3(ex1ex2)

1 1
2 ,

1 1
3 ,

1 2
2 ,

1 2
3 ,

1 3
2 ,

1 3
3 ,

2 2
3 ,

2 3
3

3.9. If we use the natural map G→G/B, with coordinate x11 · · · x1n

xn1 · · · xnn

 ∈ G

Then as G-module,

L(λ)∗ ∼= span
(
∆I1(xijw0) · · ·∆Ih(xijw0)

)
⊆ C

[
xij

]
1≤i≤n
1≤j≤n

⊆ C[G],

where h = c1 + . . .+ cn−1, I1, . . . , Ic1 ∈
(
[n]
1

)
, Ic1+1, . . . , Ic1+c2 ∈

(
[n]
2

)
, etc. As

a result, taking the dual, we get

L(λ) ∼= Sc1
(
Λ1Cn

)
⊗ · · · ⊗ Scn

(
ΛnCn

)/
Plücker relations.

This is exactly how Weyl construct representations.
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☕
3.10. Lastly, let us consider the analogy for Demazure characrer. In this case,
we only need to exchange w0 by any w. Note Σw −→Gr(1, . . . , n − 1) factor
through Fℓ(n), and by Demazure character formula,

H0(G/B;O(λ))−→H0(Σw;O(λ))

is also surjective (by induction). So theoretically, there is no problem.

3.11. But to be general, assume D = (D1, . . . , Dh) is a series of subsets of [n].
Let us denote flagged Weyl module

MD = span
( h∏

i=1

∆Ci

Di
: Ci ⊆

(
[n]

#Di

))
⊆ C[xij ]1≤i≤j≤n,

where ∆I
D is the determinant of sub-matrix I ×D in x11 · · · x1n

xnn

 .

We define the character to be

ch(MD) =
∑

λ∈X(T )

dim(MD)λe
λ, ch∗(MD) = ch(MD).

3.12. A hint:

ch∗(C · xi1j1 · · ·xirjr ) = exi1 · · · exir = Xi1 · · ·Xir .

3.13. For a composition λ (i.e. a series of numbers ), define the skyline
diagram

D(λ) : D(λ)j = {• : α• ≥ j}.
For example, λ = (3, 2, 1, 0, 1),

3 1 1 1
2 2 2
1 3
0
1 5
D1D2D3D4D5
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Then κλ(X) = ch∗(MD(λ)). It involves some careful combinatorial translation
which is left to readers.

3.14. For example D = {1, 2, 3, 5},

1
2
3

5


x11 x12 x13 x14 x15

x22 x23 x24 x25

x33 x34 x35

x44 x45

x55


Its maximal minor (i.e. 4× 4 minors), i.e. ∆C

D has only two nonzero values,
x11x22x23x45, x11x22x23x55.

3.15. For example, when D = [i] = {1, . . . , i}, then

1
2

i


x11 · · · x1i x1,i+1 · · ·

xii xi,i+1 · · ·
xi+1,i+1 · · ·


span

(
∆C

D : C ∈
(
[n]
i

))
= C · x11 · · ·xii

3.16. When λ is weakly decreasing, each member of D is of the form [i]. So
κλ = Xλ.

1 1 1 1 1 1
2 2 2 2
3

MD = C · x6
11x

4
22x33.

κ = X6
1X

4
2X3

3.17. When λ = (0, 1, 2) = , the skyline diagram is

0
1 2
2 3 3

Thus, MD is spanned by

maxmial minors of
(x12 x13
x22 x23

x33

)
· maxmial minors of

(x13
x23
x33

)
It is essentially the same as we did before (up to a permutation of row indices).
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3.18. The modern way to deal with vanishing of higher cohomology in repre-
sentation and combinatorics is Frobenius splitting.

References
• Peter Magyar. Schubert Polynomials and Bott-Samelson Vari-

eties.

4 Lecture 4 — Horn’s Problem
4.1. Horn’s problem concerns the eigenvalues of sum of two Hermitian ma-
trices with given eigenvalues. To be exact, given three Hermitian matrices
A,B,C with A+B = C, with eigenvalues

λ1(A) ≥ · · · ≥ λn(A)
λ1(B) ≥ · · · ≥ λn(B)
λ1(C) ≥ · · · ≥ λn(C)

Horn’s problem is to characterize these 3n values that appears in this way.

4.2. Let M be a symplectic manifold. For each f ∈ C∞(M), we can define
the Hamitonian vector field Xf ∈ X(M) with

ω(−,Xf ) = df.

Then C∞ has a Poisson structure defined by

{f, g} := ω(Xf ,Xg).

4.3. Let M be a symplectic manifold with Hamitonian G-action. That is, the
inducing map g→X(M) factor through

g
H−→C∞(X)

X−→X(M),

with H is a Lie algebra homomorphism. In this case, we can define the
moment map µ : M → g∗ by dualizing H. That is,

M∋
x 7−→

[
g∋

X 7→ HX(x)
∈R

]
∈g∗

.
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4.4. Atiyah, Guillemin and Sternberg Theorem In the case G = T is
a compact torus and X is compact, the image of moment map is a polytope
with vertices µ(XT ) the image of fixed points of X. Actually, for any point p
on a k-face of this polytope, and x ∈ µ−1(p), the orbit of x is of dimension k.

4.5. For a Lie subgroup H ⊆ G, the restriction of H is also Hamitonian, with
moment map

µH : M → h∗

obtained by composition µG : M → g∗ with the restriction map g∗ → h∗.

4.6. For two spaces X,Y with Hamiltonian G-action. Then so is X ×Y . The
the moment map µX×Y satisfies

µX×Y (x, y) = µX(x) + µY (y).

4.7. Kirillov-Kostant-Souriau symplectic structure For any Lie group
G, Each coadjoint orbit O of g∗ can be equipped with a symplectic structure
with moment map the natural inclusion of O→ g∗.

4.8. Let hn be the space of Hermitian matrices. Consider un the space of
skew-Hermitian matrices. The pairing

un × hn →R (A,B) 7−→ tr(i ·AB)

is perfect. So we can identify u∗n = hn.

4.9. Denote t ∼= i ·Rn the diagonal subalgebra of un. Then we identify t∗ with
Rn. The restriction map u∗n → t∗ is then given by taking diagonal entries

hn −→Rn (aij)1≤i≤n
1≤j≤n

7→ (aii)
n
i=1.

4.10. Each coadjoint orbit is isomorphic to a partial flag veriety G/Pλ where
Pλ is a parabolic subgroup.

Note that the T -fixed point of hn is exactly the diagonal matrices. As a
result, the orbit of diag(λ1, . . . , λn) is exactly all the permutations of it.
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4.11. Schur–Horn’s Theorem There exists a Hermitian matrix A, with
eigenvalues λ1 ≥ . . . ≥ λn, and diagonal entries d1 ≥ . . . ≥ dn if and only if

k∑
i=1

di ≤
k∑

i=1

λi, (1 ≤ k ≤ n− 1),

n∑
i=1

di =

n∑
i=1

λi.

Actually, this is equivalent to (di) lies in the polytope spanned by permutations
of (λi).

4.12. For example, λ1 = 2 and λ2 = 1. Then (d1, d2) should lies on the
segment between (1, 2) and (2, 1). That is,

d1 ≤ 2, d1 + d2 = 3.

Actually, in this case d1d2 ≥ 2, thus some z ∈ C such that |z|2 = d1d2 − 2,
then

(
d1

z̄
z
d2

)
is the Hermitian matrix desired.

4.13. Horn’s conjecture There exists three Hermitian matrices A,B,C
with A+B = C, with eigenvalues

λ1(A) ≥ · · · ≥ λn(A)
λ1(B) ≥ · · · ≥ λn(B)
λ1(C) ≥ · · · ≥ λn(C)

if and only if
n∑

i=1

λi(A) +

n∑
i=1

λi(B) =

n∑
i=1

λi(C)

for any k and I, J,K ⊆
(
[n]
k

)
with c

λ(I)λ(J)
λ(J) /= 0∑

i∈I

λi(A) +
∑
j∈J

λj(B) ≥
∑
k∈K

λk(C).

Here, λ(I) = λ1 ≥ · · · ≥ λk ≥ 0 is the partition with I = {λ1+k, . . . , λk+1} ⊆
[n], and cνλµ the Littlewood–Richardson coefficient.

4.14. Proof of “⇒” For a Hermintian matrix A, we define the Rayleigh
trace over Gr(k, n) by

RA : Gr(d, n) −→ R V 7−→
k∑

i=1

xt
iAxi
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with x1, . . . , xk a choice of orthogonal normal basis of V . Then∑
i∈I

λi(A) = min
x∈Σλ(I)(A)

RA(x),

where Σλ(I)(A) is the Schubert variety corresponding to the flag (0 ⊆ V1 ⊆
· · ·Vn) with Vi spanned by the first k eigenvectors (with eigenvalues weakly
decreasing).

Note that Σλ(I)(A)∩Σλ(I)(B)∩Σλ(I)c(C) = ∅ implies cλ(K)
λ(I)λ(J) = 0. Thus

we get the condition stated in the theorem.

4.15. Sketch of “⇐” We should use some convex properties for non-torus.
Let C ⊆ t∗ be any Weyl chamber. We have a map

ϕ : g∗ −→ g∗/ adG ∼= t∗/W ∼= C

where C is a closed Weyl chamber. Kirwan’s theorem claims that the image
ϕ ◦ µG is convex.

☕
4.16. Let X be a projective variety with an very ample line bundle L. Denote

Γ•(L) =
⊕
n≥0

H0(X;L⊗n).

Then ProjΓ•(L) = X. Actually, Γ•(L) is the projective coordinate ring for X
in PN .

4.17. For example, when X = Fℓ(n), and λ = λ1x1 + · · · + λnxn with λ1 >
· · · > λn, then

Γ•(O(λ)) =
⊕
d≥0

L(dλ)∗.

In general, if λ1 ≥ · · · ≥ λn, we can find a partial flag variety G/Pλ with the
same property.
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4.18. Over Pn−1
C , there is a natural Fubini–Study symplectic structure

ω =
|dx1|2 + · · ·+ |dxn|2

|x1|2 + · · ·+ |xn|2

The action of U(n) on P1 is Hamiltonian with moment map

µ(ℓ) = rank one Hermitian matrix projecting to ℓ ∈ hn.

That is, view Pn−1 as the orbit of diag(1, . . . , 0) ∈ hn. Thus the T action
moment map is

µ =

(
|x1|2

|x1|2 + · · ·+ |xn|2
, . . . ,

|xn|2

|x1|2 + · · ·+ |xn|2

)
.

4.19. Kirwan–Ness Theorem If a compact group K ⊆ U(N) acts on a
smooth closed subvariety X of PN

C . Denote the moment map

µ : X
⊆−→PN −→ u∗ −→ k∗

Denote the complexification of K by the reductive group G. Then

µ−1(0)/K −→X//G (GIT quotient).

4.20. Denote O(λ) the space of Hermitian matrices with eigenvalue λ1, . . . , λn

for a weakly decreasing integer sequence. We then apply above theorem to

O(λ)× · · · ×O(µ)

with λ, . . . , µ weakly decreasing integer sequences. Actually, the moment map
cooresponds to the Plücker embedding (by computation)

O(λ)× · · · ×O(µ) //

��

hn

P(L(λ))× · · · × P(L(µ)) //

��

h?? × · · · × h??

OO

P(L(λ)⊗ · · · ⊗ L(µ)) // h??

OO
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Thus µ−1(0) is nonempty if and only if

Proj
⊕
d≥0

(
L(dλ)⊗ · · · ⊗ L(dµ)

)GLn

is nonempty. Equivalently,
(
L(dλ)⊗ · · · ⊗ L(dµ)

)GLn

/= 0 for some d ≥ 1.

4.21. There exist Hermitian matrices A, . . . , B with A + · · · + B = 0 with
eigenvalues λ(A), . . . , λ(B) if and only if(

L(dλ(A))⊗ · · · ⊗ L(dλ(B))

)GLn

/= 0

for some d ≥ 1. By a limit argument, this method also solves Horn’s problem.

4.22. Since the Littlewood–Richardson coefficients has a combinaotrial model
by honeycomb due to Knutson and Tao, see Figure 4.

Figure 4: Honeycomb
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5 Appendix: Schubert Calculus
5.1. Actually, by an affine paving argument

KB(G/P ) =
⊕

shortest w∈W/WJ

Z · [Ow]B =
⊕

shortest w∈W/WJ

Z · [Ow]B

where Ow = i∗OΣw the push forward of regular ring of Σw and similarly
notation for Ow. It turns out

πi[Ow] =

{
[Owsi ] ℓ(wsi) = ℓ(w)− 1

[Ow] otherwise

or

πi[Ow] =

{
[Owsi ] ℓ(wsi) = ℓ(w) + 1

[Ow] otherwise

Note that the second case follows from the first, since π2
i = πi. The first

case follows from the fact that the push forward induced by BS(w)−→Σw

sending [OBS(w)] to [OΣw
]. To be exact, it has no higher cohomology by a

spectral sequence argument, and preserves structure sheaf by applying Zariski
connected theorem on Stein decomposition).

5.2. Assume P =
⋃

w∈WJ
BwB for J ⊆ I. If we denote

RT = Q[eλ]λ∈X(T ), RG = RW
T , RP = RWJ

T ,

then

KB(G/B;Q) = RT ⊗RG
RT , KB(G/P ;Q) ∼= RT ⊗RG

RP .

For G/B, the class of O(λ) is presented by 1⊗ eλ ∈ RT ⊗RG
RT . The class of

pull back of eλ ∈ KB(pt;Q) = RT is eλ ⊗ 1.
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5.3. The natural map G/B−→G/P induces

KB(G/P )−→KB(G/B) [Ow] 7−→ [Ow]

thus an injection. The corresponding Q-efficient map is just the inclusion

RT ⊗RG
RP

⊆−→RT ⊗RG
RT .

5.4. Atiyah–Bott–Berline–Vergne Let X be a smooth projective variety
algebraically acted by an algebraic torus T . Then the localization, i.e. the
restriction to the fixed points

KT (X)−→KT (X
T )

is an isomorphism after tensoring with FracRT .
In particular, if KT (X) is a free KT (pt)-module, then the localization map

is injective.

5.5. The class of [OΣw ]B in KB(G/B) = RT ⊗RG
RT is called the double

Grothendieck polynomial Gw(x, t). Here we take the convention that

eλ(t) = eλ ⊗ 1, eλ(x) = 1⊗ eλ.

Then by localization
∀u /≤ w, Gw(ut, t) = 0.

Actually, Gw(x, t) is uniquely determined by
• Gid(x, t) = 1;
• πiGw(x, t) = Gwsi(x, t) when ℓ(wsi) = ℓ(w)− 1;
• Gw(t, t) = δw=id.

5.6. In type A, recall that we denote Xi = exi , and

πif =
Xif − si(Xi+1f)

Xi −Xi+1
.

We have the stable choice

Gw0
(X,Y ) =

∏
i+j≤n

(
1− Yi

Xi

)
.
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5.7. Denote T1, . . . , Tn−1 the symbols with

T 2
i = −Ti,

{
TiTj = TjTi |i− j| ≥ 2

TiTi+1Ti = Ti+1TiTi+1

Thus Tw can be defined. We consider the generating function

G(X,Y ) =
∑

Gw(X,Y )Tw,

It is amazing that it factors into

hn−1(X1, Yn−1) hn−2(X1, Yn−2) · · · h1(X1, Y2) h1(X1, Y1)
hn−1(X2, Yn−2) · · · h3(X2, Y2) h2(X1, Y1)

hn−1(Xn−2, Y2) hn−2(Xn−2, Y1)
hn−1(Xn−1, Y1)

where hk(X,Y ) = 1 +
(
1− X

Y

)
Tk.

5.8. The cohomological version is similar. In this case, the cohomological
Demazure operator

∂i : H
•
G(G/B)

(pi)∗−→H•
G(G/Pi)

(pi)
∗

−→H•
G(G/B)

is given by
∂if =

f − sif

αi
,

where αi = c1(O(αi)). It satisfies ∂2
i = 0 and braid relations.

5.9. In the cohomological case, we need to replace

R•
T = S•(X(T )Q), RG = RW

T , RP = RWJ

T .

then

H•
B(G/B;Q) = RT ⊗RG

RT , H•
B(G/P ;Q) ∼= RT ⊗RG

RP .

For G/B, c1(O(λ)� is presented by 1⊗λ ∈ RT ⊗RG
RT . The class of pull back

of λ ∈ H•
B(pt;Q) = RT is λ⊗ 1.
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5.10. By a similar affine paving argument

H•
B(G/P ) =

⊕
shortest w∈W/WJ

Z · [Σw]B =
⊕

shortest w∈W/WJ

Z · [Σw]B

It turns out

∂i[Σ
w] =

{
[Σwsi ] ℓ(wsi) = ℓ(w)− 1

0 otherwise
or

∂i[Σw] =

{
[Σwsi ] ℓ(wsi) = ℓ(w) + 1

0 otherwise

5.11. The natural map G/B−→G/P induces

H•
B(G/P )−→H•

B(G/B) [Σw] 7−→ [Σw]

thus an injection. The corresponding Q-efficient map is just the inclusion

RT ⊗RG
RP

⊆−→RT ⊗RG
RT .

5.12. The class of [Σw]B in KB(G/B) = RT ⊗RG
RT is called the double

Schubert polynomial Sw(x, t). Here we take the convention that

λ(t) = λ⊗ 1, λ(x) = 1⊗ λ.

Actually, Sw(x, t) is uniquely determined by
• Sid(x, t) = 1;
• ∂iSw(x, t) = Gwsi(x, t) when ℓ(wsi) = ℓ(w)− 1;
• Sw(t, t) = δw=id.

5.13. For Gr(k, n), the case w is shortest, Sw(x, t) is the corresponding double
Schur polynomial.

5.14. In type A,
πif =

f − sif

xi − xi+1
.

We have the stable choice

Sw0
(x, y) =

∏
i+j≤n

(xi − yj).
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Denote T1, . . . , Tn−1 the symbols with

T 2
i = 0,

{
TiTj = TjTi |i− j| ≥ 2

TiTi+1Ti = Ti+1TiTi+1

Thus Tw can be defined. We consider the generating function

S(x, y) =
∑

Sw(x, y)Tw,

It is amazing that it factors into

hn−1(x1, yn−1) hn−2(x1, yn−2) · · · h1(x1, y2) h1(x1, y1)
hn−1(x2, yn−2) · · · h3(x2, y2) h2(x1, y1)

hn−1(xn−2, y2) hn−2(xn−2, y1)
hn−1(xn−1, y1)

where hk(X,Y ) = 1 + (x− y)Tk.

🐒
Mon-Key

🍯
Honey
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