Borel–Weil Theorem and Applications

Xiong Rui

Contents

1	Lecture 1 — Borel–Weil Theorem	2
2	Lecture 2 — Demazure Character Formula	8
3	Lecture 3 — Schur–Weyl Modules	15
4	Lecture 4 — Horn's Problem	21
5	Appendix: Schubert Calculus	27

Mon-Key

Poly Key

1 Lecture 1 — Borel–Weil Theorem

1.1. Let G be a reductive group over \mathbb{C} , and B be its Borel subgroup. We call G/B the **flag variety** of G.

- G/B only depends on the Dynkin type of G.
- If K is the compact form of G, then $G/B \cong K/S$ with $S = K \cap B$ the maximal torus of K.
- G/B is a projective variety. An explicit embedding can be constructed by Plücker embedding.

For example, GL_n , SL_n , PGL_n has the same flag variety. One can also construct the flag manifold from U(n) or SU(n).

1.2. For type A, we take GL_n , we take $B = \begin{pmatrix} * & \ddots & * \\ & \ddots & \ddots & * \\ & * \end{pmatrix}$ the group of invertible upper triangular matrices then we can identify G/B with

$$\mathcal{F}\ell(n) = \mathcal{F}\ell(\mathbb{C}^n) = \left\{ 0 = V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n = \mathbb{C}^n : \dim V_i = i. \right\}$$

1.3. For other classic types, we take the symmetric form over \mathbb{C}^n defining $\mathrm{SO}(n)$ to be

$$B(\mathbf{x},\mathbf{y}) = \mathbf{y}^{\mathsf{t}} (\mathbf{x},\mathbf{y}) = \mathbf{y}^{\mathsf{t}} (\mathbf{x},\mathbf{y}) = x_1 y_n + \dots + x_n y_1,$$

and the symplectic form over \mathbb{C}^n defining $\operatorname{Sp}(n)$ to be

$$\omega(\mathbf{x},\mathbf{y}) = \mathbf{y}^{\mathsf{t}} \big(\mathbf{x}, \mathbf{y} \big) = \mathbf{y}^{\mathsf{t}} \big(\mathbf{y}_{-1} \cdot \mathbf{y}_{1} \big) \mathbf{x} = x_{1} y_{n} + \dots - x_{n} y_{1}$$

Then the Borel subgroup is exactly of the form $B = \begin{pmatrix} * & \cdots & * \\ & \ddots & * \\ & & * \end{pmatrix}$. In these cases, G/B can be identifies with

$$\bigg\{V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n : \dim V_i = i, \ V_i^{\perp} = V_{n-i}.\bigg\}.$$

1.4. Denote the maximal torus of B to be T, and the unipotent radical of B to be U. Recall that $B = U \rtimes T$, that is, we have a split short exact sequence of groups

$$0 \longrightarrow U \longrightarrow B \longrightarrow T \longrightarrow 0.$$

As a result, any representation of T can be extended to B (with trial U-action).

1.5. We denote $\mathbb{G}_m = \mathbb{C}^{\times}$ the algebraic group with natural multiplication. Let T be a torus. An algebraic group homomorphism $\lambda : T \to \mathbb{G}_m$ is called a **character** of T. We denote X(T) the group of all character, we will write them additively

$$(\lambda + \mu)(t) = \lambda(t)\mu(t), \qquad (-\lambda)(t) = \lambda(t)^{-1}.$$

Sometimes, we may write e^{λ} to avoiding abuse of notations.

1.6. Let λ be a character of T, that is an algebraic group homomorphism $T \to \mathbb{G}_m = \mathbb{C}^{\times}$. It corresponds to a one-dimensional representation $\mathbb{C}(\lambda)$ with $t \in T$ acts by $\lambda(t)^{-1}$. It naturally extended to B.

Consider the space $\xi(\lambda) = G \times_B \mathbb{C}(\lambda)$. It is a *G*-equivariant line bundle over G/B. Let us denote the corresponding sheaf to be $\mathcal{O}(\lambda)$.

Actually, all the G-equivariant line bundle over G/B comes from this construction. since the fibre of $1 \cdot B/B$ is an one-dimensional representation of B(thus factor through T).

1.7. For $G = \operatorname{GL}_n$, the maximal torus $T = \binom{*}{*}_*$ is the group of diagonal matrices. We denote $x_1, \ldots, x_n \in X(T)$ the coordinate of indices.

Let us denote the **tautological bundle** ϕ_k over $\mathcal{F}\ell(n)$ to be the kdimensional vector bundle whose fibre at the flag $(V_0 \subseteq \cdots \subseteq V_n)$ is V_k . Then by explicit computation $\phi_k/\phi_{k-1} \cong \mathcal{O}(-x_k)$.

In particular, for n = 2, $\mathcal{F}\ell(2) = \mathbb{P}^1$, $\mathcal{O}(x_1) = \mathcal{O}(1)$.

1.8. Borel–Weil Theorem For any character $\lambda \in X(T)$,

$$H^{0}(G/B; \mathcal{O}(\lambda))^{*} = \begin{cases} L(\lambda) & \lambda \text{ is dominant} \\ 0 & \text{otherwise} \end{cases}$$

where $L(\lambda)$ the finite dimensional representation of G with the highest weight λ .

Proof We have a *G*-bimodule decomposition

$$\mathbb{C}[G] = \bigoplus_{\lambda \text{ dominant}} L(\lambda)^* \otimes L(\lambda).$$

Since $\operatorname{Hom}_G(V(\lambda), \mathbb{C}[G]) \cong \operatorname{Hom}_{\mathbb{C}}(V(\lambda), \mathbb{C})$. On the other hand, a section of $\mathcal{O}(\lambda)$ is exactly a map $f: G \to \mathbb{C}$ with $f(g) = \lambda^{-1}(b)f(gb) = \lambda^{-1}(b)(r_b f)(g)$ where r_b is the right multiplication by b.

As a result, there only rest $L(\lambda)^*$. Q.E.D.

1.9. The tangent bundle of G/B is given by $G \times_B \mathfrak{g}/\mathfrak{b}$ with the action by adjoint action. Note that U does not acts $\mathfrak{g}/\mathfrak{b}$ trivially, but there is a filtration, such that

$$\operatorname{gr} \Omega^1_{G/B} = \bigoplus_{\alpha_i \in \Delta^+} \mathcal{O}(-\alpha_i)$$

where Δ^+ the set of positive roots. In particular, the canonical bundle $\omega = \mathcal{O}(-2\rho)$ where ρ is the half sum of positive roots. By Serre duality,

$$H^{N-i}(G/B; \mathcal{O}(-2\rho - \lambda)) = H^i(G/B; \mathcal{O}(\lambda))^*,$$

where $N = \dim G/B$. The dual is the dual of *G*-representation when *G* is semi-simple.

1.10. Let P be a standard parabolic subgroup. That is, there is a subset $J \subseteq \mathbb{I}$ such that $P = \bigcup_{w \in W_J} BwB$, where W_J is the Weyl group generated by $\{s_j : j \in J\}$. We denote $P_i = B \cup Bs_iB$ the **minimal parabolic subgroup**.

1.11. For the case of type A. A subset of $\mathbb{I} = \{1, \ldots, n-1\}$ cuts the Dynkin diagram into pieces. Assume it is

$$\underbrace{\underbrace{\bullet-\dots-\bullet}_{\lambda_1-1}-\circ-\underbrace{\bullet-\dots-\bullet}_{\lambda_2-1}-\circ-\dots-\circ-\underbrace{\bullet-\dots-\bullet}_{\lambda_s-1}}^{n-1}$$

Then $n = \lambda_1 + \cdots + \lambda_s$, and the corresponding

$$P = \begin{pmatrix} \operatorname{GL}_{\lambda_1} & * & \cdots & * \\ & \operatorname{GL}_{\lambda_2} & \cdots & * \\ & & \ddots & \vdots \\ & & & \operatorname{GL}_{\lambda_s} \end{pmatrix}.$$

Furthermore, G/P is identified with the partial flag variety

$$\mathcal{F}\ell_{\lambda}(n) = \mathcal{F}\ell_{\lambda}(\mathbb{C}^n) = \left\{ 0 \subseteq V_1 \subseteq \cdots \subseteq V_s : \dim V_i/V_{i-1} = \lambda_i. \right\}.$$

In particular, G/P_i is identified with

$$\left\{ 0 \subseteq V_1 \subseteq \cdots \widehat{V_i} \cdots \subseteq V_n : \dim V_i = i. \right\}$$

For the case n = k + (n - k), then G/P is identified with the **Grassmannian**

$$\mathcal{G}r(k,n) = \left\{ V \subseteq \mathbb{C}^n : \dim V = k \right\}.$$

1.12. Plücker Embedding Let ρ be the half sum of simple roots. Let $L(\rho)$ be the finite dimensional representation of G with the highest vector v_0 . The orbit map

$$G \longrightarrow \mathbb{P}(L(\rho)) \qquad g \longmapsto g[v_0]$$

factors through an embedding of G/B. This is called the **Plücker embed**ding. In general, for any $\lambda \in X(T)$,

$$G \longrightarrow \mathbb{P}(L(\lambda)) \qquad g \longmapsto g[v_0]$$

factors through an embedding of G/P for P the stablizer of $[v_0]$.

1.13. For example, when $\lambda = \omega_i$ the fundamental weight, then the corresponding P is maximal parabolic. In GL_n , for $\lambda = \omega_k = x_1 + \ldots + x_k$, $L(\omega_k) = \Lambda^k \mathbb{V}$ where \mathbb{V} is the natural representation. It gives the classic Plücker embedding for $\mathcal{G}r(k, n)$.

1.14. For each *i*, we have a natrual map $\operatorname{SL}_2 \to G$ with image in P_i . This inducing an isomorphism $\mathbb{P}^1 \cong \operatorname{SL}_2 / \binom{*}{*} \cong P_i / B$. The restriction of $\mathcal{O}(\lambda)$ to P_i / B corresponds to $\mathcal{O}(d)$ over \mathbb{P}^1 with $d = \langle \alpha_i^{\vee}, \lambda \rangle$.

The natrual projection $G/B \to G/P$ is a fibre bundle with fibre P/B. In particular, when $P = P_i$, it is a \mathbb{P}^1 bundle.

1.15. Recall that over \mathbb{P}^1 , we have

Actually the pairing

$$H^{i}(\mathbb{P}^{1}; \mathcal{O}(-1+d)) \times H^{1-i}(\mathbb{P}^{1}; \mathcal{O}(-1-d)) \to H^{1}(\mathbb{P}^{1}; \mathcal{O}(-2))$$

is a perfect pairing.

1.16. Borel–Weil Theorem When $\langle \alpha_i^{\vee}, \lambda \rangle \geq -1$,

$$H^{i}(G/B; \mathcal{O}(\lambda)) = H^{i+1}(G/B; \mathcal{O}(s_{i} \bullet \lambda)).$$

Recall: for $w \in W$ and $\lambda \in X(T)$, we denote $w \bullet \lambda = w(\lambda + \rho) - \rho$.

1.17. Proof of the case $\langle \alpha_i^{\vee}, \lambda \rangle = -1$ Consider the Serre–Leray spectral sequence for

Since $G/B \to G/P_i$ is a fibre bundle, it suffices to see the cohomology of the fibre. But by the computation of \mathbb{P}^1 , it is identical zero. Q.E.D.

1.18. Proof of the case $\langle \alpha_i^{\vee}, \lambda \rangle = 0$ Denote $p: G/B \to G/P$. Consider the natural map

$$p^* p_* \mathcal{O}(\lambda + \rho) \longrightarrow \mathcal{O}(\lambda + \rho).$$

This is surjective by fibrewise computation. The kernel of this map is $\mathcal{O}(s_i(\lambda + \rho))$ by direct computation. So we get

$$0 \longrightarrow \mathcal{O}(s_i \bullet \lambda) \longrightarrow p^* p_* \mathcal{O}(\lambda + \rho) \otimes \mathcal{O}(-\rho) \longrightarrow \mathcal{O}(\lambda) \longrightarrow 0.$$

Use the spectral sequence argument again, we get from the long exact sequence that

$$H^{i}(G/B; \mathcal{O}(s_{i} \bullet \lambda) = H^{i+1}(G/B; \mathcal{O}(\lambda)).$$

We get the assertion. Q.E.D.

1.19. Proof of the general case The general case is similar, but technical. We can construct a filtration of $p^*p_*\mathcal{O}(\lambda + \rho)$ with subquotients

$$\mathcal{O}(s_i(\lambda+\rho)), \quad p^*p_*\mathcal{O}(\lambda-\alpha_i+\rho), \quad \mathcal{O}(\lambda+\rho).$$

By the spectral sequence argument, we can ignore $p^* p_* \mathcal{O}(\cdots)$ after tensoring with $-\rho$. Q.E.D.

1.20. Principal Block Assume G is semisimple. We denote $\mathcal{O}(w) = \mathcal{O}(w \bullet 0)$, then

$$\dim H^i(G/B; \mathcal{O}(w)) = \begin{cases} 1 & i = \ell(w) \\ 0 & \text{otherwise} \end{cases}$$

1.21. Assume the smooth projective variety X is acted by algebraic torus T with discrete fixed points X^T . For a T-equivariant vector bundle \mathcal{F} over X, we have the **Atyiah–Bott Localization** for $t \in T$,

$$\sum (-1)^i \operatorname{tr}(t; H^i(X; \mathcal{F})) = \sum_{x \in X^T} \frac{\operatorname{tr}(t; \mathcal{F}|_x)}{\det(1 - t|_{T^*_x X})}$$

where T_x^*X is the cotangent space of X at x, and $\mathcal{F}|_x = \mathcal{F}_x/\mathfrak{m}_x\mathcal{F}_x$ is the fibre at x.

1.22. At any point $xB/B \in G/B$, the tangent space is naturally identified with $\operatorname{ad}_x \mathfrak{g}/\mathfrak{b}$. We know at point $1 \cdot B/B$, $T_x^* = \bigoplus_{\alpha \in \Delta^+} \mathbb{C}(-\alpha)$ as *T*-space. So

$$\det(1-t|_{T_x^*X}) = w \cdot \prod_{\alpha \in \Delta^+} \left(1-e^{\alpha_i}\right).$$

Similarly, $\operatorname{tr}(t; \mathcal{O}(\lambda)|_x) = w \cdot e^{-\lambda}$. Thus

$$\operatorname{tr}(t; H^{i}(X; \mathcal{O}(\lambda))) = \sum_{w \in W} w \frac{e^{-\lambda}}{\prod_{\alpha \in \Delta^{+}} (1 - e^{\alpha_{i}})} = \frac{\sum_{w \in W} (-1)^{\ell(w)} e^{w(-\lambda - \rho)}}{\prod_{\alpha \in \Delta^{+}} (e^{-\alpha_{i}/2} - e^{\alpha_{i}/2})}.$$

Then taking the dual, we get

$$\operatorname{ch}(L(\lambda)) = \frac{\sum_{w \in W} (-1)^{\ell(w)} e^{w(\lambda+\rho)}}{\prod_{\alpha \in \Delta^+} (e^{\alpha_i/2} - e^{-\alpha_i/2})}.$$

We get the **Weyl character formula**.

1.23. In the case GL_n . We denote $X_i = e^{x_i}$. Then the Weyl character formula gives

$$ch(L(\lambda)) = \frac{\sum (-1)^{\ell(w)} X^{w(\lambda+\rho)}}{\prod_{i < j} (X_i - X_j)} = \frac{\det(X_i^{\lambda_j + n - j})}{\det(X_i^{n-j})}$$

the Schur polynomial.

References

- Knutson. Lie groups. [notes]
- Sepanski. Compact Lie Groups.

2 Lecture 2 — Demazure Character Formula

2.1. Let w_0 be the longest word in Wely group. Then the opposite Borel subgroup B^- is $w_0 B w_0$. We denote the **Schubert variety** to be

$$\Sigma_w = \overline{BwB/B} \subseteq G/B, \qquad \Sigma^w = \overline{B^- wB/B} \subseteq G/B.$$

Then dim $\Sigma_w = \operatorname{codim} \Sigma^w = \ell(w)$. In particular, $\Sigma_{s_i} = P_i/B$, $\Sigma_{id} = \Sigma^{w_0}$ is the point $1 \cdot B/B$, and $\Sigma_{w_0} = \Sigma^{id} = G/B$.

2.2. For standard parabolic subgroup P defined by $J \subseteq \mathbb{I}$, define the Schubert variety for w which is shortest among $wW_J \in W/W_J$

$$\Sigma_w = \overline{BwP/P} \subseteq G/P, \qquad \Sigma^w = \overline{B^-wP/P}.$$

Then dim $\Sigma_w = \operatorname{codim} \Sigma^w = \ell(w)$.

2.3. Denote $K_G(G/B)$ the *G*-equivariant K-theory. It is naturally isomorphic to the group algebra of X(T). We denote the class of $\mathcal{O}(\lambda)$ by e^{λ} .

Assume P is standard parabolic corresponding to $J \subseteq \mathbb{I}$. Then $K_G(G/P)$ is the W_J -invariant subalgebra of $K_G(G/B)$.

2.4. Let $p_i : G/B \to G/P_i$ be the natural projection. We define the **Demazure operator** π_i to be the composition

$$K_G(G/B) \xrightarrow{(p_i)_*} K_G(G/P_i) \xrightarrow{(p_i)^*} K_G(G/B).$$

We denote the class of $\mathcal{O}(\lambda)$ by e^{λ} . By the compution in cohomology and Grothendieck–Riemann–Roch, we have

$$\forall f \in K_G(G/B), \quad \pi_i f = \frac{f - e^{-\alpha_i} s_i f}{1 - e^{-\alpha_i}}.$$

By direct computation, π_i satisfies Braid relations and $\pi_i^2 = \pi_i$. Thus we can define π_w for any element $w \in W$ by

 $\pi_w = \pi_{i_1} \circ \cdots \circ \pi_{i_r}, \qquad w = s_{i_1} \cdots s_{i_r} \quad (\text{any reduced word})$

2.5. Demazure Character Formula For dominant $\lambda \in X(T)$,

$$\operatorname{ch}\left(H^{0}(\Sigma_{w};\mathcal{O}(\lambda))^{*}\right)=\pi_{w}e^{\lambda},$$

and

$$\forall i \ge 1, \quad H^i(\Sigma_w; \mathcal{O}(\lambda)) = 0.$$

The proof is difficult and will not be given here.

2.6. Roughly speaking, push forward is "taking global section along fibres". Actually, when $\ell(ws_i) = \ell(w) + 1$, $p : \Sigma_w \to \Sigma_w^P$ is birational, and $\Sigma_{ws_i} = p^{-1}(\Sigma_w^P)$. But K-theory is very sensitive with respect to birational morphisms.

- When $w = \text{id}, H^0(1 \cdot B/B; \mathcal{O}(\lambda))$ is nothing but $\mathbb{C}(\lambda)$. So the character is e^{λ} .
- When $w = w_0$, one can compute

$$\pi_{w_0} f = \frac{\sum (-1)^{\ell(w)} w(f e^{\rho})}{\prod_{\alpha \in \Delta^+} (e^{\alpha/2} - e^{-\alpha/2})}$$

Thus with Borel–Weil theorem, we have

$$\operatorname{ch}(L(\lambda)) = \frac{\sum (-1)^{\ell(w)} w(e^{\lambda + \rho})}{\prod_{\alpha \in \Delta^+} (e^{\alpha/2} - e^{-\alpha/2})}$$

So this recovers Weyl character formula.

2.7. For the case SL₂, denote $e = e^{\omega_1} = e^{x_1}$, then $e^{\alpha_1} = e^2$.

	-n	-n+2	2	$n\!-\!2$	n		-n	-n+2		n-2	n		
	1	1		1	1	$\stackrel{\pi_1}{\longmapsto}$	1	1	•••	1	1		
	$e^{-n} + \dots + e^n$				$\stackrel{\pi_1}{\longmapsto}$		$e^{-n} + \dots + e^n$						
Then f	for ex	kampl	e,										
-5	-	3 -	-1	1	3	5		-5	-3	$^{-1}$	1	3	5
0	0)	1	2	1	1	$\stackrel{\pi_1}{\longmapsto}$	1	2	4	4	2	1
						((

since we can decompose (001211) = (001100) + (000100) + (000010) + (000001).

2.8. Consider the case SL_3 , see Figure 1.

2.9. For GL_n a series (i.e. composition) $\lambda = (\lambda_1, \ldots, \lambda_n)$, we can define the **Key polynomial** by

$$\kappa_{\lambda} = X_1^{\lambda_1} \cdots X_n^{\lambda_n} \quad \text{if } \lambda_1 \ge \cdots \ge \lambda_n$$

$$\kappa_{s_i\lambda}(X) = \pi_i \kappa_{\lambda}(X) \quad \text{if } \lambda_i \ge \lambda_{i+1}$$

This is essentially the Demazure character formula $\pi_w e^{\lambda}$. Note that in this case, $\pi_i f = \frac{X_{if} - s_i(X_if)}{X_i - X_{i+1}}$.

2.10. Let us also lift everything to G-version. The G-orbit of $G/B \times G/B$ are one-to-one corresponding to B-orbit of G/B. Let us denote

$$\Lambda_w = \overline{\{(xB, yB) : xy^{-1} \in BwB\}} \subseteq G/B \times G/B.$$

Note that when $w = s_i$, we have a pull back square

 $\begin{array}{c|c} G/B \times G/B & \\ & & &$

So the Demazure operator $\pi_i : K_G(G/B) \longrightarrow K_G(G/B)$ is actually given by convolution with $[\mathcal{O}_{\Lambda_{s_i}}] \in K_G(G/B)$. In general, the Demazure operator π_w is given by convlution with $[\mathcal{O}_{\Lambda_w}]$.

 $1 \ 1 \ 1 \ 1 \ 1$ $0 \ 0 \ 0 \ 0 \ 1$ $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$ 0 0 0 0 0 0 $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$ 0 0 0 0 0 0 0 $0 \ 0 \ 0 \ 0 \ 0$ 0 id s_2 $1 \ 1 \ 1 \ 1 \ 1$ $0 \ 0 \ 0 \ 0 \ 1$ $0 \ 0 \ 0 \ 0 \ 0 \ 1$ 1 1 1 1 1 1 $1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$ $0 \ 0 \ 0 \ 0 \ 0 \ 1$ 0 0 0 0 0 0 $0 \ 0 \ 0 \ 0 \ 0 \ 0$ 0 $s_{2}s_{1}$ s_1 1 1 1 1 1 $1 \ 1 \ 1 \ 1 \ 1$ $1 \ 2 \ 2$ 2 21 0 1 1 1 1 1 $1 \quad 2 \quad 3 \quad 3 \quad 3 \quad 2 \quad 1$ $0 \ 0 \ 1 \ 1 \ 1$ 1 1 1 2 3 3 2 1 $0 \ 0 \ 1 \ 1 \ 1$ 1 1 2 3 2 1 $0 \ 0 \ 1 \ 1$ 1 $1 \ 2 \ 2 \ 1$ $0 \ 0 \ 1 \ 1$

Figure 1: Example of SL_3

2.11. In the case of GL_n ,

$$\Lambda_{s_i} = \left\{ 0 \subseteq V_1 \subseteq \cdots \bigvee_{i=1}^{c_i} \frac{V_i^1}{V_i^2} \bigvee_{i=1}^{c_i} \cdots \subseteq V_n : \dim V_i^{\cdots} = i \right\}$$

2.12. Tits system Recall Tits system

$$Bs_i B \cdot BwB = \begin{cases} Bws_i B & \ell(ws_i) = \ell(w) + 1\\ BwB \cup Bws_i B & \text{otherwise} \end{cases}$$

Actually, we can say more that if $\ell(uv) = \ell(u) + \ell(v)$,

$$BuB \times_B BvB \longrightarrow BuvB$$

is an isomorphism.

2.13. For an element $w \in W$, we pick a reduced word $\underline{w} = (s_{i_1}, \ldots, s_{i_r})$ for w. Define the **Bott–Samelson variety** to be

$$BS(\underline{w}) = P_{i_1} \times_B P_{i_2} \times_B \cdots \times_B P_{i_r}/B.$$

- Note that $BS(\underline{w})$ is smooth, since it is iterated \mathbb{P}^1 bundle over $\mathbb{P}^1 \cong P_{i_r}/B$.
- the map $\mu : BS(\underline{w}) \longrightarrow \Sigma_w$ induced by multiplication is birational by Tits system.

2.14. When $\ell(ws_i) = \ell(w) + 1$, then we have the following pull back square

2.15. We may also consider

$$\widehat{BS}(\underline{w}) = G/B \underset{G/P_{i_1}}{\times} G/B \underset{G/P_{i_r}}{\times} \cdots \underset{G/P_{i_r}}{\times} G/B \\
= P_{i_1} \underset{B}{\times} G/B \underset{G/P_{i_r}}{\times} \cdots \underset{G/P_{i_r}}{\times} G/B = \cdots \\
= P_{i_1} \underset{B}{\times} P_{i_2} \underset{B}{\times} \cdots \underset{B}{\times} P_{i_r} \underset{B}{\times} G/B$$

So $BS(\underline{w})$ is the fibre at $1 \cdot B/B$ of

$$\widehat{\mathrm{BS}(\underline{w})} \longrightarrow G/B.$$

2.16. We can also define the line bundle $\mathcal{O}(\lambda)$ on $BS(\underline{w})$ by pull back from G/B. Actually, its total space is

$$P_{i_1} \times_B P_{i_2} \times_B \cdots \times_B P_{i_r} \times_B \mathbb{C}(\lambda).$$

2.17. Demazure Character Formula For any reduced word \underline{w} for w, for dominant $\lambda \in X(T)$,

$$\operatorname{ch}\left(H^{0}(\mathrm{BS}(\underline{w});\mathcal{O}(\lambda))^{*}\right) = \pi_{w}e^{\lambda},$$

and

$$\forall i \geq 1, \quad H^i(\mathrm{BS}(\underline{w}); \mathcal{O}(\lambda)) = 0.$$

2.18. Sketch of the Proof Actually, the second assertion can be proved by spectral sequence argument as before. The first argument follows from the definition of Demazure operator — Bott–Samelson variety is the variety-theoretical composition of push forward and pull back.

2.19. For two flags $(0 \subseteq V_1 \subseteq \cdots \subseteq V_n)$ and $(0 \subseteq U_1 \subseteq \cdots \subseteq U_n)$, we can assume a permutation w(U, V) as follows. There exists a set of basis v_1, \ldots, v_n such that $V_i = \operatorname{span}(v_1, \ldots, v_i)$, and $U_i = \operatorname{span}(v_{w^{-1}(1)}, \ldots, v_{w^{-1}(i)})$. See Figure 2. Equivalently, w(U, V) is the unique permutation w with

Figure 2: Relative Position

dim
$$\frac{V_i + U_{j+1} \cap V_{i+1}}{V_i + U_j \cap V_{i+1}} = \begin{cases} 1, & w(i) = j, \\ 0, & \text{otherwise.} \end{cases}$$

Besides, it is also equivalent to the condition

$$\dim(U_j \cap V_i) = \#\{b \le j, a \le i : w(a) = b\}.$$

We pick a standard flag $(0 \subseteq V_1^0 \subseteq \cdots \subseteq V_n^0)$. Then

$$BwB/B = \left\{ 0 \subseteq U_1 \subseteq \cdots \subseteq U_n : w(U, V^0) = w \right\}.$$

Its closure

$$\Sigma_w = \left\{ 0 \subseteq U_1 \subseteq \dots \subseteq U_n : \dim(U_j \cap V_i^0) \ge \#\{b \le j, a \le i : w(a) = b\} \right\}.$$

If we pick the opposite standard flag $(0 \subseteq V'_1 \subseteq \cdots \subseteq V'_n)$, then

$$\Sigma^w = \left\{ 0 \subseteq U_1 \subseteq \cdots \subseteq U_n : (\dim U_j \cap V_i') \ge \# \{ b \le j, a \le i : w_0 w(a) = b \} \right\}.$$

2.20. For the case $\mathcal{G}r(k, n)$, the shortest representive are in one-to-one correspondence with Young diagrams inside $k \times (n-k)$. To be exact, for a partition $\lambda_1 \geq \cdots \geq \lambda_k \geq 0$, the map $i \mapsto \lambda_{k+1-i} + i$ naturally extends to a permutation which is monotonous on $\{k + 1, \ldots, n\}$. In this case,

$$\Sigma_{\lambda} = \left\{ V \in \mathcal{G}r(k,n) : \dim(V \cap V^{0}_{\lambda_{k+1-i}+i}) \ge i \right\},\$$

$$\Sigma^{\lambda} = \left\{ V \in \mathcal{G}r(k,n) : \dim(V \cap V'_{n-k+i-\lambda_{i}}) \ge i \right\}.$$

See Figure 3

2.21. In the case GL_n , we may regard $\widehat{\operatorname{BS}}(\underline{w})$ as flags of a given shape. For example, for GL_6 , for $\underline{w} = s_5 s_3 s_4 s_1 s_2 s_3 s_2$, $\widehat{\operatorname{BS}}(\underline{w})$ is

The map $BS(\underline{w}) \to G/B$ corresponds to the topmost flag.

References

• Kumar. Kac-Moody Groups, their Flag Varieties and Representation Theory.

3 Lecture 3 — Schur–Weyl Modules

3.1. Let $\mathcal{G}r(k,n)$ be the Grassmaniann. There is a line bundle $\mathcal{O}(1)$ defining plücker embedding. Let \mathcal{V} be the tautological bundle of $\mathcal{G}r(k,n)$, that is, the fibre at $V \in \mathcal{G}r(k,n)$ is V itself. Then $\mathcal{O}(1) = \Lambda^k \mathcal{V}^*$.

Denote the natural map $p: G/B \longrightarrow G/P$, that is, $p: \mathcal{F}\ell(n) \longrightarrow \mathcal{G}r(k,n)$ by picking k-th space. Then $p^*\mathcal{V}$ is exactly the k-th tautological bundle ϕ_k . Thus it is not hard to $p^*\mathcal{O}(1) = \mathcal{O}(\omega_k)$, with $\omega_k = x_1 + \cdots + x_k$. **3.2.** There is a

$$H^0(\mathcal{Gr}(k,n);\mathcal{O}(d))\longrightarrow H^0(\mathcal{F}\ell(n);\mathcal{O}(d\omega_k)).$$

It is injective, G-equivariant, and nonzero. So

$$H^0(\mathcal{G}r(k,n);\mathcal{O}(d))^* = L(d\omega_k)$$

This can also be seen from the proof of Borel–Weil theorem.

3.3. We have another point view of Grassmannian, that

$$\mathcal{G}r(k,n) = \operatorname{St}(k,n) / \operatorname{GL}_k$$

where $\operatorname{St}(k, n)$ is Stiefel variety, the space of $n \times k$ full rank matrices (geometrically, the space of all k-frames in \mathbb{C}^n). Then the total space of $\mathcal{O}(1)$ is

$$\operatorname{St}(k,n) \times_{\operatorname{GL}_k} \mathbb{C}(\det),$$

where $\mathbb{C}(\det)$ is the one-dimensional representation with $g \in \operatorname{GL}_k$ acts by $(\det g)^{-1}$.

3.4. Let us fix the coordinate

$$X = \begin{pmatrix} x_{11} \cdots x_{1k} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ x_{n1} \cdots & x_{nk} \end{pmatrix} \in \operatorname{St}(k, n).$$

A section of $\mathcal{O}(1)$ is then a map $f : \operatorname{St}(k, n) \to \mathbb{C}$ with $f(Xg) = \operatorname{det}(g)f(X)$. Such f has to be linear combination of $\Delta^I := \operatorname{det}\left(x_{ij} : \substack{i \in I \\ j \in [k]}\right)$ for a subset $I \in \binom{[n]}{k}$. That is, f can be view as alternating k-linear map on \mathbb{C}^n , sending $\mathbf{x}_1 \otimes \cdots \otimes \mathbf{x}_k$ to f(X) where the j-th column of X is \mathbf{x}_j . Thus, taking the dual, we get

$$L(\omega_k) = \Lambda^k \mathbb{C}^n,$$

as we expected.

3.5. In general, a section of $\mathcal{O}(d)$ is linear combination of $\Delta^{I_1} \Delta^{I_2} \cdots \Delta^{I_d}$ for $I_1, \ldots, I_d \in {[n] \choose k}$. Thus

$$L(d\omega_k)^* = \operatorname{span}(\Delta^{I_1}\Delta^{I_2}\cdots\Delta^{I_d}) \subseteq \mathbb{C}[x_{ij}: \underset{1\leq j\leq k}{\overset{1\leq i\leq n}{1\leq j\leq k}}] \subseteq \mathbb{C}[\operatorname{St}(k,n)]$$

Note that Δ^{I} 's are not linear independent, the relation defining them is Plücker relations. So formally,

$$L(d\omega_k) = \mathsf{S}^d(\Lambda^k \mathbb{C}^n) / \text{Plücker relations.}$$

This is also as we expected.

3.6. Then consider the diagonal embedding

$$\mathcal{F}\ell(n) \longrightarrow \mathcal{G}r(1,n) \times \cdots \times \mathcal{G}r(n,n) =: \mathcal{G}r(1,\ldots,n)$$

The the pull back $\mathcal{O}(c_1, \ldots, c_n) := \mathcal{O}(c_1) \boxtimes \cdots \boxtimes \mathcal{O}(c_n)$ is exactly $\mathcal{O}(c_1\omega_1 + \cdots + c_n\omega_n)$. Denote $\lambda = c_1\omega_1 + \cdots + c_n\omega_n$. We get a restriction map

$$H^0(\mathcal{G}r(1,\cdots,n);\mathcal{O}(c_1,\ldots,c_n))\longrightarrow H^0(\mathcal{F}\ell(n);\mathcal{O}(\lambda))$$

This is nonzero, *G*-equivariant, thus is surjective. Then we can compute over a dense subset. One choice is $\mathfrak{n}^- \cong w_0 B w_0 B/B$. But it turns out, the next choice is the most convenient.

3.7. We use the map for the dense orbit

$$\kappa: B \longrightarrow G/B \qquad b \longmapsto bw_0 \cdot B/B.$$

Then clear

$$H^0(\mathcal{F}\ell(n);\mathcal{O}(\lambda)) \xrightarrow{\kappa^*} H^0(B;\kappa^*\mathcal{O}(\lambda))$$

is injective. We use the coordinate

$$\left(\begin{array}{ccc} x_{11} & \cdots & x_{1n} \\ & \ddots & \vdots \\ & & & x_{nn} \end{array}\right) \in B.$$

Then the map $B \to \mathcal{F}\ell(n) \to \mathcal{G}r(k,n)$ factor through St(k,n) by

$$\left(\begin{array}{ccc} x_{11} & \cdots & x_{1n} \\ & \ddots & \vdots \\ & & x_{nn} \end{array}\right) \longmapsto \left(\begin{array}{ccc} x_{1n} & \cdots & x_{1,n-k} \\ \vdots & \ddots & \vdots \\ \vdots & \cdots & x_{n-k,n-k} \\ \vdots & \ddots \\ x_{nn} & & \end{array}\right)$$

Thus as T-module,

$$L(\lambda)^* \cong \operatorname{span}\left(\Delta^{I_1}(x_{ij}w_0)\cdots\Delta^{I_h}(x_{ij}w_0)\right)\Big|_{i>j\Rightarrow x_{ij=0}} \subseteq \mathbb{C}[x_{ij}]_{1\le i\le j\le n} \subseteq \mathbb{C}[B],$$

where $h = c_1 + \ldots + c_{n-1}, I_1, \ldots, I_{c_1} \in {\binom{[n]}{1}}, I_{c_1+1}, \ldots, I_{c_1+c_2} \in {\binom{[n]}{2}},$ etc.

3.8. For example, consider the case $\lambda = \bigoplus = 2x_1 + x_2$ whose $c_1 = c_2 = 1$. Then the two maps factor through $\operatorname{St}(1,3)$ and $\operatorname{St}(2,3)$ is $\begin{pmatrix} x_{13} & x_{12} \\ x_{23} & x_{23} \end{pmatrix}$, $\begin{pmatrix} x_{13} & x_{12} \\ x_{23} & x_{23} \end{pmatrix}$, hence

$$L(\lambda)^* = \operatorname{span} \begin{pmatrix} x_{13} \cdot (x_{13}x_{22} - x_{12}x_{23}) & x_{13} \cdot x_{22}x_{33} & x_{13} \cdot x_{12}x_{33} \\ x_{23} \cdot (x_{13}x_{22} - x_{12}x_{23}) & x_{23} \cdot x_{22}x_{33} & x_{23} \cdot x_{12}x_{33} \\ x_{33} \cdot (x_{13}x_{22} - x_{12}x_{23}) & x_{23} \cdot x_{22}x_{33} & x_{23} \cdot x_{12}x_{33} \end{pmatrix}$$

Note that we have one relation

$$(x_{33})(x_{13}x_{22} - x_{12}x_{23}) = (x_{13})(x_{22}x_{33}) - (x_{23})(x_{12}x_{33}).$$

The dimension is 9-1=8. The action of T is on left, so $t \cdot X = t^{-1}X$. The character of is just the row number,

$$ch(L(\lambda)) = (e^{x_1} + e^{x_2} + e^{x_3})(e^{x_1}e^{x_2} + e^{x_2}e^{x_3} + e^{x_1}e^{x_3}) - e^{x_3}(e^{x_1}e^{x_2})$$

$$\boxed{\begin{array}{c}1\\1\\2\end{array}}, \\ \boxed{\begin{array}{c}1\\3\end{array}}, \\ \boxed{\begin{array}{c}1\\3\end{array}}, \\ \boxed{\begin{array}{c}1\\2\end{array}}, \\ \boxed{\begin{array}{c}1\\3\end{array}}, \\ \boxed{\begin{array}{c}1\\3\end{array}}, \\ \boxed{\begin{array}{c}2\\3\end{array}}, \\ \end{array}, \\ \end{array}$$

3.9. If we use the natural map $G \rightarrow G/B$, with coordinate

$$\left(\begin{array}{ccc} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{array}\right) \in G$$

Then as G-module,

$$L(\lambda)^* \cong \operatorname{span}\left(\Delta^{I_1}(x_{ij}w_0)\cdots\Delta^{I_h}(x_{ij}w_0)\right) \subseteq \mathbb{C}[x_{ij}]_{\substack{1\leq i\leq n\\1\leq j\leq n}} \subseteq \mathbb{C}[G],$$

where $h = c_1 + \ldots + c_{n-1}, I_1, \ldots, I_{c_1} \in {\binom{[n]}{1}}, I_{c_1+1}, \ldots, I_{c_1+c_2} \in {\binom{[n]}{2}}$, etc. As a result, taking the dual, we get

$$L(\lambda) \cong \mathsf{S}^{c_1}(\Lambda^1 \mathbb{C}^n) \otimes \cdots \otimes \mathsf{S}^{c_n}(\Lambda^n \mathbb{C}^n) / \text{Plücker relations.}$$

This is exactly how Weyl construct representations.

3.10. Lastly, let us consider the analogy for Demazure characrer. In this case, we only need to exchange w_0 by any w. Note $\Sigma_w \longrightarrow \mathcal{G}r(1, \ldots, n-1)$ factor through $\mathcal{F}\ell(n)$, and by Demazure character formula,

$$H^0(G/B; \mathcal{O}(\lambda)) \longrightarrow H^0(\Sigma_w; \mathcal{O}(\lambda))$$

is also surjective (by induction). So theoretically, there is no problem.

3.11. But to be general, assume $D = (D_1, \ldots, D_h)$ is a series of subsets of [n]. Let us denote **flagged Weyl module**

$$M_D = \operatorname{span}\left(\prod_{i=1}^h \Delta_{D_i}^{C_i} : C_i \subseteq {\binom{[n]}{\sharp D_i}}\right) \subseteq \mathbb{C}[x_{ij}]_{1 \le i \le j \le n},$$

where Δ_D^I is the determinant of sub-matrix $I \times D$ in

$$\left(\begin{array}{ccc} x_{11} & \cdots & x_{1n} \\ & \ddots & \vdots \\ & & & x_{nn} \end{array}\right).$$

We define the **character** to be

$$\operatorname{ch}(M_D) = \sum_{\lambda \in X(T)} \dim(M_D)_{\lambda} e^{\lambda}, \quad \operatorname{ch}^*(M_D) = \overline{\operatorname{ch}(M_D)}.$$

3.12. A hint:

$$\operatorname{ch}^*(\mathbb{C} \cdot x_{i_1 j_1} \cdots x_{i_r j_r}) = e^{x_{i_1}} \cdots e^{x_{i_r}} = X_{i_1} \cdots X_{i_r}.$$

3.13. For a composition λ (i.e. a series of numbers), define the **skyline** diagram

$$D(\lambda): D(\lambda)_j = \{ \bullet : \alpha_{\bullet} \ge j \}.$$

For example, $\lambda = (3, 2, 1, 0, 1)$,

Then $\kappa_{\lambda}(X) = \operatorname{ch}^*(M_{D(\lambda)})$. It involves some careful combinatorial translation which is left to readers.

3.14. For example $D = \{1, 2, 3, 5\},\$

$$\begin{array}{c} 1\\ \hline 2\\ \hline 3\\ \hline 5 \end{array} \begin{pmatrix} x_{11} \ x_{12} \ x_{13} \ x & 4 \ x_{15}\\ x_{22} \ x_{23} \ x_{24} \ x_{25}\\ x_{33} \ x_{34} \ x_{35}\\ x_{44} \ x_{45}\\ x_{55} \end{pmatrix}$$

Its maximal minor (i.e. 4×4 minors), i.e. Δ_D^C has only two nonzero values,

 $x_{11}x_{22}x_{23}x_{45}, \qquad x_{11}x_{22}x_{23}x_{55}.$

3.15. For example, when $D = [i] = \{1, \ldots, i\}$, then

$$\frac{1}{2} \qquad \begin{pmatrix} x_{11} \cdots x_{1i} & x_{1,i} + 1 & \cdots \\ & \ddots & \vdots & \\ & x_{ii} & x_{i,i} + 1 & \cdots \\ & & x_{i+1} \\ & & & x_{i+1} \\ & & & \vdots \end{pmatrix}$$
span $\left(\Delta_D^C : C \in \binom{[n]}{i}\right) = \mathbb{C} \cdot x_{11} \cdots x_{ii}$

3.16. When λ is weakly decreasing, each member of D is of the form [i]. So $\kappa_{\lambda} = X^{\lambda}$.

3.17. When $\lambda = (0, 1, 2) = \square$, the skyline diagram is

$$\begin{array}{c|c}0\\1&2\\2&3&3\end{array}$$

Thus, M_D is spanned by

maxmial minors of $\begin{pmatrix} x_{12} & x_{13} \\ x_{22} & x_{23} \\ x_{33} \end{pmatrix}$ · maxmial minors of $\begin{pmatrix} x_{13} \\ x_{23} \\ x_{33} \end{pmatrix}$ It is essentially the same as we did before (up to a permutation of row indices). **3.18.** The modern way to deal with vanishing of higher cohomology in representation and combinatorics is **Frobenius splitting**.

References

• Peter Magyar. Schubert Polynomials and Bott-Samelson Varieties.

4 Lecture 4 — Horn's Problem

4.1. Horn's problem concerns the eigenvalues of sum of two Hermitian matrices with given eigenvalues. To be exact, given three Hermitian matrices A, B, C with A + B = C, with eigenvalues

$$\lambda_1(A) \ge \dots \ge \lambda_n(A)$$

$$\lambda_1(B) \ge \dots \ge \lambda_n(B)$$

$$\lambda_1(C) \ge \dots \ge \lambda_n(C)$$

Horn's problem is to characterize these 3n values that appears in this way.

4.2. Let M be a symplectic manifold. For each $f \in \mathcal{C}^{\infty}(M)$, we can define the **Hamitonian vector field** $\mathfrak{X}_f \in \mathfrak{X}(M)$ with

$$\omega(-,\mathfrak{X}_f) = df.$$

Then \mathcal{C}^{∞} has a **Poisson structure** defined by

$$\{f,g\} := \omega(\mathfrak{X}_f,\mathfrak{X}_g).$$

4.3. Let *M* be a symplectic manifold with Hamitonian *G*-action. That is, the inducing map $\mathfrak{g} \to \mathfrak{X}(M)$ factor through

$$\mathfrak{g} \xrightarrow{H} \mathcal{C}^{\infty}(X) \xrightarrow{\mathfrak{X}} \mathfrak{X}(M),$$

with H is a Lie algebra homomorphism. In this case, we can define the **moment map** $\mu: M \to \mathfrak{g}^*$ by dualizing H. That is,

$${}^{M\ni}x\longmapsto \left[{}^{\mathfrak{g}\ni}X\mapsto H_X(x)_{\in\mathbb{R}}\right]_{\in\mathfrak{g}^*}.$$

4.4. Atiyah, Guillemin and Sternberg Theorem In the case G = T is a compact torus and X is compact, the image of moment map is a polytope with vertices $\mu(X^T)$ the image of fixed points of X. Actually, for any point p on a k-face of this polytope, and $x \in \mu^{-1}(p)$, the orbit of x is of dimension k.

4.5. For a Lie subgroup $H \subseteq G$, the restriction of H is also Hamitonian, with moment map

 $\mu_H: M \to \mathfrak{h}^*$

obtained by composition $\mu_G: M \to \mathfrak{g}^*$ with the restriction map $\mathfrak{g}^* \to \mathfrak{h}^*$.

4.6. For two spaces X, Y with Hamiltonian *G*-action. Then so is $X \times Y$. The the moment map $\mu_{X \times Y}$ satisfies

$$\mu_{X \times Y}(x, y) = \mu_X(x) + \mu_Y(y).$$

4.7. Kirillov-Kostant-Souriau symplectic structure For any Lie group G, Each coadjoint orbit \mathbb{O} of \mathfrak{g}^* can be equipped with a symplectic structure with moment map the natural inclusion of $\mathbb{O} \to \mathfrak{g}^*$.

4.8. Let \mathfrak{h}_n be the space of Hermitian matrices. Consider \mathfrak{u}_n the space of skew-Hermitian matrices. The pairing

$$\mathfrak{u}_n \times \mathfrak{h}_n \to \mathbb{R} \qquad (A, B) \longmapsto \operatorname{tr}(\mathbf{i} \cdot AB)$$

is perfect. So we can identify $\mathfrak{u}_n^* = \mathfrak{h}_n$.

4.9. Denote $\mathfrak{t} \cong \mathfrak{i} \cdot \mathbb{R}^n$ the diagonal subalgebra of \mathfrak{u}_n . Then we identify \mathfrak{t}^* with \mathbb{R}^n . The restriction map $\mathfrak{u}_n^* \to \mathfrak{t}^*$ is then given by taking diagonal entries

$$\mathfrak{h}_n \longrightarrow \mathbb{R}^n \qquad (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \mapsto (a_{ii})_{\substack{i=1}}^n.$$

4.10. Each coadjoint orbit is isomorphic to a partial flag veriety G/P_{λ} where P_{λ} is a parabolic subgroup.

Note that the *T*-fixed point of \mathfrak{h}_n is exactly the diagonal matrices. As a result, the orbit of $\operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ is exactly all the permutations of it.

4.11. Schur–Horn's Theorem There exists a Hermitian matrix A, with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$, and diagonal entries $d_1 \geq \ldots \geq d_n$ if and only if

$$\sum_{i=1}^{k} d_i \le \sum_{i=1}^{k} \lambda_i, \quad (1 \le k \le n-1), \qquad \sum_{i=1}^{n} d_i = \sum_{i=1}^{n} \lambda_i.$$

Actually, this is equivalent to (d_i) lies in the polytope spanned by permutations of (λ_i) .

4.12. For example, $\lambda_1 = 2$ and $\lambda_2 = 1$. Then (d_1, d_2) should lies on the segment between (1, 2) and (2, 1). That is,

$$d_1 \le 2, \qquad d_1 + d_2 = 3.$$

Actually, in this case $d_1d_2 \ge 2$, thus some $z \in \mathbb{C}$ such that $|z|^2 = d_1d_2 - 2$, then $\begin{pmatrix} d_1 & z \\ \bar{z} & d_2 \end{pmatrix}$ is the Hermitian matrix desired.

4.13. Horn's conjecture There exists three Hermitian matrices A, B, C with A + B = C, with eigenvalues

$$\lambda_1(A) \ge \dots \ge \lambda_n(A)$$

$$\lambda_1(B) \ge \dots \ge \lambda_n(B)$$

$$\lambda_1(C) \ge \dots \ge \lambda_n(C)$$

if and only if

$$\sum_{i=1}^{n} \lambda_i(A) + \sum_{i=1}^{n} \lambda_i(B) = \sum_{i=1}^{n} \lambda_i(C)$$

for any k and $I, J, K \subseteq {\binom{[n]}{k}}$ with $c_{\lambda(J)}^{\lambda(I)\lambda(J)} \neq 0$

$$\sum_{i \in I} \lambda_i(A) + \sum_{j \in J} \lambda_j(B) \ge \sum_{k \in K} \lambda_k(C).$$

Here, $\lambda(I) = \lambda_1 \geq \cdots \geq \lambda_k \geq 0$ is the partition with $I = \{\lambda_1 + k, \dots, \lambda_k + 1\} \subseteq [n]$, and $c_{\lambda\mu}^{\nu}$ the Littlewood–Richardson coefficient.

4.14. Proof of " \Rightarrow " For a Hermintian matrix A, we define the Rayleigh trace over $\mathcal{G}r(k,n)$ by

$$R_A: \mathcal{G}r(d,n) \longrightarrow \mathbb{R} \qquad V \longmapsto \sum_{i=1}^k \mathbf{x}_i^{\mathsf{t}} A \mathbf{x}_i$$

with $\mathbf{x}_1, \ldots, \mathbf{x}_k$ a choice of orthogonal normal basis of V. Then

$$\sum_{i \in I} \lambda_i(A) = \min_{x \in \Sigma_{\lambda(I)}(A)} R_A(x),$$

where $\Sigma_{\lambda(I)}(A)$ is the Schubert variety corresponding to the flag $(0 \subseteq V_1 \subseteq \cdots V_n)$ with V_i spanned by the first k eigenvectors (with eigenvalues weakly decreasing).

Note that $\Sigma_{\lambda(I)}(A) \cap \Sigma_{\lambda(I)}(B) \cap \Sigma_{\lambda(I)^c}(C) = \emptyset$ implies $c_{\lambda(I)\lambda(J)}^{\lambda(K)} = 0$. Thus we get the condition stated in the theorem.

4.15. Sketch of " \Leftarrow " We should use some convex properties for non-torus. Let $C \subseteq \mathfrak{t}^*$ be any Weyl chamber. We have a map

$$\phi: \mathfrak{g}^* \longrightarrow \mathfrak{g}^* / \operatorname{ad} G \cong \mathfrak{t}^* / W \cong C$$

where C is a closed Weyl chamber. Kirwan's theorem claims that the image $\phi \circ \mu_G$ is convex.

4.16. Let X be a projective variety with an very ample line bundle \mathcal{L} . Denote

$$\Gamma^{\bullet}(\mathcal{L}) = \bigoplus_{n \ge 0} H^0(X; \mathcal{L}^{\otimes n}).$$

Then $\operatorname{Proj} \Gamma^{\bullet}(\mathcal{L}) = X$. Actually, $\Gamma^{\bullet}(\mathcal{L})$ is the projective coordinate ring for X in \mathbb{P}^N .

4.17. For example, when $X = \mathcal{F}\ell(n)$, and $\lambda = \lambda_1 x_1 + \cdots + \lambda_n x_n$ with $\lambda_1 > \cdots > \lambda_n$, then

$$\Gamma^{\bullet}(\mathcal{O}(\lambda)) = \bigoplus_{d \ge 0} L(d\lambda)^*.$$

In general, if $\lambda_1 \geq \cdots \geq \lambda_n$, we can find a partial flag variety G/P_{λ} with the same property.

4.18. Over $\mathbb{P}^{n-1}_{\mathbb{C}}$, there is a natural Fubini–Study symplectic structure

$$\omega = \frac{|dx_1|^2 + \dots + |dx_n|^2}{|x_1|^2 + \dots + |x_n|^2}$$

The action of U(n) on \mathbb{P}^1 is Hamiltonian with moment map

 $\mu(\ell) = \text{rank}$ one Hermitian matrix projecting to $\ell \in \mathfrak{h}_n$.

That is, view \mathbb{P}^{n-1} as the orbit of diag $(1,\ldots,0) \in \mathfrak{h}_n$. Thus the *T* action moment map is

$$\mu = \left(\frac{|x_1|^2}{|x_1|^2 + \dots + |x_n|^2}, \ \dots, \ \frac{|x_n|^2}{|x_1|^2 + \dots + |x_n|^2}\right).$$

4.19. Kirwan–Ness Theorem If a compact group $K \subseteq U(N)$ acts on a smooth closed subvariety X of $\mathbb{P}^N_{\mathbb{C}}$. Denote the moment map

$$\mu: X \stackrel{\subseteq}{\longrightarrow} \mathbb{P}^N \longrightarrow \mathfrak{u}^* \longrightarrow \mathfrak{k}^*$$

Denote the complexification of K by the reductive group G. Then

$$\mu^{-1}(0)/K \longrightarrow X//G$$
 (GIT quotient).

4.20. Denote $\mathbb{O}(\lambda)$ the space of Hermitian matrices with eigenvalue $\lambda_1, \ldots, \lambda_n$ for a weakly decreasing integer sequence. We then apply above theorem to

$$\mathbb{O}(\lambda) \times \cdots \times \mathbb{O}(\mu)$$

with λ, \ldots, μ weakly decreasing integer sequences. Actually, the moment map cooresponds to the Plücker embedding (by computation)

Thus $\mu^{-1}(0)$ is nonempty if and only if

$$\operatorname{Proj} \bigoplus_{d \ge 0} \left(L(d\lambda) \otimes \cdots \otimes L(d\mu) \right)^{\operatorname{GL}_n}$$

is nonempty. Equivalently, $\left(L(d\lambda)\otimes\cdots\otimes L(d\mu)\right)^{\operatorname{GL}_n}\neq 0$ for some $d\geq 1$.

4.21. There exist Hermitian matrices A, \ldots, B with $A + \cdots + B = 0$ with eigenvalues $\lambda(A), \ldots, \lambda(B)$ if and only if

$$\left(L(d\lambda(A))\otimes\cdots\otimes L(d\lambda(B))\right)^{\operatorname{GL}_n}\neq 0$$

for some $d \ge 1$. By a limit argument, this method also solves Horn's problem.

4.22. Since the Littlewood–Richardson coefficients has a combinatial model by honeycomb due to Knutson and Tao, see Figure 4.

Figure 4: Honeycomb

References

• Knutson. The symplectic and algebraic geometry of Horn's problem. [arXiv]

- Fulton. Eigenvalues, invariant factors, highest weights, and Schubert calculus. [AMS]
- Knutson, Tao. Honeycombs and sums of Hermitian matrices. [arXiv]

5 Appendix: Schubert Calculus

5.1. Actually, by an affine paving argument

$$K_B(G/P) = \bigoplus_{\text{shortest } w \in W/W_J} \mathbb{Z} \cdot [\mathcal{O}^w]_B = \bigoplus_{\text{shortest } w \in W/W_J} \mathbb{Z} \cdot [\mathcal{O}_w]_B$$

where $\mathcal{O}^w = i_* \mathcal{O}_{\Sigma^w}$ the push forward of regular ring of Σ^w and similarly notation for \mathcal{O}_w . It turns out

$$\pi_i[\mathcal{O}^w] = \begin{cases} [\mathcal{O}^{ws_i}] & \ell(ws_i) = \ell(w) - 1\\ [\mathcal{O}^w] & \text{otherwise} \end{cases}$$

or

$$\pi_i[\mathcal{O}_w] = \begin{cases} [\mathcal{O}_{ws_i}] & \ell(ws_i) = \ell(w) + 1\\ [\mathcal{O}_w] & \text{otherwise} \end{cases}$$

Note that the second case follows from the first, since $\pi_i^2 = \pi_i$. The first case follows from the fact that the push forward induced by $BS(\underline{w}) \longrightarrow \Sigma_w$ sending $[\mathcal{O}_{BS(\underline{w})}]$ to $[\mathcal{O}_{\Sigma_w}]$. To be exact, it has no higher cohomology by a spectral sequence argument, and preserves structure sheaf by applying Zariski connected theorem on Stein decomposition).

5.2. Assume $P = \bigcup_{w \in W_I} BwB$ for $J \subseteq \mathbb{I}$. If we denote

$$R_T = \mathbb{Q}[e^{\lambda}]_{\lambda \in X(T)}, \qquad R_G = R_T^W, \qquad R_P = R_T^{W_J},$$

then

$$K_B(G/B;\mathbb{Q}) = R_T \otimes_{R_G} R_T, \qquad K_B(G/P;\mathbb{Q}) \cong R_T \otimes_{R_G} R_P$$

For G/B, the class of $\mathcal{O}(\lambda)$ is presented by $1 \otimes e^{\lambda} \in R_T \otimes_{R_G} R_T$. The class of pull back of $e^{\lambda} \in K_B(\mathrm{pt};\mathbb{Q}) = R_T$ is $e^{\lambda} \otimes 1$.

5.3. The natural map $G/B \longrightarrow G/P$ induces

$$K_B(G/P) \longrightarrow K_B(G/B) \qquad [\mathcal{O}^w] \longmapsto [\mathcal{O}^w]$$

thus an injection. The corresponding \mathbb{Q} -efficient map is just the inclusion

$$R_T \otimes_{R_G} R_P \xrightarrow{\subseteq} R_T \otimes_{R_G} R_T.$$

5.4. Atiyah–Bott–Berline–Vergne Let X be a smooth projective variety algebraically acted by an algebraic torus T. Then the localization, i.e. the restriction to the fixed points

$$K_T(X) \longrightarrow K_T(X^T)$$

is an isomorphism after tensoring with $\operatorname{Frac} R_T$.

In particular, if $K_T(X)$ is a free $K_T(\text{pt})$ -module, then the localization map is injective.

5.5. The class of $[\mathcal{O}_{\Sigma^w}]_B$ in $K_B(G/B) = R_T \otimes_{R_G} R_T$ is called the **double** Grothendieck polynomial $\mathfrak{G}_w(x,t)$. Here we take the convention that

$$e^{\lambda(t)} = e^{\lambda} \otimes 1, \qquad e^{\lambda(x)} = 1 \otimes e^{\lambda}.$$

Then by localization

$$\forall u \nleq w, \quad \mathfrak{G}_w(ut, t) = 0.$$

Actually, $\mathfrak{G}_w(x,t)$ is uniquely determined by

- $\mathfrak{G}_{\mathrm{id}}(x,t) = 1;$
- $\pi_i \mathfrak{G}_w(x,t) = \mathfrak{G}_{ws_i}(x,t)$ when $\ell(ws_i) = \ell(w) 1;$
- $\mathfrak{G}_w(t,t) = \delta_{w=\mathrm{id}}.$

5.6. In type A, recall that we denote $X_i = e^{x_i}$, and

$$\pi_i f = \frac{X_i f - s_i (X_{i+1} f)}{X_i - X_{i+1}}.$$

We have the stable choice

$$\mathfrak{G}_{w_0}(X,Y) = \prod_{i+j \le n} \left(1 - \frac{Y_i}{X_i}\right).$$

5.7. Denote T_1, \ldots, T_{n-1} the symbols with

$$T_i^2 = -T_i, \qquad \begin{cases} T_i T_j = T_j T_i & |i-j| \ge 2\\ T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} \end{cases}$$

Thus T_w can be defined. We consider the generating function

$$\mathfrak{G}(X,Y) = \sum \mathfrak{G}_w(X,Y)T_w,$$

It is amazing that it factors into

$$\begin{array}{cccccccc} h_{n-1}(X_1,Y_{n-1}) & h_{n-2}(X_1,Y_{n-2}) & \cdots & h_1(X_1,Y_2) & h_1(X_1,Y_1) \\ & & h_{n-1}(X_2,Y_{n-2}) & \cdots & h_3(X_2,Y_2) & h_2(X_1,Y_1) \\ & & \ddots & \vdots & & \vdots \\ & & & h_{n-1}(X_{n-2},Y_2) & h_{n-2}(X_{n-2},Y_1) \\ & & & h_{n-1}(X_{n-1},Y_1) \end{array}$$

where $h_k(X, Y) = 1 + (1 - \frac{X}{Y})T_k$.

5.8. The cohomological version is similar. In this case, the cohomological Demazure operator

$$\partial_i : H^{\bullet}_G(G/B) \xrightarrow{(p_i)_*} H^{\bullet}_G(G/P_i) \xrightarrow{(p_i)_*} H^{\bullet}_G(G/B)$$

is given by

$$\partial_i f = \frac{f - s_i f}{\alpha_i}$$

where $\alpha_i = c_1(\mathcal{O}(\alpha_i))$. It satisfies $\partial_i^2 = 0$ and braid relations.

5.9. In the cohomological case, we need to replace

$$R_T^{\bullet} = \mathsf{S}^{\bullet}(X(T)_{\mathbb{Q}}), \qquad R_G = R_T^W, \qquad R_P = R_T^{W_J}.$$

then

$$H^{\bullet}_{B}(G/B;\mathbb{Q}) = R_{T} \otimes_{R_{G}} R_{T}, \qquad H^{\bullet}_{B}(G/P;\mathbb{Q}) \cong R_{T} \otimes_{R_{G}} R_{P}.$$

For G/B, $c_1(\mathcal{O}(\lambda))$ is presented by $1 \otimes \lambda \in R_T \otimes_{R_G} R_T$. The class of pull back of $\lambda \in H^{\bullet}_B(\mathrm{pt}; \mathbb{Q}) = R_T$ is $\lambda \otimes 1$. 5.10. By a similar affine paving argument

$$H^{\bullet}_{B}(G/P) = \bigoplus_{\text{shortest } w \in W/W_{J}} \mathbb{Z} \cdot [\Sigma^{w}]_{B} = \bigoplus_{\text{shortest } w \in W/W_{J}} \mathbb{Z} \cdot [\Sigma_{w}]_{B}$$

It turns out

$$\partial_i[\Sigma^w] = \begin{cases} [\Sigma^{ws_i}] & \ell(ws_i) = \ell(w) - 1\\ 0 & \text{otherwise} \end{cases}$$

or

$$\partial_i [\Sigma_w] = \begin{cases} [\Sigma_{ws_i}] & \ell(ws_i) = \ell(w) + 1\\ 0 & \text{otherwise} \end{cases}$$

5.11. The natural map $G/B \longrightarrow G/P$ induces

$$H^{\bullet}_{B}(G/P) \longrightarrow H^{\bullet}_{B}(G/B) \qquad [\Sigma^{w}] \longmapsto [\Sigma^{w}]$$

thus an injection. The corresponding \mathbb{Q} -efficient map is just the inclusion

$$R_T \otimes_{R_G} R_P \xrightarrow{\subseteq} R_T \otimes_{R_G} R_T$$

5.12. The class of $[\Sigma^w]_B$ in $K_B(G/B) = R_T \otimes_{R_G} R_T$ is called the **double** Schubert polynomial $\mathfrak{S}_w(x,t)$. Here we take the convention that

$$\lambda(t) = \lambda \otimes 1, \qquad \lambda(x) = 1 \otimes \lambda.$$

Actually, $\mathfrak{S}_w(x,t)$ is uniquely determined by

- $\mathfrak{S}_{id}(x,t) = 1;$
- $\partial_i \mathfrak{S}_w(x,t) = \mathfrak{G}_{ws_i}(x,t)$ when $\ell(ws_i) = \ell(w) 1;$
- $\mathfrak{S}_w(t,t) = \delta_{w=\mathrm{id}}.$

5.13. For $\mathcal{G}r(k, n)$, the case w is shortest, $\mathfrak{S}_w(x, t)$ is the corresponding double Schur polynomial.

5.14. In type *A*,

$$\pi_i f = \frac{f - s_i f}{x_i - x_{i+1}}.$$

We have the stable choice

$$\mathfrak{S}_{w_0}(x,y) = \prod_{i+j \le n} (x_i - y_j).$$

Denote T_1, \ldots, T_{n-1} the symbols with

$$T_i^2 = 0, \qquad \begin{cases} T_i T_j = T_j T_i & |i - j| \ge 2\\ T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} \end{cases}$$

Thus T_w can be defined. We consider the generating function

$$\mathfrak{S}(x,y) = \sum \mathfrak{S}_w(x,y)T_w,$$

It is amazing that it factors into

$$\begin{array}{ccccccc} h_{n-1}(x_1, y_{n-1}) & h_{n-2}(x_1, y_{n-2}) & \cdots & h_1(x_1, y_2) & h_1(x_1, y_1) \\ & & h_{n-1}(x_2, y_{n-2}) & \cdots & h_3(x_2, y_2) & h_2(x_1, y_1) \\ & & \ddots & \vdots & & \vdots \\ & & & h_{n-1}(x_{n-2}, y_2) & h_{n-2}(x_{n-2}, y_1) \\ & & & & h_{n-1}(x_{n-1}, y_1) \end{array}$$

where $h_k(X, Y) = 1 + (x - y)T_k$.

Mon-Key

HONEY