Pieri Rules over Grassmannian and Applications arXiv:2402.04500 with Neil J.Y. Fan, Peter L.Guo and Changjian Su

Rui Xiong

Grassmannian

Recall that Grassmannian manifold

$$
\operatorname{Gr}(k, n)=\left\{V \subseteq \mathbb{C}^{n}: \operatorname{dim} V=k\right\}
$$

We have the following Bruhat decomposition

$$
\operatorname{Gr}(k, n)=\bigcup_{\lambda \subseteq(n-k)^{k}} Y(\lambda)^{\circ} \quad \text { (disjoint) }
$$

where $Y(\lambda)^{\circ}$ is the opposite Schubert cell.

Description

Bruhat Decomposition

Denote Schubert variety

$$
Y(\lambda)=\overline{Y(\lambda)^{\circ}}=\bigcup_{\mu \supseteq \lambda} Y(\mu)^{\circ}
$$

The cohomology group and K-group can be computed to be

$$
\begin{aligned}
& H^{*}(\operatorname{Gr}(k, n))=\bigoplus_{\lambda \subseteq(n-k)^{k}} \mathbb{Q} \cdot[Y(\lambda)] \\
& K(\operatorname{Gr}(k, n))=\bigoplus_{\lambda \subseteq(n-k)^{k}} \mathbb{Q} \cdot\left[\mathcal{O}_{Y(\lambda)}\right]
\end{aligned}
$$

Chern Classes

Let \mathcal{V} be the tautological bundle over $\operatorname{Gr}(k, n)$. We denote

$$
c_{r}=c_{r}\left(\mathcal{V}^{\vee}\right)=\text { the } r \text {-th equivariant Chern classes of } \mathcal{V}^{\vee} .
$$

It is known that

$$
\begin{aligned}
H^{*}(\operatorname{Gr}(k, n)) & =\mathbb{Q}\left[c_{1}, \ldots, c_{k}\right] / \text { some ideal. } \\
K(\operatorname{Gr}(k, n)) & =\mathbb{Q}\left[c_{1}, \ldots, c_{k}\right] / \text { some ideal. }
\end{aligned}
$$

Geometry of cohomology

Roughly speaking cohomology

$$
H^{\bullet}(X)=\bigoplus_{Y \text { closed } \subseteq X} \mathbb{Q} \cdot[Y] / \begin{gathered}
\text { HOMOTOPY } \\
\text { EQUIVALENCE }
\end{gathered}
$$

with product the transversal intersection

$$
\left[Y_{1}\right] \cdot\left[Y_{2}\right]=\left[Y_{1} \pitchfork Y_{2}\right]
$$

Over $\operatorname{Gr}(k, n)$, we have Schubert class

$$
[Y(\lambda)] \in H^{2 \ell(\lambda)}(\operatorname{Gr}(k, n)) .
$$

Example: $\operatorname{Gr}(1,2)=\mathbb{P}^{1}$

We have

$$
\begin{aligned}
& Y(\square)=\text { the point } \infty \\
& Y(\varnothing)=\text { the entire } \mathbb{P}^{1} .
\end{aligned}
$$

The intersection

\pitchfork	pt	\mathbb{P}^{1}
pt	\varnothing	pt
\mathbb{P}^{1}	pt	\mathbb{P}^{1}

The cohomology

$$
H^{*}\left(\mathbb{P}^{1}\right)=\mathbb{Q}[x] /\left(x^{2}\right)
$$

where $x=[Y(\square)]$.

Classical Chevalley Formula

Theorem (Chevalley Formula)

$$
c_{1}\left(\mathcal{V}^{\vee}\right) \cdot[Y(\lambda)]=\sum_{\mu=\lambda+\square}[Y(\mu)] .
$$

Example:

Classical Pieri Rule

Let us denote Schur operators

$$
[i] \rightarrow[Y(\lambda)]= \begin{cases}{[Y(\mu)],} & \mu=\lambda+\square \text { in the } i \text {-th row, } \\ 0, & \text { otherwise }\end{cases}
$$

Theorem (Pieri Rule)

$$
c_{r}\left(\mathcal{V}^{\vee}\right) \cdot[Y(\lambda)]=\sum_{1 \leq i_{1}<\cdots<i_{r} \leq k}\left[i_{r}\right] \rightarrow \cdots\left[i_{1}\right] \rightarrow[Y(\lambda)] .
$$

Example

Geometry of K-theory

Roughly speaking, the K-theory

$$
K(X)=\bigoplus_{\mathcal{F} \in \mathcal{C o h} X} \mathbb{Q} \cdot[\mathcal{F}] / \underset{\text { SEQUENCES }}{\text { EXACT }}
$$

with product the tensor product

$$
\left[\mathcal{F}_{1}\right] \cdot\left[\mathcal{F}_{2}\right]=\left[\mathcal{F}_{1} \otimes \mathcal{F}_{2}\right] .
$$

Over $\operatorname{Gr}(k, n)$, we have structure sheaves

$$
\left[\mathcal{O}_{Y(\lambda)}\right] \in K(\operatorname{Gr}(k, n)) .
$$

Example: $\operatorname{Gr}(1,2)=\mathbb{P}^{1}$

We have

$$
0 \rightarrow \mathcal{O}(-1) \rightarrow \mathcal{O} \rightarrow \mathcal{O}_{\infty} \rightarrow 0
$$

Thus $\left[\mathcal{O}_{\infty}\right]=1-\mathcal{O}(-1)$.
The K-theory

$$
K\left(\mathbb{P}^{1}\right)=\mathbb{Q}[x] /\left(x^{2}\right)
$$

where $x=1-\mathcal{O}(-1)=\left[\mathcal{O}_{Y(\square)}\right]$.

K-theory Chevalley Formula

Theorem (Lenart [1])

$$
c_{1}\left(\mathcal{V}^{\vee}\right) \cdot\left[\mathcal{O}_{Y(\lambda)}\right]=\sum_{\mu=\lambda+\square}\left[\mathcal{O}_{Y(\mu)}\right] .
$$

Example:

K-theory Pieri Rule

Let us denote Schur operators

$$
[i] \rightarrow\left[\mathcal{O}_{Y(\lambda)}\right]=\left[\mathcal{O}_{Y(\mu)}\right]
$$

where $\mu=\lambda+$ a vertical strip with its tail at the i-th row.
Theorem (Lenart [1])

$$
c_{r}\left(\mathcal{V}^{\vee}\right) \cdot\left[\mathcal{O}_{Y(\lambda)}\right]=\sum_{1 \leq i_{1}<\cdots<i_{r} \leq k}\left[i_{r}\right] \rightarrow \cdots\left[i_{1}\right] \rightarrow\left[\mathcal{O}_{Y(\lambda)}\right]
$$

Example

$\frac{\downarrow}{\frac{\downarrow}{\frac{2}{3}}}$

Constructible Functions

Consider

$$
\begin{aligned}
\operatorname{Fun}(X) & =\{\text { constructible functions over } X\} \\
& =\operatorname{span}\left(\mathbf{1}_{A}: A \subseteq X \text { closed }\right)
\end{aligned}
$$

For any proper map $f: X \rightarrow Y$, we have a push-forward

$$
f_{*}: \operatorname{Fun}(X) \rightarrow \operatorname{Fun}(Y)
$$

defined such that

$$
\left(f_{*}\left(\mathbf{1}_{A}\right)\right)(y)=\chi_{c}\left(A_{y}\right)
$$

the Euler characteristic of fibre A_{y}.

CSM classes

By MacPherson [2], there is a natural transform (wrt push-forward) called Chern-Schwartz-MacPherson classes

$$
c_{S M}: \operatorname{Fun}(-) \rightarrow H_{\bullet}(-)
$$

such that when X is smooth
$\operatorname{CSM}_{\mathrm{SM}}(X)=$ total Chern class of the tangent bundle of X.
Over $\operatorname{Gr}(k, n)$, we have CSM classes

$$
\operatorname{CSM}_{\mathrm{SM}}\left(Y(\lambda)^{\circ}\right):=\operatorname{c}_{\mathrm{SM}}\left(\mathbf{1}_{Y(\lambda)^{\circ}}\right) \in H^{*}(\operatorname{Gr}(k, n))
$$

Example: $\operatorname{Gr}(1,2)=\mathbb{P}^{1}$

Recall

$$
\begin{aligned}
& Y(\square)^{\circ}=\text { the point } \infty, \\
& Y(\varnothing)^{\circ}=\mathbb{P}^{1} \backslash\{\infty\} .
\end{aligned}
$$

So by definition,

$$
\operatorname{cssM}\left(Y(\square)^{\circ}\right)=[Y(\square)]=x .
$$

Since $\mathscr{T}_{\mathbb{P}^{1}}=\mathcal{O}(2)$, we have

$$
\begin{aligned}
\text { total Chern class } & =1+2 x \\
\hline \operatorname{CSM}\left(Y(\square)^{\circ}\right) & =x \\
\operatorname{CSM}\left(Y(\varnothing)^{\circ}\right) & =1+x
\end{aligned}
$$

CSM Chevalley formula

Theorem (Aluffi, Mihalcea, Schürmann and Su [3])

$$
c_{1}\left(V^{\vee}\right) \cdot \operatorname{csM}\left(Y(\lambda)^{\circ}\right)=\sum_{\mu=\lambda+\sqrt{ }} \operatorname{csM}\left(Y(\mu)^{\circ}\right) .
$$

Example:

CSM Pieri Rule

Let us denote ribbon Schubert operators

$$
\left[i \mid \rightarrow \operatorname{csM}\left(Y(\lambda)^{\circ}\right)=\sum_{\mu} \operatorname{csM}\left(Y(\mu)^{\circ}\right)\right.
$$

where the sum over $\mu=\lambda+$ a ribbon strip with its tail at the i-th row.

Theorem (Fan, Guo and Xiong [4])
$c_{r}\left(\mathcal{V}^{\vee}\right) \cdot \operatorname{csM}\left(Y(\lambda)^{\circ}\right)=\sum_{1 \leq i_{1}<\cdots<i_{r} \leq k}\left[i_{r} \mid \rightarrow \cdots\left[i_{1} \mid \rightarrow \operatorname{csM}\left(Y(\lambda)^{\circ}\right)\right.\right.$.

Example

Grothendieck group

Consider the Grothendieck group of varieties

$$
\mathrm{G}(X)=\bigoplus_{\text {variety } Z \rightarrow X} \mathbb{Z} \cdot[Z \rightarrow X] /[U \rightarrow X]+[Z \backslash U \rightarrow X]=[Z \rightarrow X] .
$$

For any proper map $f: X \rightarrow Y$, we have a push-forward

$$
f_{*}: \mathrm{G}(X) \rightarrow \mathrm{G}(Y)
$$

with

$$
f_{*}[Z \rightarrow X]=[Z \rightarrow X \rightarrow Y]
$$

Motivic Chern classes

By Brasselet, Schürmann and Yokura [5], there is a natural transform (wrt push-forward) called motivic Chern classes

$$
\mathrm{MC}_{y}: \mathrm{G}(-) \rightarrow K(-)[y]
$$

such that when X is smooth,

$$
\mathrm{MC}_{y}(X)=\lambda \text {-class }=\sum_{k=1}^{\operatorname{dim} X} y^{k}\left[\Lambda^{k} \mathscr{T}_{X}^{\vee}\right]
$$

Over $\operatorname{Gr}(k, n)$, we have motivic Chern classes

$$
\mathrm{MC}_{y}\left(Y(\lambda)^{\circ}\right):=\mathrm{MC}_{y}\left(\left[Y(\lambda)^{\circ} \rightarrow \operatorname{Gr}(k, n)\right]\right) \in K(\operatorname{Gr}(k, n)) .
$$

Example: $\operatorname{Gr}(1,2)=\mathbb{P}^{1}$

Similarly,

$$
\mathrm{MC}_{y}\left(Y(\square)^{\circ}\right)=\left[\mathcal{O}_{Y(\square)}\right]=x
$$

Recall that $x=1-\mathcal{O}(-1)$.
Since $\mathscr{T}_{\mathbb{P}^{1}}=\mathcal{O}(2)$, we have
λ-class $=1+y \mathcal{O}(-2)$
$=(1+y)-2 y x$
$\mathrm{MC}_{y}\left(Y(\varnothing)^{\circ}\right)=(1+y)-(2 y+1) x$ $\mathrm{MC}_{y}\left(Y(\square)^{\circ}\right)=$

MC Chevalley formula

Theorem (Fan, Guo, Su and Xiong)

$$
c_{1}\left(\mathcal{V}^{\vee}\right) \cdot \mathrm{MC}_{y}\left(Y(\lambda)^{\circ}\right)=(1+y) \sum_{\mu=\lambda+\longleftarrow}(-y)^{\operatorname{wd}(\mu / \lambda)-1} \mathrm{MC}_{y}\left(Y(\mu)^{\circ}\right) .
$$

Example:

MC Pieri Rule

Let us denote ribbon Schubert operators

$$
\left[i \mid \rightarrow \mathrm{MC}_{y}\left(Y(\lambda)^{\circ}\right)=(1+y) \sum_{\mu}(-y)^{\mathrm{wd}(\mu / \lambda)-1} \mathrm{MC}_{y}\left(Y(\mu)^{\circ}\right)\right.
$$

where the sum over $\mu=\lambda+$ a ribbon strip with its tail at the i-th row.

Theorem (Fan, Guo, Su and Xiong)

$$
c_{r}\left(\mathcal{V}^{\vee}\right) \cdot \mathrm{MC}_{y}\left(Y(\lambda)^{\circ}\right)=\sum_{1 \leq i_{1}<\cdots<i_{r} \leq k}\left[i_{r} \mid \rightarrow \cdots\left[i_{1} \mid \rightarrow \mathrm{MC}_{y}\left(Y(\lambda)^{\circ}\right)\right.\right.
$$

Summary

Affine Hecke algebra

Our approach is by introducing a version of affine Hecke algebra of three parameters

$$
\begin{aligned}
T_{i}^{2} & =-(p-q) T_{i}+p q \\
T_{i} T_{j} & =T_{j} T_{i}, \quad|i-j|>1, \\
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1}, \\
x_{i} x_{j} & =x_{j} x_{i}, \\
T_{i} x_{j} & =x_{j} T_{i}, \quad j \neq i, i+1, \\
T_{i} x_{i} & =x_{i+1} T_{i}+\left(\hbar-(p-q) x_{i}\right), \\
T_{i} x_{i+1} & =x_{i} T_{i}-\left(\hbar-(p-q) x_{i}\right) .
\end{aligned}
$$

Rôles of p, q, \hbar

It turns out that p, q, \hbar control the following ribbon statistics

$$
p: \text { height }-1, \quad q: \text { width }-1, \quad \hbar: \text { number of ribbons. }
$$

We have the following table

classes	(p, q, \hbar)	Pieri rule
$[Y(\lambda)]$	$(0,0,1)$	adding boxes \square
$\left[\mathcal{O}_{Y(\lambda)}\right]$	$(1,0,1)$	adding vertical strips \square
$\operatorname{CSM}\left(Y(\lambda)^{\circ}\right)$	$(1,1,1)$	adding ribbons \sqsubset
$\mathrm{MC}_{y}\left(Y(\lambda)^{\circ}\right)$	$(1,-y, 1+y)$	adding ribbons \sqsubset and counting width

Dual Basis

In all four cases, we have another choice of basis

Theory				
basis	[$Y(\lambda)$]	$\left[\mathcal{I}_{\partial Y(\lambda)}\right]$	$c_{\text {SM }}\left(Y(\lambda)^{\circ}\right)$	$\mathrm{MC}_{y}\left(Y(\lambda)^{\circ}\right)$
opposite dual basis	[$Y(\lambda)$]	$\left[\mathcal{O}_{Y(\lambda)}\right]$	$\left.\operatorname{ssm}^{(1)}(\lambda)^{\circ}\right)$	$\mathrm{SMC}_{y}\left(Y(\lambda)^{\circ}\right)$

Theorem (Fan, Guo, Su and Xiong)
The opposite dual basis has the same Pieri rule as basis.

Discussion of the proof

A priori, the Pieri rule for the opposite dual basis is given by $1 i]$, the adjoint operator on the 180° rotated complement.

But they are equivalent:

V.S.

Equivariant version

All the basis are defined in equivariant cohomology/K-theory.
Theorem (Fan, Guo, Su and Xiong)
The equivariant classes

$$
[Y(\lambda)], \quad\left[\mathcal{I}_{\partial Y(\lambda)}\right], \quad \operatorname{CSM}\left(Y(\lambda)^{\circ}\right), \quad \mathrm{MC}_{y}\left(Y(\lambda)^{\circ}\right)
$$

satisfy the head-valued Pieri rule, i.e. |i] or equivalently [ip.
Theorem (Fan, Guo, Su and Xiong)
The equivariant classes

$$
[Y(\lambda)], \quad\left[\mathcal{O}_{Y(\lambda)}\right], \quad \operatorname{ssm}_{\mathrm{SM}}\left(Y(\lambda)^{\circ}\right), \quad \mathrm{SMC}_{y}\left(Y(\lambda)^{\circ}\right)
$$

satisfy the tail-valued Pieri rule, i.e. $\downarrow i]$ or equivalently $£ i \|$.

$$
\begin{align*}
& \text { 123 } \rightarrow \sqrt{\square}=t_{3} \cdot \sqrt{\mathbb{J}^{\top}}+\left(\hbar-(p-q) t_{4}\right) \cdot \sqrt{\sqrt{2 \cdot}}+\left(\hbar-(p-q) t_{5}\right) \text {. } \\
& \dagger \\
& +\left(\hbar-(p-q) t_{4}\right) p q \cdot \sqrt{]^{2} \cdot}+\left(\hbar-(p-q) t_{5}\right) p q^{2} . \tag{20}
\end{align*}
$$

+2] $\rightarrow \square^{\top}=t_{3} \cdot \Gamma^{\square}+\left(\hbar-(p-q) t_{3}\right) \cdot \sqrt[\bullet^{2}]{ }+\left(\hbar-(p-q) t_{3}\right) \cdot \square$.

$$
+\left(\hbar-(p-q) t_{1}\right) p q \cdot \sqrt{J^{2}}+\left(\hbar-(p-q) t_{1}\right) p q^{2} \cdot \sqrt[\square]{\square^{2}}
$$

$\left[2 \downarrow \rightarrow \square{ }^{\square}=t_{3} \cdot \square^{\square}+\left(\hbar-(p-q) t_{4}\right) \cdot \sqrt{\square_{2} \cdot}+\left(\hbar-(p-q) t_{5}\right) \cdot \Pi_{2}\right.$

$$
+\left(\hbar-(p-q) t_{5}\right) q \cdot \sqrt{\frac{T_{2}}{2}}+\left(\hbar-(p-q) t_{7}\right) p q^{2} \cdot \Pi_{2}^{\square},
$$

$£ 21 \rightarrow \square=t_{3} \cdot \square^{\top}+\left(\hbar-(p-q) t_{3}\right) \cdot \sqrt[\bullet^{2}]{\square}+\left(\hbar-(p-q) t_{3}\right) \cdot \sqrt{\phi^{2}}$

$$
+\left(\hbar-(p-q) t_{3}\right) q \cdot \sqrt[\bullet_{2}]{ }+\left(\hbar-(p-q) t_{3}\right) p q^{2} \cdot \prod_{\downarrow_{2}} .
$$

Application A

There is a classic relation between ideal sheaves and structure sheaves over Grassmannian.

Theorem (Buch [6], see also [7, Prop. 4.2])

$$
\left(1-\left[\mathcal{O}_{Y(\square)}\right]\right) \cdot\left[\mathcal{O}_{Y(\lambda)}\right]=\left[\mathcal{I}_{\partial Y(\lambda)}\right] .
$$

This can be generalized to equivariant K-theory.

$$
\frac{\left(1-\left[\mathcal{O}_{Y(\square)}\right]\right) \cdot\left[\mathcal{O}_{Y(\lambda)}\right]}{1-\left.\left[\mathcal{O}_{Y(\square)}\right]\right|_{\lambda}}=\left[\mathcal{I}_{\partial Y(\lambda)}\right] \in K_{T}(\operatorname{Gr}(k, n))
$$

Relation between MC and SMC

Using our Pieri rule, we can prove the following analogy for MC and SMC classes.

Theorem (Fan, Guo, Su and Xiong)

$$
\lambda_{y}\left(\mathscr{T}_{\operatorname{Gr}(k, n)}^{\vee}\right) \cdot\left(1-\left[\mathcal{O}_{Y(\square)}\right]\right) \cdot \operatorname{SMC}_{y}\left(Y(\lambda)^{\circ}\right)=\operatorname{MC}_{y}\left(Y(\lambda)^{\circ}\right) .
$$

This can be generalized to equivariant K-theory.

$$
\lambda_{y}\left(\mathscr{T}_{\mathrm{Gr}(k, n)}^{\vee}\right) \cdot \frac{\left(1-\left[\mathcal{O}_{Y(\square)}\right]\right) \cdot \operatorname{SMC}_{y}\left(Y(\lambda)^{\circ}\right)}{1-\left.\left[\mathcal{O}_{Y(\square)}\right]\right|_{\lambda}}=\mathrm{MC}_{y}\left(Y(\lambda)^{\circ}\right) .
$$

If we set $y=0$, we will recover the result in the previous page.

Discussion of the proof

The proof is by one sentence:
both sides have the same Pieri rule and they agree after certain specialization.

Precisely:

- the factor

$$
1-\left.\left[\mathcal{O}_{Y(\square)}\right]\right|_{\lambda}
$$

intertwines $£ i \mid$ and [i申;

- the factor rest gives normalization by looking at localization.

Example: $\operatorname{Gr}(1,2)=\mathbb{P}^{1}$

Recall

$$
K\left(\mathbb{P}^{1}\right)=\mathbb{Q}[x] /\left(x^{2}\right), \quad x=1-[\mathcal{O}(-1)] .
$$

We have

$$
1+\frac{y}{1+y} x=\mathrm{SMC}_{y}\left(Y(\varnothing)^{\circ}\right) \mathrm{MC}_{y}\left(Y(\varnothing)^{\circ}\right)=(1+y)-(2 y+1) x
$$

Application B

Recall the stable grothendieck polynomial is defined using set-valued tableaux:

Theorem (Buch [6])

$$
(-1)^{|\lambda|} \tilde{G}_{\lambda}\left(-x_{1}, \cdots,-x_{k}, 0, \ldots\right)=\left[\mathcal{O}_{Y(\lambda)}\right] \in K(\operatorname{Gr}(k, n)) .
$$

Dualizing Sheaves

In Lam and Pylyavskyy [8], the omega involution of \tilde{G}_{λ} was studied. It is given by a sum over weak set-valued tableaux:

Theorem (Fan, Guo, Su and Xiong)

$$
\left(\left(1-G_{\square}\right)^{n} J_{\lambda^{\prime}}\right)\left(x_{1}, \ldots, x_{k}, 0, \ldots\right)=\left[\omega_{Y(\lambda)}\right] \in K(\operatorname{Gr}(k, n))
$$

where $\omega_{Y(\lambda)}$ is the dualizing sheaf of $Y(\lambda)$.

Discussion of the proof

By [9],

$$
\mathrm{MC}_{y}\left(Y(\lambda)^{\circ}\right)=y^{\operatorname{dim}}\left[\omega_{Y(\lambda)}\right]+(\text { lower } y \text {-degree })
$$

In the Pieri rule of motivic Chern classes, only the horizontal strip
\square contributes the highest y-degree. Thus

$$
\text { Pieri rule of }\left[\omega_{Y(\lambda)}\right]=\text { adding horizontal strips } ص \text {. }
$$

Compare:
Pieri rule of $\left[\mathcal{O}_{Y(\lambda)}\right]=$ adding vertical strips $[$.
The omega involution switches two kind of strips.

Example: $\operatorname{Gr}(1,2)=\mathbb{P}^{1}$

From the (weak) set-tableaux model, $\tilde{G}_{\square}=J_{\square}=1$, and

$$
\begin{array}{lll}
\tilde{G}_{\square}=\sum_{A} x^{A}=-1+\prod_{i=1}^{\infty}\left(1+x_{i}\right), & A & \begin{array}{l}
\text { nonempty sets } A \\
\text { of positive integers, }
\end{array} \\
J_{\square}=\sum_{B} x^{B}=-1+\prod_{i=1}^{\infty} \frac{1}{1-x_{i}}, & B & \begin{array}{l}
\text { nonempty multisets } B \\
\text { of positive integers. }
\end{array}
\end{array}
$$

Thus for \mathbb{P}^{1}

$$
\begin{aligned}
(-1)^{0} \tilde{G}_{\varnothing}(-x, 0, \cdots) & =1=\left[\mathcal{O}_{Y(\varnothing)}\right], \\
(-1)^{1} \tilde{G}_{\square}(-x, 0, \cdots) & =x=\left[\mathcal{O}_{Y(\square)}\right], \\
\left(\left(1-G_{\square}\right)^{2} \cdot J_{\varnothing}\right)(x, 0, \ldots) & =1-2 x=\left[\omega_{Y(\varnothing)}\right], \\
\left(\left(1-G_{\square}\right)^{2} \cdot J_{\square}\right)(x, 0, \ldots) & =x=\left[\omega_{Y(\square)}\right] .
\end{aligned}
$$

Bonus

A fast algorithm for computing the Hodge diamond of the smooth Plücker hyperplane section of Grassmannian.

Note that

$$
h^{p q}(X)=\operatorname{dim} H^{p q}(X)=\operatorname{dim} H^{q}\left(X, \Omega_{X}^{p}\right)
$$

As a result, by definition,

$$
\chi\left(X, \lambda_{y}(X)\right)=\sum_{p, q} y^{p}(-1)^{q} h^{p q}(X):=\chi_{y}(X)
$$

Motivic Chern class of smooth divisor

For a hypersurface $Y \subset X$, by Lefschetz theorem, only the middle dimension of Hodge diamond of Y cannot directly read from the Hodge diamond of X. To determine the middle dimension, it suffices to compute $\chi_{y}(Y)$. We have

$$
\mathrm{MC}_{y}(Y)=\lambda_{y}(X) \cdot \frac{1-\mathcal{O}(-Y)}{1+y \mathcal{O}(-Y)} \in K(X) \llbracket y \rrbracket .
$$

Thus we can compute the

$$
\chi_{y}(Y)=\chi\left(X, \lambda_{y}(X) \frac{1-\mathcal{O}(-Y)}{1+y \mathcal{O}(-Y)}\right)
$$

Algorithm

Now let us consider a smooth Plücker hyperplane $Y \subset \operatorname{Gr}(k, n)$. Let us write

$$
\lambda_{y}(\operatorname{Gr}(k, n))=\sum_{\lambda \subseteq(n-k)^{k}} \mathrm{MC}_{y}\left(Y(\lambda)^{\circ}\right)
$$

Using our Pieri rule, we can determine the expansion

$$
\lambda_{y}(\operatorname{Gr}(k, n)) \frac{1-\operatorname{det}}{1+y \operatorname{det}}=\sum_{\lambda \subseteq(n-k)^{k}} ? \mathrm{MC}_{y}\left(Y(\lambda)^{\circ}\right)
$$

Then we can compute $\chi_{y}(Y)$.

Example: $k=3$

$Y \subset \operatorname{Gr}(3,5) \quad \operatorname{Gr}(3,6) \quad \operatorname{Gr}(3,7) \quad \operatorname{Gr}(3,8) \quad \operatorname{Gr}(3,9) \quad \operatorname{Gr}(3,10)$

[^0]1
1
2
3
4
4
7
7
8
9
10
30
10
9
8
7
5
4
3
2
1
1

The case of $\operatorname{Gr}(3,10)$ was studied in [10, Theorem 2.2] using Griffiths' description of the vanishing cohomology.

Example: $n=12$

middle dimension
$Y \subset \operatorname{Gr}(1,12)$
$Y \subset \operatorname{Gr}(2,12)$
$Y \subset G r(3,12)$
$Y \subset \operatorname{Gr}(4,12)$
$Y \subset \operatorname{Gr}(5,12)$
$Y \subset G r(6,12)$
$Y \subset \operatorname{Gr}(7,12)$
$Y \subset \operatorname{Gr}(8,12)$
$Y \subset G r(9,12)$
$Y \subset \operatorname{Gr}(10,12)$
$Y \subset \operatorname{Gr}(11,12)$
$177365 \quad 771$
135121308310168117295111729513 1648822253037969378764091693519082783640561693

17801216935729219956253106082662321524047370152404737
1648822253037969378764091693519082783640561693
135121308310168117295111729513
$177365 \quad 771$

$\mathscr{T} h a n k \mathscr{Y}$ ou！

(1. C. Lenart, Combinatorial aspects of the K-theory of Grassmannians, Ann. Combin. 2 (2000), 67-82.
R. MacPherson, Chern classes for singular algebraic varieties, Ann. Math. 100 (1974), 423-432.
R. Aluffi, L. Mihalcea, J. Schürmann and C. Su, Shadows of characteristic cycles, Verma modules, and positivity of Chern-Schwartz-MacPherson classes of Schubert cells, to appear in Duke Math. J., 2017, arXiv:1709.08697v3.

击 N.J.Y. Fan, P.L. Guo and R. Xiong, Pieri and Murnaghan-Nakayama type rules for Chern classes of Schubert cells, arXiv:2211.06802v1.
圊 J. P. Brasselet, J. Schürmann, S.Yokura, Hirzebruch classes and motivic Chern classes for singular spaces. Journal of Topology and Analysis, 2010, 2(01): 1-55.

E－A．Buch，A Littlewood－Richardson rule for the K－theory of Grassmannians，Acta Math． 189 （2002），37－78．

图 A．Buch and P．Chaput and L．Mihalcea and N．Perrin．A Chevalley formula for the equivariant quantum K－theory of cominuscule varieties，Algebr．Geom． 5 （2018），no．5，568－595．
圊 Lam T，Pylyavskyy P．Combinatorial Hopf algebras and K－homology of Grassmanians［J］．International Mathematics Research Notices，2007，2007（9）：rnm125－rnm125．
國 P．Aluffi，L．Mihalcea，J．Schürmann and C．Su，From motivic Chern classes of Schubert cells to their Hirzebruch and CSM classes，arXiv：2212．12509．
國 Olivier Debarre，Claire Voisin．Hyper－Kähler fourfolds and Grassmann geometry．

[^0]: 1
 1
 2
 3
 4
 5
 7
 7
 28
 2
 8
 7
 7
 5
 4
 3
 2
 1
 1

