Pieri Rules over Grassmannian and Applications arXiv:2402.04500 with Neil J.Y. Fan, Peter L.Guo and Changjian Su

Rui Xiong

Grassmannian

Recall that Grassmannian manifold

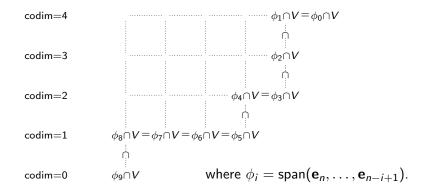
$$\operatorname{Gr}(k,n) = \{ V \subseteq \mathbb{C}^n : \dim V = k \}.$$

We have the following Bruhat decomposition

$$\operatorname{Gr}(k,n) = \bigcup_{\lambda \subseteq (n-k)^k} Y(\lambda)^\circ$$
 (disjoint),

where $Y(\lambda)^{\circ}$ is the **opposite Schubert cell**.

Description



Bruhat Decomposition

Denote Schubert variety

$$Y(\lambda) = \overline{Y(\lambda)^{\circ}} = \bigcup_{\mu \supseteq \lambda} Y(\mu)^{\circ}.$$

The cohomology group and K-group can be computed to be

$$H^*(\operatorname{Gr}(k,n)) = \bigoplus_{\lambda \subseteq (n-k)^k} \mathbb{Q} \cdot [Y(\lambda)].$$
$$K(\operatorname{Gr}(k,n)) = \bigoplus_{\lambda \subseteq (n-k)^k} \mathbb{Q} \cdot [\mathcal{O}_{Y(\lambda)}]$$

Chern Classes

Let \mathcal{V} be the **tautological bundle** over Gr(k, n). We denote

 $c_r = c_r(\mathcal{V}^{\vee}) =$ the *r*-th equivariant **Chern classes** of \mathcal{V}^{\vee} .

It is known that

 $H^*(\operatorname{Gr}(k,n)) = \mathbb{Q}[c_1,\ldots,c_k]/\text{some ideal.}$ $K(\operatorname{Gr}(k,n)) = \mathbb{Q}[c_1,\ldots,c_k]/\text{some ideal.}$

向下 イヨト イヨト

Geometry of cohomology

Roughly speaking cohomology

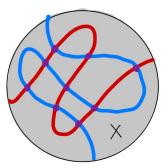
$$H^{\bullet}(X) = \bigoplus_{Y \text{ closed } \subseteq X} \mathbb{Q} \cdot [Y] / \begin{array}{c} \text{HOMOTOPY} \\ \text{EQUIVALENCE} \end{array}$$

with product the transversal intersection

 $[Y_1] \cdot [Y_2] = [Y_1 \pitchfork Y_2].$

Over Gr(k, n), we have **Schubert** class

$$[Y(\lambda)] \in H^{2\ell(\lambda)}(Gr(k, n)).$$



Example: $Gr(1,2) = \mathbb{P}^1$

We have

 $Y(\Box) =$ the point ∞ , $Y(\emptyset) =$ the entire \mathbb{P}^1 .

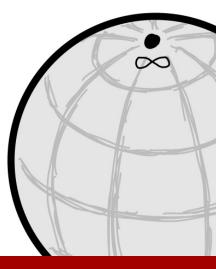
The intersection

Ψ	pt	\mathbb{P}^1
pt	Ø	pt
\mathbb{P}^1	pt	\mathbb{P}^1

The cohomology

$$H^*(\mathbb{P}^1) = \mathbb{Q}[x]/(x^2)$$

where $x = [Y(\Box)]$.



Classical Chevalley Formula

Theorem (Chevalley Formula)

$$c_1(\mathcal{V}^{\vee}) \cdot [Y(\lambda)] = \sum_{\mu=\lambda+\Box} [Y(\mu)].$$

Example:



・ロ・・母・・明・・日・ うくの

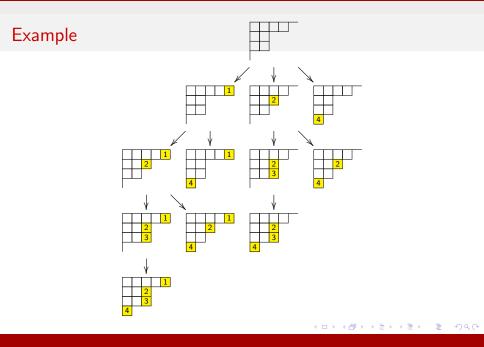
Classical Pieri Rule

Let us denote Schur operators

$$[i] \rightarrow [Y(\lambda)] = \begin{cases} [Y(\mu)], & \mu = \lambda + \Box \text{ in the } i\text{-th row,} \\ 0, & \text{otherwise.} \end{cases}$$

Theorem (Pieri Rule)

$$c_r(\mathcal{V}^{\vee}) \cdot [Y(\lambda)] = \sum_{1 \leq i_1 < \cdots < i_r \leq k} [i_r] \to \cdots [i_1] \to [Y(\lambda)]$$



Geometry of K-theory

Roughly speaking, the K-theory

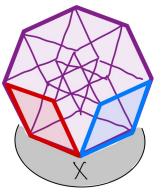
$$K(X) = \bigoplus_{\mathcal{F} \in \mathcal{C}oh \ X} \mathbb{Q} \cdot [\mathcal{F}] / \frac{\text{EXACT}}{\text{SEQUENCES}}$$

with product the tensor product

 $[\mathcal{F}_1] \cdot [\mathcal{F}_2] = [\mathcal{F}_1 \otimes \mathcal{F}_2].$

Over Gr(k, n), we have structure sheaves

$$[\mathcal{O}_{Y(\lambda)}] \in K(\mathrm{Gr}(k, n)).$$



Example: $Gr(1,2) = \mathbb{P}^1$

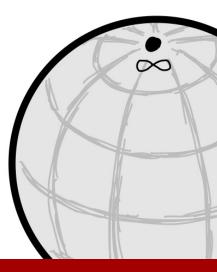
We have

$$0 \to \mathcal{O}(-1) \to \mathcal{O} \to \mathcal{O}_\infty \to 0.$$

Thus $[\mathcal{O}_{\infty}] = 1 - \mathcal{O}(-1).$

The K-theory

 $\mathcal{K}(\mathbb{P}^1)=\mathbb{Q}[x]/(x^2)$ where $x=1-\mathcal{O}(-1)=[\mathcal{O}_{Y(\Box)}].$

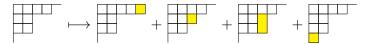


K-theory Chevalley Formula

Theorem (Lenart [1])

$$c_1(\mathcal{V}^ee) \cdot [\mathcal{O}_{\boldsymbol{Y}(\lambda)}] = \sum_{\mu = \lambda + \left[
ight]} [\mathcal{O}_{\boldsymbol{Y}(\mu)}].$$

Example:



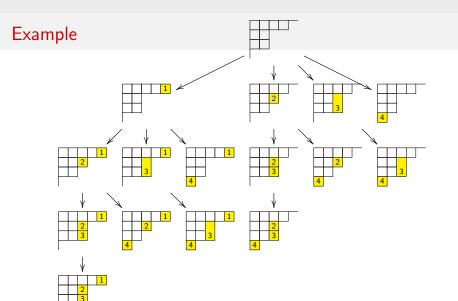
K-theory Pieri Rule

Let us denote Schur operators

$$[i] \to [\mathcal{O}_{Y(\lambda)}] = [\mathcal{O}_{Y(\mu)}]$$

where $\mu = \lambda + a$ vertical strip with its tail at the *i*-th row. Theorem (Lenart [1])

$$c_r(\mathcal{V}^{\vee}) \cdot [\mathcal{O}_{Y(\lambda)}] = \sum_{1 \leq i_1 < \cdots < i_r \leq k} [i_r] \rightarrow \cdots [i_1] \rightarrow [\mathcal{O}_{Y(\lambda)}].$$



æ

Constructible Functions

Consider

$$\mathsf{Fun}(X) = \{ \text{constructible functions over } X \}$$
$$= \mathsf{span}(\mathbf{1}_A : A \subseteq X \text{ closed}).$$

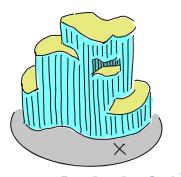
For any proper map $f : X \rightarrow Y$, we have a **push-forward**

 $f_*: \operatorname{Fun}(X) \to \operatorname{Fun}(Y)$

defined such that

$$(f_*(\mathbf{1}_A))(y) = \chi_c(A_y)$$

the Euler characteristic of fibre A_{y} .



CSM classes

By MacPherson [2], there is a natural transform (wrt push-forward) called Chern–Schwartz–MacPherson classes

$$c_{\mathsf{SM}} : \mathsf{Fun}(-) \to H_{ullet}(-),$$

such that when X is smooth

 $c_{SM}(X) =$ total Chern class of the tangent bundle of X.

Over Gr(k, n), we have **CSM classes**

$$c_{\mathsf{SM}}(Y(\lambda)^\circ) := c_{\mathsf{SM}}(\mathbf{1}_{Y(\lambda)^\circ}) \in H^*(\mathsf{Gr}(k,n)).$$

Example: $Gr(1,2) = \mathbb{P}^1$

Recall

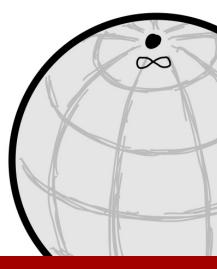
$$Y(\Box)^{\circ} =$$
the point ∞ ,
 $Y(\varnothing)^{\circ} = \mathbb{P}^1 \setminus \{\infty\}.$

So by definition,

$$c_{\mathsf{SM}}(Y(\Box)^\circ) = [Y(\Box)] = x.$$

Since $\mathscr{T}_{\mathbb{P}^1} = \mathcal{O}(2)$, we have

 $\frac{\text{total Chern class} = 1 + 2x}{c_{\text{SM}}(Y(\Box)^{\circ}) = x}$ $c_{\text{SM}}(Y(\varnothing)^{\circ}) = 1 + x$

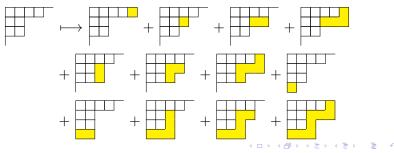


CSM Chevalley formula

Theorem (Aluffi, Mihalcea, Schürmann and Su [3])

$$c_1(\mathcal{V}^ee) \cdot c_{\mathsf{SM}}(Y(\lambda)^\circ) = \sum_{\mu = \lambda + \bigsqcup^{\sim}} c_{\mathsf{SM}}(Y(\mu)^\circ).$$

Example:



CSM Pieri Rule

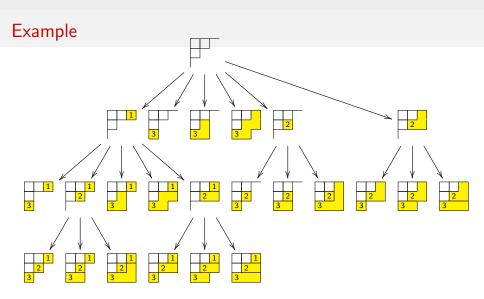
Let us denote ribbon Schubert operators

$$[i] \rightarrow c_{\mathsf{SM}}(Y(\lambda)^\circ) = \sum_{\mu} c_{\mathsf{SM}}(Y(\mu)^\circ)$$

where the sum over $\mu=\lambda+$ a ribbon strip with its tail at the i-th row.

Theorem (Fan, Guo and Xiong [4])

$$c_r(\mathcal{V}^{\vee}) \cdot c_{\mathsf{SM}}(Y(\lambda)^{\circ}) = \sum_{1 \leq i_1 < \cdots < i_r \leq k} [i_r | \rightarrow \cdots [i_1 | \rightarrow c_{\mathsf{SM}}(Y(\lambda)^{\circ}).$$



Grothendieck group

Consider the Grothendieck group of varieties

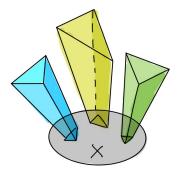
$$\mathsf{G}(X) = \bigoplus_{\text{variety } Z \to X} \mathbb{Z} \cdot [Z \to X] \Big/ [U \to X] + [Z \setminus U \to X] = [Z \to X].$$

For any proper map $f : X \rightarrow Y$, we have a **push-forward**

 $f_*: \mathsf{G}(X) \to \mathsf{G}(Y)$

with

$$f_*[Z \to X] = [Z \to X \to Y].$$



Motivic Chern classes

By Brasselet, Schürmann and Yokura [5], there is a natural transform (wrt push-forward) called **motivic Chern classes**

$$\mathsf{MC}_y:\mathsf{G}(-)\to K(-)[y],$$

such that when X is smooth,

$$\mathsf{MC}_y(X) = \lambda$$
-class $= \sum_{k=1}^{\dim X} y^k [\Lambda^k \mathscr{T}_X^{\vee}].$

Over Gr(k, n), we have **motivic Chern classes**

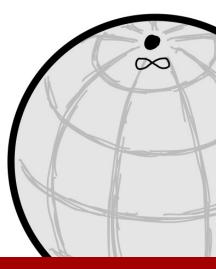
 $\mathsf{MC}_y(Y(\lambda)^\circ) := \mathsf{MC}_y([Y(\lambda)^\circ \to \mathsf{Gr}(k, n)]) \in K(\mathsf{Gr}(k, n)).$

Example: $Gr(1,2) = \mathbb{P}^1$

Similarly,

$$MC_{y}(Y(\Box)^{\circ}) = [\mathcal{O}_{Y(\Box)}] = x.$$

Recall that $x = 1 - \mathcal{O}(-1).$
Since $\mathscr{T}_{\mathbb{P}^{1}} = \mathcal{O}(2)$, we have
$$\frac{\lambda \text{-class} = 1 + y\mathcal{O}(-2)}{(1 + y) - 2yx}$$
$$\frac{\lambda \text{-class} = 1 + y\mathcal{O}(-2)}{MC_{y}(Y(\varnothing)^{\circ}) = (1 + y) - (2y + 1)x}$$
$$MC_{y}(Y(\Box)^{\circ}) = x$$

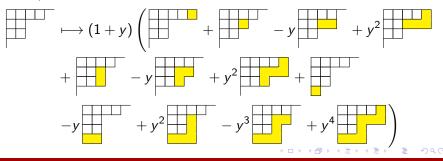


MC Chevalley formula

Theorem (Fan, Guo, Su and Xiong)

$$c_1(\mathcal{V}^{\vee}) \cdot \mathsf{MC}_y(Y(\lambda)^{\circ}) = (1+y) \sum_{\mu=\lambda+\square} (-y)^{\mathsf{wd}(\mu/\lambda)-1} \mathsf{MC}_y(Y(\mu)^{\circ}).$$

Example:



MC Pieri Rule

Let us denote ribbon Schubert operators

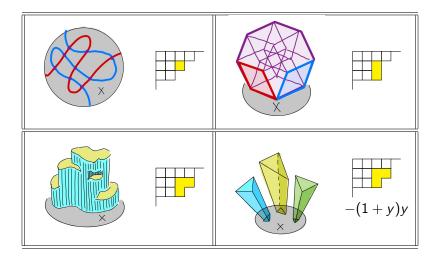
$$[i] \to \mathsf{MC}_y(Y(\lambda)^\circ) = (1+y) \sum_{\mu} (-y)^{\mathsf{wd}(\mu/\lambda) - 1} \mathsf{MC}_y(Y(\mu)^\circ)$$

where the sum over $\mu=\lambda+$ a ribbon strip with its tail at the i-th row.

Theorem (Fan, Guo, Su and Xiong)

$$c_r(\mathcal{V}^{\vee})\cdot\mathsf{MC}_y(Y(\lambda)^{\circ}) = \sum_{1\leq i_1<\cdots< i_r\leq k} [i_r| \to \cdots [i_1| \to \mathsf{MC}_y(Y(\lambda)^{\circ}).$$

Summary



Affine Hecke algebra

7

Our approach is by introducing a version of affine Hecke algebra of three parameters

$$T_{i}^{2} = -(p - q)T_{i} + pq$$

$$T_{i}T_{j} = T_{j}T_{i}, \quad |i - j| > 1,$$

$$T_{i}T_{i+1}T_{i} = T_{i+1}T_{i}T_{i+1},$$

$$x_{i}x_{j} = x_{j}x_{i},$$

$$T_{i}x_{j} = x_{j}T_{i}, \quad j \neq i, i + 1,$$

$$T_{i}x_{i} = x_{i+1}T_{i} + (\hbar - (p - q)x_{i}),$$

$$T_{i}x_{i+1} = x_{i}T_{i} - (\hbar - (p - q)x_{i}).$$

Rôles of p, q, \hbar

It turns out that p, q, \hbar control the following ribbon statistics

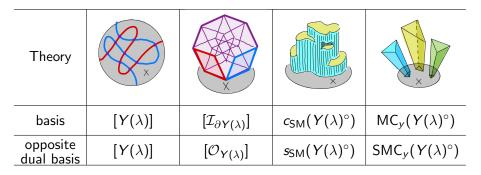
p: height -1, q: width -1, \hbar : number of ribbons.

We have the following table

classes	(p,q,\hbar)	Pieri rule
$[Y(\lambda)]$	(0, 0, 1)	adding boxes \Box
$[\mathcal{O}_{Y(\lambda)}]$	(1, 0, 1)	adding vertical strips []
$c_{SM}(Y(\lambda)^\circ)$	(1, 1, 1)	adding ribbons 🛛
$MC_y(Y(\lambda)^\circ)$	(1, -y, 1+y)	adding ribbons \square and counting width

Dual Basis

In all four cases, we have another choice of basis



Theorem (Fan, Guo, Su and Xiong)

The opposite dual basis has the same Pieri rule as basis.

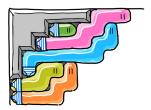
Discussion of the proof

A priori, the Pieri rule for the opposite dual basis is given by [i], the adjoint operator on the 180° rotated complement.

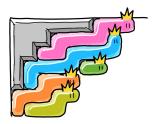
[*i*] ... with its tail at the *i*-th row ...

i] ... with its **head** at the *i*-th row ...

But they are equivalent:



v.s.

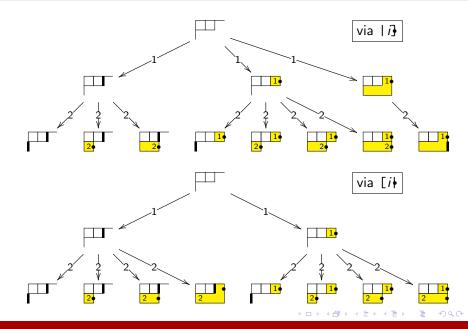


Equivariant version

All the basis are defined in equivariant cohomology/K-theory. Theorem (Fan, Guo, Su and Xiong) The equivariant classes $[Y(\lambda)], [\mathcal{I}_{\partial Y(\lambda)}], c_{SM}(Y(\lambda)^{\circ}), MC_{v}(Y(\lambda)^{\circ})$ satisfy the head-valued Pieri rule, i.e. |i] or equivalently [i]. Theorem (Fan, Guo, Su and Xiong) The equivariant classes $[Y(\lambda)], [\mathcal{O}_{Y(\lambda)}], s_{SM}(Y(\lambda)^{\circ}), SMC_{Y}(Y(\lambda)^{\circ})$

satisfy the tail-valued Pieri rule, i.e. i or equivalently [i|.

$$|2] \rightarrow = t_{3} \cdot \mathbf{1} + (\hbar - (p - q)t_{4}) \cdot \mathbf{2} + (\hbar - (p - q)t_{5}) \cdot \mathbf{1} + (\hbar - (p - q)t_{5})pq^{2} \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5})pq^{2} \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{3}) \cdot \mathbf{2} + (\hbar - (p - q)t_{3}) \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{3}) \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{1})pq^{2} \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{1})pq^{2} \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{1})pq^{2} \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{3}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{1} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{2} \cdot \mathbf{1} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{1} \cdot \mathbf{1} \cdot \mathbf{1} + (\hbar - (p - q)t_{5}) \cdot \mathbf{1} \cdot \mathbf{1$$



Application A

There is a classic relation between ideal sheaves and structure sheaves over Grassmannian.

Theorem (Buch [6], see also [7, Prop. 4.2])

$$(1 - [\mathcal{O}_{Y(\Box)}]) \cdot [\mathcal{O}_{Y(\lambda)}] = [\mathcal{I}_{\partial Y(\lambda)}].$$

This can be generalized to equivariant K-theory.

$$\frac{(1-[\mathcal{O}_{Y(\Box)}])\cdot[\mathcal{O}_{Y(\lambda)}]}{1-[\mathcal{O}_{Y(\Box)}]|_{\lambda}}=[\mathcal{I}_{\partial Y(\lambda)}]\in K_{T}(\mathsf{Gr}(k,n)).$$

Relation between MC and SMC

Using our Pieri rule, we can prove the following analogy for MC and SMC classes.

Theorem (Fan, Guo, Su and Xiong)

$$\lambda_{y}(\mathscr{T}_{\mathsf{Gr}(k,n)}^{\vee}) \cdot (1 - [\mathcal{O}_{Y(\Box)}]) \cdot \mathsf{SMC}_{y}(Y(\lambda)^{\circ}) = \mathsf{MC}_{y}(Y(\lambda)^{\circ}).$$

This can be generalized to equivariant K-theory.

$$\lambda_{y}(\mathscr{T}_{\mathsf{Gr}(k,n)}^{\vee}) \cdot \frac{(1 - [\mathcal{O}_{Y(\Box)}]) \cdot \mathsf{SMC}_{y}(Y(\lambda)^{\circ})}{1 - [\mathcal{O}_{Y(\Box)}]|_{\lambda}} = \mathsf{MC}_{y}(Y(\lambda)^{\circ}).$$

If we set y = 0, we will recover the result in the previous page.

Discussion of the proof

The proof is by one sentence:

both sides have the same Pieri rule and they agree after certain specialization.

Precisely:

the factor

 $1 - [\mathcal{O}_{Y(\Box)}]|_{\lambda}$

intertwines $\{i \mid and [i];$

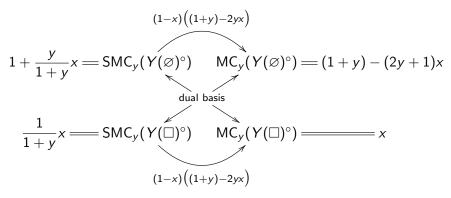
the factor rest gives normalization by looking at localization.

Example: $Gr(1,2) = \mathbb{P}^1$

Recall

$$\mathcal{K}(\mathbb{P}^1)=\mathbb{Q}[x]/(x^2),\qquad x=1-[\mathcal{O}(-1)].$$

We have



Application B

Recall the **stable grothendieck polynomial** is defined using set-valued tableaux:

Theorem (Buch [6])

$$(-1)^{|\lambda|} \tilde{G}_{\lambda}(-x_1, \cdots, -x_k, 0, \ldots) = [\mathcal{O}_{Y(\lambda)}] \in \mathcal{K}(\mathsf{Gr}(k, n)).$$

Dualizing Sheaves

In Lam and Pylyavskyy [8], the omega involution of \tilde{G}_{λ} was studied. It is given by a sum over weak set-valued tableaux:

		11	334	55	
$J_{\lambda} = \sum x^{T},$	e.g.	12	4	ſ	fi
$T \in WSVT(\lambda)$		223		1	s v

filled by nonempty multi-sets strictly increasing in row weakly increasing in column

6

Theorem (Fan, Guo, Su and Xiong)

 $((1-G_{\Box})^n J_{\lambda'})(x_1,\ldots,x_k,0,\ldots) = [\omega_{Y(\lambda)}] \in K(Gr(k,n))$

where $\omega_{Y(\lambda)}$ is the dualizing sheaf of $Y(\lambda)$.

Discussion of the proof

By [9],

$$\mathsf{MC}_{y}(Y(\lambda)^{\circ}) = y^{\mathsf{dim}}[\omega_{Y(\lambda)}] + (\mathsf{lower } y \mathsf{-degree}).$$

In the Pieri rule of motivic Chern classes, only the horizontal strip \Box contributes the highest *y*-degree. Thus

Pieri rule of $[\omega_{Y(\lambda)}]$ = adding horizontal strips \Box .

Compare:

Pieri rule of
$$[\mathcal{O}_{Y(\lambda)}] = adding vertical strips [].$$

The omega involution switches two kind of strips.

Example: $Gr(1,2) = \mathbb{P}^1$

From the (weak) set-tableaux model, $ilde{G}_{\Box}=J_{\Box}=1$, and

$$\begin{split} \tilde{G}_{\Box} &= \sum_{A} x^{A} = -1 + \prod_{i=1}^{\infty} (1+x_{i}), \quad \boxed{A} \quad \begin{array}{c} \text{nonempty sets } A \\ \text{of positive integers,} \\ J_{\Box} &= \sum_{B} x^{B} = -1 + \prod_{i=1}^{\infty} \frac{1}{1-x_{i}}, \quad \boxed{B} \quad \begin{array}{c} \text{nonempty multisets } B \\ \text{of positive integers.} \\ \end{split}$$

Thus for \mathbb{P}^1

$$(-1)^0 \tilde{G}_{\varnothing}(-x,0,\cdots) = 1 = [\mathcal{O}_{Y(\varnothing)}],$$

$$(-1)^1 \tilde{G}_{\Box}(-x,0,\cdots) = x = [\mathcal{O}_{Y(\Box)}],$$

$$((1-G_{\Box})^2 \cdot J_{\varnothing})(x,0,\ldots) = 1 - 2x = [\omega_{Y(\varnothing)}],$$

$$((1-G_{\Box})^2 \cdot J_{\Box})(x,0,\ldots) = x = [\omega_{Y(\Box)}].$$

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ◆ ● ◆ ●

Bonus

A fast algorithm for computing the **Hodge diamond** of the smooth Plücker hyperplane section of Grassmannian.

Note that

$$h^{pq}(X) = \dim H^{pq}(X) = \dim H^q(X, \Omega_X^p).$$

As a result, by definition,

$$\chi(X,\lambda_y(X))=\sum_{p,q}y^p(-1)^qh^{pq}(X):=\chi_y(X).$$

Motivic Chern class of smooth divisor

For a hypersurface $Y \subset X$, by Lefschetz theorem, only the middle dimension of Hodge diamond of Y cannot directly read from the Hodge diamond of X. To determine the middle dimension, it suffices to compute $\chi_{\gamma}(Y)$. We have

$$\mathsf{MC}_y(Y) = \lambda_y(X) \cdot \frac{1 - \mathcal{O}(-Y)}{1 + y\mathcal{O}(-Y)} \in K(X)\llbracket y \rrbracket.$$

Thus we can compute the

$$\chi_{y}(Y) = \chi\left(X, \lambda_{y}(X)\frac{1 - \mathcal{O}(-Y)}{1 + y\mathcal{O}(-Y)}\right)$$

Algorithm

Now let us consider a smooth Plücker hyperplane $Y \subset Gr(k, n)$. Let us write

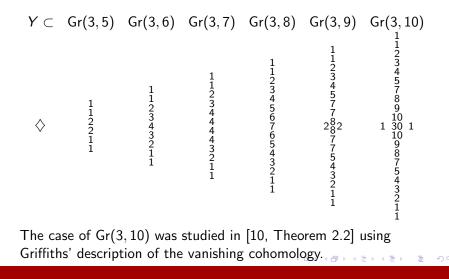
$$\lambda_y(\operatorname{Gr}(k, n)) = \sum_{\lambda \subseteq (n-k)^k} \operatorname{MC}_y(Y(\lambda)^\circ).$$

Using our Pieri rule, we can determine the expansion

$$\lambda_y(\operatorname{Gr}(k,n))\frac{1-\operatorname{det}}{1+y\operatorname{det}} = \sum_{\lambda\subseteq (n-k)^k} \operatorname{?MC}_y(Y(\lambda)^\circ).$$

Then we can compute $\chi_y(Y)$.

Example: k = 3



Example: n = 12

middle dimension 1 0 1 77 365 77 1 1 351 21308 310168 1172951 1172951 3 1 648 82225 3037969 37876409 169351908 278364056 16935 $Y \subset \mathsf{Gr}(6, 12)$ 1 780 121693 5729219 95625310 608266232 1524047370 152404737 1 648 82225 3037969 37876409 169351908 278364056 16935 1 351 21308 310168 1172951 1172951 3 1 77 365 77 1 0 1

 $Y \subset Gr(1, 12)$ $Y \subset Gr(2, 12)$ $Y \subset Gr(3, 12)$ $Y \subset Gr(4, 12)$ $Y \subset Gr(5, 12)$ $Y \subset Gr(7, 12)$ $Y \subset Gr(8, 12)$ $Y \subset Gr(9, 12)$ $Y \subset Gr(10, 12)$ $Y \subset Gr(11, 12)$

Thank You!



- C. Lenart, Combinatorial aspects of the K-theory of Grassmannians, Ann. Combin. 2 (2000), 67–82.
- R. MacPherson, Chern classes for singular algebraic varieties, Ann. Math. 100 (1974), 423–432.
- P. Aluffi, L. Mihalcea, J. Schürmann and C. Su, Shadows of characteristic cycles, Verma modules, and positivity of Chern–Schwartz–MacPherson classes of Schubert cells, to appear in Duke Math. J., 2017, arXiv:1709.08697v3.
- N.J.Y. Fan, P.L. Guo and R. Xiong, Pieri and Murnaghan–Nakayama type rules for Chern classes of Schubert cells, arXiv:2211.06802v1.
- J. P. Brasselet, J. Schürmann, S.Yokura, Hirzebruch classes and motivic Chern classes for singular spaces. Journal of Topology and Analysis, 2010, 2(01): 1-55.

- A. Buch, A Littlewood–Richardson rule for the K-theory of Grassmannians, Acta Math. 189 (2002), 37–78.
- A. Buch and P. Chaput and L. Mihalcea and N. Perrin. A Chevalley formula for the equivariant quantum K-theory of cominuscule varieties, Algebr. Geom. 5 (2018), no. 5, 568–595.
- Lam T, Pylyavskyy P. Combinatorial Hopf algebras and K-homology of Grassmanians[J]. International Mathematics Research Notices, 2007, 2007(9): rnm125-rnm125.
- P. Aluffi, L. Mihalcea, J. Schürmann and C. Su, *From motivic Chern classes of Schubert cells to their Hirzebruch and CSM classes*, arXiv:2212.12509.
- Olivier Debarre, Claire Voisin. Hyper-Kähler fourfolds and Grassmann geometry.