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Grassmannian

Recall that Grassmannian manifold
Gr(k,n) ={V CC":dimV = k}.
We have the following Bruhat decomposition
Gr(k,n) = Uxc(n-ryx Y(A)° (disjoint),

where Y(\)° is the opposite Schubert cell.



Description
—\ ©
For example, V € Y ( l ) =
codim=4 ¢1NV =¢oNV
N
codim=3 $2NV
n
codim=2 ¢aNV =¢3NV
N
codim=1 BNV = 7NV =NV = 5NV
n
codim=0 BNV where ¢; = span(ep, ..., €,-it11).



Bruhat Decomposition

Denote Schubert variety

Y(A) = Y(A)° = Uuon Y1)

The cohomology group and K-group can be computed to be

H*(Gr(k,n) = € Q-[Y()]

AC(n—k)k

K(Gr k n = @ Q [Oy()\)]

AC(n—k)k



Chern Classes

Let V be the tautological bundle over Gr(k, n). We denote
¢ = ¢,(VY) = the r-th equivariant Chern classes of V.
It is known that
H*( Gr(k,n)) = Q[cy, .. ., ck]/some ideal.

K(Gr(k,n)) = Q[ct, . .., ck]/some ideal.



Geometry of cohomology

Roughly speaking cohomology

He(X) = @ Q-[Y]/ HOMOTOPY

EQUIVALENCE
Y closed CX

with product the transversal
intersection

[Yi] - [Y2] = [Y1 b Y2l

Over Gr(k, n), we have Schubert
class

[Y (V)] € H*N(Gr(k, n)).



Example: Gr(1,2) = P!
We have

Y (O) = the point oo,

Y (2) = the entire PL. ([
(9, @)
The intersection
M pt P!
pt 6] pt
P | pt P!

The cohomology
H*(P*) = Q[x]/(x*)

where x = [Y(0O)].




Classical Chevalley Formula

Theorem (Chevalley Formula)

a(') - [YWI= Y [Y(wl.

p=XA+0

Example:




Classical Pieri Rule

Let us denote Schur operators

(i1 = [Y(\)] = {[Y(M)], M= )\—.Hj in the i-th row,
0, otherwise.
Theorem (Pieri Rule)

W) YW= D d =] = [YOL

1< < <i <k
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Geometry of K-theory

Roughly speaking, the K-theory
EXACT
= D eI ]

SEQUENCES
FeCoh X

with product the tensor product
[F1] - [F2] = [F1 @ F2l.

Over Gr(k, n), we have structure
sheaves

[Oy()\)] S K(Gr(k n



Example: Gr(1,2) = P!

We have
0—-0(-1) = 0 — Oy — 0. e

Thus [Ox] =1 — O(-1).

The K-theory
K(P') = Q[x]/(x*)
where x =1 — O(-1) = [Oy()].




K-theory Chevalley Formula

Theorem (Lenart [1])

a(W) - [Oyml= D Oyl
p=2+{]
Example:
[] [ 1] [] I []
= — /e il
i i ] -




K-theory Pieri Rule

Let us denote Schur operators

(i1 = [Oy] = [Oy(w]
where 1 = A+ a vertical strip with its tail at the /-th row.

Theorem (Lenart [1])

(W) [Oypyl= > Ll =] =[Oyl

1<ij<-<iy <k
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Constructible Functions
Consider

Fun(X) = {constructible functions over X}
=span(1ls: A C X closed).

For any proper map f : X = Y, we
have a push-forward

f. : Fun(X) — Fun(Y)
defined such that

(£(1a))(y) = xc(Ay)

the Euler characteristic of fibre A, .




.
CSM classes

By MacPherson [2], there is a natural transform (wrt
push-forward) called Chern—-Schwartz—MacPherson classes

csm - Fun(=) — He(—),
such that when X is smooth
csm(X) = total Chern class of the tangent bundle of X.

Over Gr(k, n), we have CSM classes

csm(Y(N)°) i= csm(Lyqaye) € H*(Gr(k, n)).



——
Example: Gr(1,2) = P!
Recall

Y (O)° = the point oo,
Y(2)° =P\ {c0}. ®

So by definition,
esm(Y(0)) = [Y([B)] = x.
Since Jp = O(2), we have

total Chern class=1 + 2x

m(YOP)=  x
csm(Y(2)°)=1+4x




CSM Chevalley formula

Theorem (Aluffi, Mihalcea, Schirmann and Su [3])

aW) em(Y(A)) = D cm(Y(n)°).
p=A+ T

Example:

] mE m u |
H —H o+ o+ |




.
CSM Pieri Rule

Let us denote ribbon Schubert operators

Lil = esm(Y(A)°) = esm(Y(1)°)

where the sum over pt = A+ a ribbon strip with its tail at the i-th
row.

Theorem (Fan, Guo and Xiong [4])

(W )esm(YN)) = D Lirl = Ll = csm(Y(N)°).

1<ij <<y <k



/N
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Grothendieck group

Consider the Grothendieck group of varieties

G(X) = @ Z-1Z — X]/[U—>X]+[Z\U—>X]—[Z—>X].

variety Z—X

For any proper map f : X — Y, we
have a push-forward

f : G(X) = G(Y)
with

flZ = X]=[Z—X—=Y].




Motivic Chern classes

By Brasselet, Schiirmann and Yokura [5], there is a natural
transform (wrt push-forward) called motivic Chern classes

MC, : G(=) = K(=)lv],

such that when X is smooth,

dim X
MCy(X) = A-class = )~ y*[AFF¥].
k=1

Over Gr(k, n), we have motivic Chern classes

MC,(Y(A)°) := MC,([Y(\)° — Gr(k, n)]) € K(Gr(k, n)).



Example: Gr(1,2) = P!

Similarly,

MC, (Y(D)°) = [Oy()] = x. ®
Recall that x =1 — O(-1).
Since Jp1 = O(2), we have

A-class=1+ yO(-2)
=(1+y)—2yx

MC, (Y (2)°) = (1+y) — (2y + 1)x
G (Y(O)°) =

M X




MC Chevalley formula

Theorem (Fan, Guo, Su and Xiong)

a(V)MC (Y(N)) = (1+y) D (=)D TIMC, (Y (n)°).

p=x+ T
Example:
[] [T] [] [] | W
H — 0+t -y Y
I [] | []
+ 1 — Y1 + v + 1
]




e
MC Pieri Rule

Let us denote ribbon Schubert operators
[il = MCy(Y(A)°) = (1+y) Y _(—y)" W I7IMC, (Y (1)°)
I

where the sum over p = A+ a ribbon strip with its tail at the i-th
row.

Theorem (Fan, Guo, Su and Xiong)

(V)MC(Y(N)) = > Lirl = Ll = MC(Y(A)°).

1< <-<ir<k



Summary




——
Affine Hecke algebra

Our approach is by introducing a version of affine Hecke algebra of
three parameters

T?=—(p—q)Ti+pq
TiT,=T;T;, |i—jl>1,
TiTizaTi = Tiga TiTiga,
XiXj = XjXi,
Tixi=x;Ti, j#i,i+1,
Tixi = xi+1Ti + (R — (p — q)xi),
Tixiy1=xTi — (h— (p — q)xi)-



Réles of p,q,h
It turns out that p, g, h control the following ribbon statistics
p : height — 1, g : width — 1, h : number of ribbons.

We have the following table

classes (p,q,h) Pieri rule

[Y(N)] (0,0,1) adding boxes [J

[Oy)] (1,0,1) adding vertical strips []
asm(Y(A)°) (1,1,1) adding ribbons JT

MC,(Y(N)°) (1,—y,1+y) adding ribbons JI' and counting width




Dual Basis

In all four cases, we have another choice of basis

I
Theary X il
X X
basis [Y(N)] [Zoy ()] csm(Y(A)°) | MCy(Y(A)°)
dciJF;FI)ObSeiag?s [Y(N)] Oyl | ssm(Y(A)°) | SMC,(Y(A)°)

Theorem (Fan, Guo, Su and Xiong)

The opposite dual basis has the same Pieri rule as basis.




Discussion of the proof

A priori, the Pieri rule for the opposite dual basis is given by |i],
the adjoint operator on the 180° rotated complement.

[i] ...with its tail | /] ...with its head
at the j-th row . .. at the j-th row . ..

But they are equivalent:




Equivariant version

All the basis are defined in equivariant cohomology/K-theory.

Theorem (Fan, Guo, Su and Xiong)

The equivariant classes

YO, Zovpyl,  asm(Y(A)°), MG (Y(A)°)
satisfy the head-valued Pieri rule, i.e. |} or equivalently [i}.

Theorem (Fan, Guo, Su and Xiong)
The equivariant classes

[YOIL Oyl ssm(Y(A)?),  SMCy(Y(A)°)
satisfy the tail-valued Pieri rule, i.e. $i] or equivalently ¢i|.



T R (P H= = AR R I S =
+(h—(p—q)ta)p - I3 +(h—(P—q)t5)Pq2'£g,
215 0 = 0 s (p-an) B (- (- a)) - [
+(h—(p—q)t1)pq -, | +(ﬁ—(p—q)t1)pq E&F
2= B =6 T (- [+ (- (p— q)ts) - [
+(h—(p—q)ts)q - ]+ (p—q)t7)pq E
E2'—>Hjjzfs-HjjJr(h—(p—q)taz)-Jr(h—(p—Q)f-“s)-EE
F(h—(p—a)ts)a- 2T+ (h— (p— q)ts)pa® - o2,

N
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Application A

There is a classic relation between ideal sheaves and structure
sheaves over Grassmannian.

Theorem (Buch [6], see also [7, Prop. 4.2])

(1= [Oy@]) - [Oy)] = Zovn)]-

This can be generalized to equivariant K-theory.

(1 - [Oy@]) - [Oy]
1 =[Oyl

= [Zoy(n)] € K7(Gr(k, n)).



.
Relation between MC and SMC

Using our Pieri rule, we can prove the following analogy for MC
and SMC classes.

Theorem (Fan, Guo, Su and Xiong)
M (Terkm) - (1= [Oy(@)]) - SMCy(Y(A)°) = MCy (Y (A)%).
This can be generalized to equivariant K-theory.

1—[Oy SMC, (Y(M)°
B = = e BT

If we set y = 0, we will recover the result in the previous page.



Discussion of the proof

The proof is by one sentence:

both sides have the same Pieri rule and
they agree after certain specialization.

Precisely:
> the factor
1 =[Oyl
intertwines £/ | and [i¢;

> the factor rest gives normalization by looking at localization.



Example: Gr(1,2) = P!
Recall
K(P') =Qlx/(x*),  x=1-[0(-1)]
We have

(1—x) ((1+y)—2yx)

N

1+ =L ox—=SMC,(Y(2)))  MC,(Y(2)°) = (1+) - (2y +1)x

ty
dual basis
1 S-S
T == SMG(Y(O))  MG(Y(O)) ——=x

NS

(1—x) ((1+y)—2yx)



Application B

Recall the stable grothendieck polynomial is defined using
set-valued tableaux:

1 (123|35| 6
~ T
G\ = Z X, €8 234 46 {filled by nonempty sets

TeSVT(X) strictly increasing in column
weakly increasing in row

Theorem (Buch [6])
()M Ga(—x1, -, —xk,0,...) = [Oy (] € K(Gr(k, n)).



Dualizing Sheaves

In Lam and Pylyavskyy [8], the omega involution of Gy was
studied. It is given by a sum over weak set-valued tableaux:

11[334/55| 6
h= >, x', eg |12]4
TEWSVT(A) 293 {

Theorem (Fan, Guo, Su and Xiong)

((]. - GD)nJX)(Xl, cee s Xk 07 .o

filled by nonempty multi-sets
strictly increasing in row
weakly increasing in column

) = [wywl € K(Gr(k, n))

where wy(y) is the dualizing sheaf of Y'()).



Discussion of the proof

By [9],
MC,(Y(N)°) = ydim[wy(,\)] + (lower y-degree).

In the Pieri rule of motivic Chern classes, only the horizontal strip
— contributes the highest y-degree. Thus

Pieri rule of [wy(x)] = adding horizontal strips —.
Compare:
Pieri rule of [Oy ()] = adding vertical strips 0.

The omega involution switches two kind of strips.



Example: Gr(1,2) = P!

From the (weak) set-tableaux model, Go = J5 = 1, and

o0
_ A ' nonempty sets A
Gg = ZX =1+ H(l +xi), | A of positive integers,

_ B nonempty multisets B
o= ZX 1+ H 1—x’ Bl of positive integers.

Thus for P!



Bonus

A fast algorithm for computing the Hodge diamond of the
smooth Pliicker hyperplane section of Grassmannian.

Note that
hP9(X) = dim HPI(X) = dim Hq(X,Qf().
As a result, by definition,

XX A (X)) = D yP(=1)7hP9(X) = xy(X).



Motivic Chern class of smooth divisor

For a hypersurface Y C X, by Lefschetz theorem, only the middle
dimension of Hodge diamond of Y cannot directly read from the
Hodge diamond of X. To determine the middle dimension, it
suffices to compute x,(Y). We have

1-0(-Y)

1+,0(—Y) € K(X)Iv1-

MCy(Y) = Ay(X) -

Thus we can compute the

W =x (XA 0 )



Algorithm

Now let us consider a smooth Pliicker hyperplane Y C Gr(k, n).
Let us write

A (Gr(k,n) = > MC,(Y(A)°).
AC(n—k)k
Using our Pieri rule, we can determine the expansion

1 — det

Ay(Gr(k, n))Tydet =

> TMC(Y(M)).

AC(n—k)k

Then we can compute x, (Y).



Example: k=3

Y € Gr(3,5) Gr(3,6) Gr(3,7) Gr(3,8) Gr(3,9) Gr(3,10)

NN =
HENWSWNFRE
HENWABRDRWNRF

HENWACIO~NOCTAWN ==
N
RN WS TN~ 0000~ ~ 01D WNH -
N
=
e
HHENWACNOOS S5 0o~NGTAWN
[

The case of Gr(3,10) was studied in [10, Theorem 2.2] using
Griffiths' description of the vanishing cohomology.



Example: n =12

middle dimension

Y C Gr(1,12) 1

Y C Gr(2,12) 0

Y C Gr(3,12) 177365 771

Y C Gr(4,12) 1 351 21308 310168 1172951 1172951 3
Y C Gr(5,12) 1 648 82225 3037969 37876409 169351908 278364056 1693!
Y C Gr(6,12) 1780 121693 5729219 95625310 608266232 1524047370 152404737
Y C Gr(7,12) 1 648 82225 3037969 37876409 169351908 278364056 1693!
Y C Gr(8,12) 1 351 21308 310168 1172951 1172951 3
Y C Gr(9,12) 177365 771

Y C Gr(10,12) 0

Y C Gr(11,12) 1



Thank %ou!
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