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Grassmannian

Recall that Grassmannian manifold

Gr(k, n) =
{
V ⊆ Cn : dimV = k

}
.

We have the following Bruhat decomposition

Gr(k, n) =
⋃

λ⊆(n−k)k Y (λ)◦ (disjoint),

where Y (λ)◦ is the opposite Schubert cell.



Description

For example, V ∈ Y

( )◦

⇐⇒

codim=4 ϕ1∩V =ϕ0∩V

codim=3 ϕ2∩V

∩

codim=2 ϕ4∩V =ϕ3∩V

∩

codim=1 ϕ8∩V =ϕ7∩V =ϕ6∩V =ϕ5∩V

∩

codim=0 ϕ9∩V

∩

where ϕi = span(en, . . . , en−i+1).



Bruhat Decomposition

Denote Schubert variety

Y (λ) = Y (λ)◦ =
⋃

µ⊇λ Y (µ)◦.

The cohomology group and K-group can be computed to be

H∗(Gr(k , n)) = ⊕
λ⊆(n−k)k

Q · [Y (λ)].

K
(
Gr(k , n)

)
=

⊕
λ⊆(n−k)k

Q · [OY (λ)]



Chern Classes

Let V be the tautological bundle over Gr(k , n). We denote

cr = cr (V∨) = the r -th equivariant Chern classes of V∨.

It is known that

H∗(Gr(k , n)) = Q[c1, . . . , ck ]
/
some ideal.

K
(
Gr(k , n)

)
= Q[c1, . . . , ck ]

/
some ideal.



Geometry of cohomology

Roughly speaking cohomology

H•(X ) =
⊕

Y closed ⊆X

Q · [Y ]

/
homotopy

equivalence

with product the transversal
intersection

[Y1] · [Y2] = [Y1 ⋔ Y2].

Over Gr(k , n), we have Schubert
class

[Y (λ)] ∈ H2ℓ(λ)(Gr(k , n)).



Example: Gr(1, 2) = P1

We have

Y (□) = the point ∞,

Y (∅) = the entire P1.

The intersection

⋔ pt P1

pt ∅ pt

P1 pt P1

The cohomology

H∗(P1) = Q[x ]/(x2)

where x = [Y (□)].



Classical Chevalley Formula

Theorem (Chevalley Formula)

c1(V∨) · [Y (λ)] =
∑

µ=λ+□

[Y (µ)].

Example:

7−→ + +



Classical Pieri Rule

Let us denote Schur operators

[i]→ [Y (λ)] =

{
[Y (µ)], µ = λ+□ in the i-th row,

0, otherwise.

Theorem (Pieri Rule)

cr (V∨) · [Y (λ)] =
∑

1≤i1<···<ir≤k

[ir ]→ · · · [i1]→ [Y (λ)].



Example
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Geometry of K-theory

Roughly speaking, the K-theory

K (X ) =
⊕

F∈CohX
Q · [F ]

/
exact

sequences

with product the tensor product

[F1] · [F2] = [F1 ⊗F2].

Over Gr(k , n), we have structure
sheaves

[OY (λ)] ∈ K (Gr(k, n)).



Example: Gr(1, 2) = P1

We have

0→ O(−1)→ O → O∞ → 0.

Thus [O∞] = 1−O(−1).

The K-theory

K (P1) = Q[x ]/(x2)

where x = 1−O(−1) = [OY (□)].



K-theory Chevalley Formula

Theorem (Lenart [1])

c1(V∨) · [OY (λ)] =
∑

µ=λ+

[OY (µ)].

Example:

7−→ + + +



K-theory Pieri Rule

Let us denote Schur operators

[i]→ [OY (λ)] = [OY (µ)]

where µ = λ+ a vertical strip with its tail at the i-th row.

Theorem (Lenart [1])

cr (V∨) · [OY (λ)] =
∑

1≤i1<···<ir≤k

[ir ]→ · · · [i1]→ [OY (λ)].



Example
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Constructible Functions

Consider

Fun(X ) = {constructible functions over X}
= span(1A : A ⊆ X closed).

For any proper map f : X → Y , we
have a push-forward

f∗ : Fun(X )→ Fun(Y )

defined such that

(f∗(1A))(y) = χc(Ay )

the Euler characteristic of fibre Ay .



CSM classes

By MacPherson [2], there is a natural transform (wrt
push-forward) called Chern–Schwartz–MacPherson classes

cSM : Fun(−)→ H•(−),

such that when X is smooth

cSM(X ) = total Chern class of the tangent bundle of X .

Over Gr(k , n), we have CSM classes

cSM(Y (λ)◦) := cSM(1Y (λ)◦) ∈ H∗(Gr(k , n)).



Example: Gr(1, 2) = P1

Recall

Y (□)◦ = the point ∞,

Y (∅)◦ = P1 \ {∞}.

So by definition,

cSM(Y (□)◦) = [Y (□)] = x .

Since TP1 = O(2), we have

total Chern class= 1 + 2x

cSM(Y (□)◦)= x
cSM(Y (∅)◦)= 1 + x



CSM Chevalley formula

Theorem (Aluffi, Mihalcea, Schürmann and Su [3])

c1(V∨) · cSM(Y (λ)◦) =
∑

µ=λ+

cSM(Y (µ)◦).

Example:

7−→ + + +

+ + + +

+ + + +



CSM Pieri Rule

Let us denote ribbon Schubert operators

[i|→ cSM(Y (λ)◦) =
∑
µ

cSM(Y (µ)◦)

where the sum over µ = λ+ a ribbon strip with its tail at the i-th
row.

Theorem (Fan, Guo and Xiong [4])

cr (V∨) ·cSM(Y (λ)◦) =
∑

1≤i1<···<ir≤k

[ir |→ · · · [i1|→ cSM(Y (λ)◦).



Example
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Grothendieck group

Consider the Grothendieck group of varieties

G(X ) =
⊕

variety Z→X

Z · [Z → X ]

/
[U→X ]+[Z\U→X ]=[Z→X ].

For any proper map f : X → Y , we
have a push-forward

f∗ : G(X )→ G(Y )

with

f∗[Z → X ] = [Z → X → Y ].



Motivic Chern classes

By Brasselet, Schürmann and Yokura [5], there is a natural
transform (wrt push-forward) called motivic Chern classes

MCy : G(−)→ K (−)[y ],

such that when X is smooth,

MCy (X ) = λ-class =
dimX∑
k=1

yk [ΛkT ∨
X ].

Over Gr(k , n), we have motivic Chern classes

MCy (Y (λ)◦) := MCy ([Y (λ)◦ → Gr(k , n)]) ∈ K (Gr(k, n)).



Example: Gr(1, 2) = P1

Similarly,

MCy (Y (□)◦) = [OY (□)] = x .

Recall that x = 1−O(−1).

Since TP1 = O(2), we have

λ-class= 1 + yO(−2)
= (1 + y)− 2yx

MCy (Y (∅)◦)= (1 + y)− (2y + 1)x
MCy (Y (□)◦)= x

∈ K (Gr(1, 2))



MC Chevalley formula

Theorem (Fan, Guo, Su and Xiong)

c1(V∨)·MCy (Y (λ)◦) = (1+y)
∑

µ=λ+

(−y)wd(µ/λ)−1MCy (Y (µ)◦).

Example:

7−→ (1 + y)

(
+ − y + y2

+ − y + y2 +

−y + y2 − y3 + y4

)



MC Pieri Rule

Let us denote ribbon Schubert operators

[i|→ MCy (Y (λ)◦) = (1 + y)
∑
µ

(−y)wd(µ/λ)−1MCy (Y (µ)◦)

where the sum over µ = λ+ a ribbon strip with its tail at the i-th
row.

Theorem (Fan, Guo, Su and Xiong)

cr (V∨)·MCy (Y (λ)◦) =
∑

1≤i1<···<ir≤k

[ir |→ · · · [i1|→ MCy (Y (λ)◦).



Summary

−(1 + y)y



Affine Hecke algebra

Our approach is by introducing a version of affine Hecke algebra of
three parameters

T 2
i = −(p − q)Ti + pq

TiTj = TjTi , |i − j | > 1,

TiTi+1Ti = Ti+1TiTi+1,

xixj = xjxi ,

Tixj = xjTi , j ̸= i , i + 1,

Tixi = xi+1Ti + (ℏ− (p − q)xi ),

Tixi+1 = xiTi − (ℏ− (p − q)xi ).



Rôles of p, q, ℏ
It turns out that p, q, ℏ control the following ribbon statistics

p : height− 1, q : width− 1, ℏ : number of ribbons.

We have the following table

classes (p, q, ℏ) Pieri rule

[Y (λ)] (0, 0, 1) adding boxes □

[OY (λ)] (1, 0, 1) adding vertical strips

cSM(Y (λ)◦) (1, 1, 1) adding ribbons

MCy (Y (λ)◦) (1,−y , 1 + y) adding ribbons and counting width



Dual Basis

In all four cases, we have another choice of basis

Theory

basis [Y (λ)] [I∂Y (λ)] cSM(Y (λ)◦) MCy (Y (λ)◦)

opposite
dual basis

[Y (λ)] [OY (λ)] sSM(Y (λ)◦) SMCy (Y (λ)◦)

Theorem (Fan, Guo, Su and Xiong)

The opposite dual basis has the same Pieri rule as basis.



Discussion of the proof

A priori, the Pieri rule for the opposite dual basis is given by |i],
the adjoint operator on the 180◦ rotated complement.

[i| . . . with its tail
at the i-th row . . .

←→ |i] . . . with its head
at the i-th row . . .

But they are equivalent:

v.s.



Equivariant version

All the basis are defined in equivariant cohomology/K-theory.

Theorem (Fan, Guo, Su and Xiong)

The equivariant classes

[Y (λ)], [I∂Y (λ)], cSM(Y (λ)◦), MCy (Y (λ)◦)

satisfy the head-valued Pieri rule, i.e. |i •] or equivalently [i •|.

Theorem (Fan, Guo, Su and Xiong)

The equivariant classes

[Y (λ)], [OY (λ)], sSM(Y (λ)◦), SMCy (Y (λ)◦)

satisfy the tail-valued Pieri rule, i.e. •|i] or equivalently •[i|.



|2•]→ = t3 · + (ℏ− (p − q)t4) · 2• + (ℏ− (p − q)t5) · 2•

+ (ℏ− (p − q)t4)pq · 2• + (ℏ− (p − q)t5)pq
2 · 2• ,

•|2]→ = t3 · + (ℏ− (p − q)t3) · •2 + (ℏ− (p − q)t3) · • 2

+ (ℏ− (p − q)t1)pq · 2
•

+ (ℏ− (p − q)t1)pq
2 · 2

•
,

[2•|→ = t3 · + (ℏ− (p − q)t4) · 2• + (ℏ− (p − q)t5) · 2 •

+ (ℏ− (p − q)t5)q · 2 • + (ℏ− (p − q)t7)pq
2 ·

•
2 ,

•[2|→ = t3 · + (ℏ− (p − q)t3) · •2 + (ℏ− (p − q)t3) · •2

+ (ℏ− (p − q)t3)q · •2 + (ℏ− (p − q)t3)pq
2 · •2 .
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Application A

There is a classic relation between ideal sheaves and structure
sheaves over Grassmannian.

Theorem (Buch [6], see also [7, Prop. 4.2])

(1− [OY (□)]) · [OY (λ)] = [I∂Y (λ)].

This can be generalized to equivariant K-theory.

(1− [OY (□)]) · [OY (λ)]

1− [OY (□)]|λ
= [I∂Y (λ)] ∈ KT (Gr(k , n)).



Relation between MC and SMC

Using our Pieri rule, we can prove the following analogy for MC
and SMC classes.

Theorem (Fan, Guo, Su and Xiong)

λy (T
∨
Gr(k,n)) · (1− [OY (□)]) · SMCy (Y (λ)◦) = MCy (Y (λ)◦).

This can be generalized to equivariant K-theory.

λy (T
∨
Gr(k,n)) ·

(1− [OY (□)]) · SMCy (Y (λ)◦)

1− [OY (□)]|λ
= MCy (Y (λ)◦).

If we set y = 0, we will recover the result in the previous page.



Discussion of the proof

The proof is by one sentence:

both sides have the same Pieri rule and
they agree after certain specialization.

Precisely:

▶ the factor
1− [OY (□)]|λ

intertwines •[i| and [i •|;

▶ the factor rest gives normalization by looking at localization.



Example: Gr(1, 2) = P1

Recall
K (P1) = Q[x ]/(x2), x = 1− [O(−1)].

We have

1 +
y

1 + y
x SMCy (Y (∅)◦)

(1−x)
(
(1+y)−2yx

)
  

ee

dual basis

%%

MCy (Y (∅)◦)
99

yy

(1 + y)− (2y + 1)x

1

1 + y
x SMCy (Y (□)◦)

(1−x)
(
(1+y)−2yx

)>>
MCy (Y (□)◦) x



Application B

Recall the stable grothendieck polynomial is defined using
set-valued tableaux:

G̃λ =
∑

T∈SVT(λ)

xT , e.g.

1 123 35 6

234 46

5

{
filled by nonempty sets
strictly increasing in column
weakly increasing in row

Theorem (Buch [6])

(−1)|λ|G̃λ(−x1, · · · ,−xk , 0, . . .) = [OY (λ)] ∈ K (Gr(k , n)).



Dualizing Sheaves

In Lam and Pylyavskyy [8], the omega involution of G̃λ was
studied. It is given by a sum over weak set-valued tableaux:

Jλ =
∑

T∈WSVT(λ)

xT , e.g.

11 334 55 6

12 4

223

{
filled by nonempty multi-sets
strictly increasing in row
weakly increasing in column

Theorem (Fan, Guo, Su and Xiong)(
(1− G□)

nJλ′
)
(x1, . . . , xk , 0, . . .) = [ωY (λ)] ∈ K (Gr(k, n))

where ωY (λ) is the dualizing sheaf of Y (λ).



Discussion of the proof

By [9],

MCy (Y (λ)◦) = ydim[ωY (λ)] + (lower y -degree).

In the Pieri rule of motivic Chern classes, only the horizontal strip
contributes the highest y -degree. Thus

Pieri rule of [ωY (λ)] = adding horizontal strips .

Compare:

Pieri rule of [OY (λ)] = adding vertical strips .

The omega involution switches two kind of strips.



Example: Gr(1, 2) = P1

From the (weak) set-tableaux model, G̃□ = J□ = 1, and

G̃□ =
∑
A

xA = −1 +
∞∏
i=1

(1 + xi ), A
nonempty sets A
of positive integers,

J□ =
∑
B

xB = −1 +
∞∏
i=1

1

1− xi
, B

nonempty multisets B
of positive integers.

Thus for P1

(−1)0G̃∅(−x , 0, · · · ) = 1 = [OY (∅)],

(−1)1G̃□(−x , 0, · · · ) = x = [OY (□)],(
(1− G□)

2 · J∅
)
(x , 0, . . .) = 1− 2x = [ωY (∅)],(

(1− G□)
2 · J□

)
(x , 0, . . .) = x = [ωY (□)].



Bonus

A fast algorithm for computing the Hodge diamond of the
smooth Plücker hyperplane section of Grassmannian.

Note that

hpq(X ) = dimHpq(X ) = dimHq(X ,Ωp
X ).

As a result, by definition,

χ(X , λy (X )) =
∑
p,q

yp(−1)qhpq(X ) := χy (X ).



Motivic Chern class of smooth divisor

For a hypersurface Y ⊂ X , by Lefschetz theorem, only the middle
dimension of Hodge diamond of Y cannot directly read from the
Hodge diamond of X . To determine the middle dimension, it
suffices to compute χy (Y ). We have

MCy (Y ) = λy (X ) · 1−O(−Y )

1 + yO(−Y )
∈ K (X )[[y ]].

Thus we can compute the

χy (Y ) = χ

(
X , λy (X )

1−O(−Y )

1 + yO(−Y )

)
.



Algorithm

Now let us consider a smooth Plücker hyperplane Y ⊂ Gr(k, n).
Let us write

λy (Gr(k , n)) =
∑

λ⊆(n−k)k

MCy (Y (λ)◦).

Using our Pieri rule, we can determine the expansion

λy (Gr(k , n))
1− det

1 + y det
=

∑
λ⊆(n−k)k

?MCy (Y (λ)◦).

Then we can compute χy (Y ).



Example: k = 3

Y ⊂ Gr(3, 5) Gr(3, 6) Gr(3, 7) Gr(3, 8) Gr(3, 9) Gr(3, 10)

♢
1
1
2
2
1
1

1
1
2
3
4
3
2
1
1

1
1
2
3
4
4
4
4
3
2
1
1

1
1
2
3
4
5
6
7
6
5
4
3
2
1
1

1
1
2
3
4
5
7
7
82 28
7
7
5
4
3
2
1
1

1
1
2
3
4
5
7
8
9
10

1 30 1
10
9
8
7
5
4
3
2
1
1

The case of Gr(3, 10) was studied in [10, Theorem 2.2] using
Griffiths’ description of the vanishing cohomology.



Example: n = 12

middle dimension
Y ⊂ Gr(1, 12) 1

Y ⊂ Gr(2, 12) 0

Y ⊂ Gr(3, 12) 1 77 365 77 1

Y ⊂ Gr(4, 12) 1 351 21308 310168 1172951 1172951 310168 21308 351 1

Y ⊂ Gr(5, 12) 1 648 82225 3037969 37876409 169351908 278364056 169351908 37876409 3037969 82225 648 1

Y ⊂ Gr(6, 12) 1 780 121693 5729219 95625310 608266232 1524047370 1524047370 608266232 95625310 5729219 121693 780 1

Y ⊂ Gr(7, 12) 1 648 82225 3037969 37876409 169351908 278364056 169351908 37876409 3037969 82225 648 1

Y ⊂ Gr(8, 12) 1 351 21308 310168 1172951 1172951 310168 21308 351 1

Y ⊂ Gr(9, 12) 1 77 365 77 1

Y ⊂ Gr(10, 12) 0

Y ⊂ Gr(11, 12) 1



Thank You!
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P. Aluffi, L. Mihalcea, J. Schürmann and C. Su, From motivic
Chern classes of Schubert cells to their Hirzebruch and CSM
classes, arXiv:2212.12509.

Olivier Debarre, Claire Voisin. Hyper–Kähler fourfolds and
Grassmann geometry.


