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ADE CLASSIFICATIONS
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Simply-laced Dynkin diagrams

The following is the list of simply-laced Dynkin diagrams.
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ADE classifications

The ADE classification is a phenomenon in mathematics where certain
kinds of objects are classified by simply-laced Dynkin diagrams.

simple Lie algebras;
quivers of finite types;
finite subgroups in SU(2).

1images from irasutoya
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Simple Lie algebras

The picture illustrates Grothendieck’s vision
of a pinned reductive group: the body is a
maximal torus T , the wings are the opposite
Borel subgroups B , and the pins rigidify the
situation.

The corresponding Lie algebra is

A D E

sl2, sl3, . . . so3, so5, . . . e6, e7, e8

The Dynkin diagram records all the information.
2Blue Morpho butterfly. Credit: LPETTET/Digital Vision Vectors/Getty Images.

From Milne: Books — Algebraic Groups.
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Quivers of finite type

A quiver is of finite type if it has only finitely many isomorphism
classes of indecomposable representations.

Gabriel theorem gives an ADE classification of quivers of finite type.

For example,
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Finite Subgroups in SU(2)

There is an ADE classification of finite subgroups in SU(2).

A D E

cyclic groups dihedral groups A4, S4,A5

We represent the image under the two-to-one map SU(2) → SO(3), as
the group of symmetries.

3from wiki:cyclic groups, wiki:Hosohedron, wiki:Platonic solid
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HODGE DIAMONDS OF HYPERPLANES
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Hyperplanes in Grassmannians

Consider the Grassmannian variety

X = Gr(k , n) = {subspaces V ≤ Cn : dimV = k}.

We have the Plücker embedding

Gr(k , n)
⊂−→ P(ΛkCn) = P(

n
k)−1.

Consider a smooth hyperplane

Y = X ∩ a generic hyperplane.

Question
When the cohomology H∗(Y ) is of Hodge–Tate type?
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Examples (I)

When k = 1, Gr(1, n) = Pn−1 is a projective space. So Y ⊂ Gr(1, n) is a
projective space of smaller dimension.

Note that Gr(2, 4) ⊂ P5 is a quadrics. So Y ⊂ Gr(2, 4) is a quadrics of
smaller dimension.

Generally, Y ⊂ Gr(2, 2n) is isomorphic to SG(2, 2n) a homogeneous
variety of Sp(2n).

As noticed by Semenov [Sem08], there is a torus action on Y ⊂ Gr(3, 6)
with discrete fixed points.

Semenov, N. Motivic decomposition of a compactification of a
Merkurjev-Suslin variety. J. Reine Angew. Math. 617 (2008),
153–167.
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Examples (II)

The Hodge diamond of Y ⊂ Gr(3, 10) was
computed by Debarre and Voisin [DV10].

...
20

· · · 0 1 30 1 0 · · ·
20...

More general, when n > 3k and k > 2, Bernardara, Fatighenti, Manivel
[BFM21] showed that Y ⊂ Gr(k , n) is not of Hodge–Tate type.

O. Debarre and C. Voisin, Hyper-Kähler fourfolds and Grassmann
geometry, J. Reine Angew. Math. 649 (2010), 63–87.

Nested varieties of K3 type. M. Bernardara, E. Fatighenti, L.
Manivel. Journal de l’École polytechnique - Mathématiques, Tome
8 (2021), pp. 733-778.
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Classification

Theorem (GLLX)
The cohomology H∗(Y ) is of Hodge–Tate type if and only if

Y ⊂ Gr(1, n) ≃ Gr(n − 1, n) where n ≥ 1;
Y ⊂ Gr(2, n) ≃ Gr(n − 2, n) where n ≥ 4;
Y ⊂ Gr(3, n) ≃ Gr(n − 3, n) where n = 6, 7, 8.

The result can be viewed as an ADE classification
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Example (k = 3)
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Try it online: cubicbear.github.io/PluckerHodge.html.
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Example (k = 4)
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EXPLANATIONS
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Finiteness of orbits

Let us consider the following well-known question.

Question
When ΛkCn has finite GLn-orbits?

The answer gives the same ADE classification.

Similar as the Gabriel theorem for quivers of finite type, we should
first do the dimension counting. Say, if it has finite many orbits, then it
is necessary to have

dimΛkCn =
(n
k

)
≤ n2 = dimGLn.

It is not hard to solve all possible (n, k).
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Example

When k = 1, there are only two orbits

Cn = {0} ∪ {nonzero vectors}.

When k = 2, there are ⌊n/2⌋ orbits

Λ2Cn = {0} ∪
{

anti-symmetric
forms of rank 2

}
∪
{

anti-symmetric
forms of rank 4

}
∪ · · · .

When k > 2,

(k , n) (3, 6) (3, 7) (3, 8) (3, 9) (4, 8)

dimΛkCn =
(n
k

)
20 35 56 84 70

dimGLn = n2 36 49 64 81 64
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Classification of trivectors

Can we classify the GLn-orbits of Λ3Cn?

In contrast to the classification of linear operators and bivectors, a
classification of trivectors depends essentially on the dimension n of
the base space. It is trivial for n ≤ 5 and was obtained for n = 6 by
Reichel in 1907, for n = 7 by Schouten in 1931, and for n = 8 by
Gurevich [8], [9] in 1935. In this paper we present a classification
of trivectors for n = 9. For larger n such a classification, if at all
possible, is significantly more complicated.

E. B. Vinberg and A. G. Elasvili, Classification of trivectors of a
nine-dimensional space, Trudy Sem. Vekt. Tenz. Analizu, M.G.U.
No. XVIII (1978), 197-233. [link]
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Graded Lie algebras

The classification of trivectors is closely related to graded Lie algebras.
They are very special nilpotent elements in g. We can decompose

sln+1
∼=

−1

V ∗ ⊕
0

gln ⊕
1

V

so2n ∼=
−1

Λ2V ∗ ⊕
0

gln ⊕
1

Λ2V

en ∼= · · · ⊕
−1

Λ3V ∗ ⊕
0

gln ⊕
1

Λ3V ⊕ · · ·
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Hessenberg varieties

After identifying Gr(k , n) = GLn/P , we can reformulate Y as the
generic fiber of

G ×P N

��

{(gP, τ) ∈ Gr(k , n)×ΛkCn : τ ∈ gN}

ΛkCn where N = ΛkCn ⊖ lowest weight space

This is also known as a (generalized) Hessenberg varieties,
introduced to study affine Springer fibers, see [Yun, §1.6.4].

Question
Does this provide a non-pure affine Springer fiber in type A?

Z. Yun. Lectures on Springer theories and orbital integrals.
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Affine Dynkin diagrams

Representation theorists would ask the appearance of affine Dynkin
diagrams. It turns out its analogy is the hyperplane of (co)adjoint
varieties, studied by Benedetti and Perrin [BP22].

For example, for an adjoint variety, the Plücker emebdding

G/P
⊂−→ P(g).

A generic hyperplane corresponds to a regular semisimple element in
g∗ ∼= g. In particular, Y ⊂ G/P admits a T -action, and Y T = (G/P)T ,
so H∗(Y ) is always of Hodge–Tate type.

Benedetti, V.; Perrin, N. Cohomology of hyperplane sections of
(co)adjoint varieties. arXiv:2207.02089.
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Cluster algebras

The same classification appears in cluster algebras. Precisely, there is
an ADE classification of

cluster algebra of C[Gr(k , n)] being of finite type.

See [Sco06].

Gr(1, n) Gr(2, n) Gr(3, 6) Gr(3, 7) Gr(3, 8)

Quiver ∅ An−3 D4 E6 E8

J. Scott, Grassmannians and cluster algebras, Proc. London Math.
Soc., 92 (2006), 345–380.
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PROVE VIA TABLEAUX COMBINATORICS
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How to compute the Hodge diamonds (I)

By hard Lefschetz theorem, if we know the Hodge diamond of X and
the y -characteristic

χy (Y ) =
∑
p≥0

ypχ(Y ,Ω
p
Y ) ∈ Z[y ],

then we are able to compute the Hodge diamond of Y . There are
several ways of doing it.

Using Riemann-Roch theorem (very slow);
Using Localization theorem (slow);
Using the Pieri formulas [FGSX24] (fast).

N. Fan, P. Guo, C. Su and R. Xiong, A Pieri type formula for motivic
Chern classes of Schubert cells in Grassmannians, arXiv:
math.CO/2402.04500, 2024.
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How to compute Hodge diamonds (II)

Griffiths’ theory [Voi, §6.1.2] provides a way of computing the Hodge
filtration of a hyperplane section assuming certain cohomology
vanishing.

The vanishing could be evaluated by Bott’s parabolic version of
Borel–Weil theorem [Bo57]. Luckily, over Grassmanian, there is a
combinatorial formula exists.

C. Voisin, Hodge theory and complex algebraic geometry. II, volume 77
of Cambridge Studies in Advanced Mathematics, Cambridge
University Press, Cambridge, 2003.

R. Bott, Homogeneous vector bundles, Ann Math. 66 (1957), 203–248.
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Tableaux combinatorics

Theorem (Snow)

For ℓ ≥ 0, we have

H j(Gr(k , n),Ωp(ℓ)) ̸= 0

if and only if

there exists λ ∈ Pk,n of p cells with no cell of
hook length ℓ such that j equals the number of
cells in λ of hook length larger than ℓ.

6 5 3 2 1

2 1

H2(X ,Ω7(4)) ̸= 0

7= number of cells
4= not a hook length
2= number of hook length > 4

D. Snow, Cohomology of twisted holomorphic forms on Grassmann
manifolds and quadric hypersurfaces, Math. Ann. 276.1 (1986):
159-176.
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Example

The key step is the compute the (dimX − 1)-th hypercohomology of

ΩdimX−n+1
X (1)

d→ · · · d→ ΩdimX−1
X (n − 1)

d→ KX (n) → 0.

Consider Gr(3, 9). The spectral sequences is

8 0 0 0
7 0 0 0
6 1 0
5 0 0 0
4 0 0 0
3 0 0 0
2 0 0 0
1 0 0 0
0 0 1

101112131415161718

8 7 5 4 2 1

5 4 2 1
2 1

H6(Gr(3, 9),Ω12(3)) ̸= 0

h9,8 = 2
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Example

Consider Gr(4, 8). The spectral sequences is

7 0 0 0 0
6 1 0 0
5 0 0 0 0
4 0 1 0
3 0 0 0 0
2 0 0 0 0
1 0 0 0 0
0 0 0 1

9 10111213141516

h8,7 = 3

7 5 3 1

5 3 1
3 1
1

H6(Gr(4, 8),Ω10(2)) ̸= 0

7 6 3 2

6 5 2 1

3 2
2 1

H4(Gr(4, 8),Ω12(4)) ̸= 0
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Precise statement

Actually, in the application of Griffiths’ argument, there is no other
exceptional non-vanishing for k ≥ 3 and n ≥ 2k .

Theorem (GLLX)
Assume Y ⊂ Gr(k , n) is not in the Hodge–Tate classification. When p < n,
the Hodge diamond hdimX−p,p−1(Y ) = 0 and

hdimX−n,n−1(Y ) =


2, Y ⊂ Gr(3, 9) ≃ Gr(6, 9),

3, Y ⊂ Gr(4, 8),

1, otherwise.

The condition for the case “otherwise” is called “N-Calabi–Yau”.
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