# An ADE type classification of

Hodge–Tate hyperplanes in Grassmannians [arXiv:2509.01101]

with Sergey Galkin, Naichung Conan Leung and Changzheng Li

#### Rui Xiong







$$\mathbb{D}_n: \mathsf{Gr}(2,n)$$
  $\mathbb{E}_n: \mathsf{Gr}(3,n)$ 

#### **ADE CLASSIFICATIONS**



# Simply-laced Dynkin diagrams

The following is the list of simply-laced Dynkin diagrams.



#### ADE classifications

The ADE classification is a phenomenon in mathematics where certain kinds of objects are classified by simply-laced Dynkin diagrams.

- simple Lie algebras;
- quivers of finite types;
- finite subgroups in SU(2).





<sup>&</sup>lt;sup>1</sup>images from irasutoya

# Simple Lie algebras



The picture illustrates Grothendieck's vision of a pinned reductive group: the body is a maximal torus T, the wings are the opposite Borel subgroups B, and the pins rigidify the situation.

#### The corresponding Lie algebra is

| A                                        | $\mathbb{D}$ | $\mathbb{E}$                                   |
|------------------------------------------|--------------|------------------------------------------------|
| $\mathfrak{sl}_2,\mathfrak{sl}_3,\ldots$ | \$03,\$05,   | $\mathfrak{e}_6,\mathfrak{e}_7,\mathfrak{e}_8$ |

The Dynkin diagram records all the information.

<sup>&</sup>lt;sup>2</sup>Blue Morpho butterfly. Credit: LPETTET/Digital Vision Vectors/Getty Images. From Milne: Books — Algebraic Groups.

# Quivers of finite type

A quiver is of finite type if it has only finitely many isomorphism classes of indecomposable representations.

$$\Longrightarrow$$

Gabriel theorem gives an ADE classification of quivers of finite type.



For example,



# Finite Subgroups in SU(2)

There is an ADE classification of finite subgroups in SU(2).



We represent the image under the two-to-one map  $SU(2) \rightarrow SO(3)$ , as the group of symmetries.

Rui Xiong ADE 7/30

<sup>&</sup>lt;sup>3</sup>from wiki:cyclic\_groups, wiki:Hosohedron, wiki:Platonic\_solid ( ) ( ) ( ) ( ) ( )

#### HODGE DIAMONDS OF HYPERPLANES



# Hyperplanes in Grassmannians

Consider the Grassmannian variety

$$X = Gr(k, n) = \{ \text{subspaces } V \leq \mathbb{C}^n : \dim V = k \}.$$

We have the Plücker embedding

$$\operatorname{Gr}(k,n) \stackrel{\subset}{\longrightarrow} \mathbb{P}(\Lambda^k \mathbb{C}^n) = \mathbb{P}^{\binom{n}{k}-1}.$$

Consider a smooth hyperplane

 $Y = X \cap a$  generic hyperplane.

#### Question

When the cohomology  $H^*(Y)$  is of Hodge–Tate type?



Rui Xiong ADE 9 / 30

### Examples (I)

When k = 1,  $Gr(1, n) = \mathbb{P}^{n-1}$  is a projective space. So  $Y \subset Gr(1, n)$  is a projective space of smaller dimension.

Note that  $Gr(2,4) \subset \mathbb{P}^5$  is a quadrics. So  $Y \subset Gr(2,4)$  is a quadrics of smaller dimension.

$$\longrightarrow \longrightarrow \longrightarrow \longrightarrow$$

Generally,  $Y \subset Gr(2,2n)$  is isomorphic to SG(2,2n) a homogeneous variety of Sp(2n).

$$\Longrightarrow \longrightarrow \Longrightarrow \Longrightarrow$$

As noticed by Semenov [Sem08], there is a torus action on  $Y \subset Gr(3,6)$  with discrete fixed points.

- Semenov, N. Motivic decomposition of a compactification of a Merkurjev-Suslin variety. J. Reine Angew. Math. 617 (2008), 153–167.

# Examples (II)

The Hodge diamond of  $Y \subset Gr(3, 10)$  was computed by Debarre and Voisin [DV10].





More general, when n > 3k and k > 2, Bernardara, Fatighenti, Manivel [BFM21] showed that  $Y \subset Gr(k, n)$  is not of Hodge–Tate type.

- O. Debarre and C. Voisin, *Hyper-Kähler fourfolds and Grassmann geometry*, J. Reine Angew. Math. 649 (2010), 63–87.
- Nested varieties of K3 type. M. Bernardara, E. Fatighenti, L. Manivel. Journal de l'École polytechnique Mathématiques, Tome 8 (2021), pp. 733-778.

Rui Xiong ADE 11 / 30

#### Classification

#### Theorem (GLLX)

The cohomology  $H^*(Y)$  is of Hodge–Tate type if and only if

- $Y \subset Gr(1, n) \simeq Gr(n-1, n)$  where  $n \ge 1$ ;
- $Y \subset Gr(2, n) \simeq Gr(n-2, n)$  where  $n \ge 4$ ;
- $Y \subset Gr(3, n) \simeq Gr(n-3, n)$  where n = 6, 7, 8.

The result can be viewed as an ADE classification

It reflects all exceptional isomorphisms.

# Example (k = 3)

Try it online: cubicbear.github.io/PluckerHodge.html.

Rui Xiong

13/30

ADE

### Example (k = 4)

Rui Xiong

ADE

### **EXPLANATIONS**





#### Finiteness of orbits

Let us consider the following well-known question.

#### Question

When  $\Lambda^k \mathbb{C}^n$  has finite  $GL_n$ -orbits?

The answer gives the same ADE classification.

$$\Longrightarrow \longrightarrow \Longrightarrow \Longrightarrow$$

Similar as the Gabriel theorem for quivers of finite type, we should first do the dimension counting. Say, if it has finite many orbits, then it is necessary to have

$$\dim \Lambda^k \mathbb{C}^n = \binom{n}{k} \le n^2 = \dim \mathsf{GL}_n.$$

It is not hard to solve all possible (n, k).



16/30

Rui Xiong ADE

# Example

When k = 1, there are only two orbits

$$\mathbb{C}^n = \{0\} \cup \{\text{nonzero vectors}\}.$$

When k = 2, there are  $\lfloor n/2 \rfloor$  orbits

$$\Lambda^2\mathbb{C}^n = \{0\} \cup \left\{ \begin{array}{l} \text{anti-symmetric} \\ \text{forms of rank 2} \end{array} \right\} \cup \left\{ \begin{array}{l} \text{anti-symmetric} \\ \text{forms of rank 4} \end{array} \right\} \cup \cdots.$$



When k > 2,

| (k, n)                                       | (3,6) | (3,7) | (3,8) | (3,9) | (4,8) |
|----------------------------------------------|-------|-------|-------|-------|-------|
| $\dim \Lambda^k \mathbb{C}^n = \binom{n}{k}$ | 20    | 35    | 56    | 84    | 70    |
| $\overline{\dim GL_n = n^2}$                 | 36    | 49    | 64    | 81    | 64    |

#### Classification of trivectors

Can we classify the  $GL_n$ -orbits of  $\Lambda^3\mathbb{C}^n$ ?



In contrast to the classification of linear operators and bivectors, a classification of trivectors depends essentially on the dimension n of the base space. It is trivial for  $n \le 5$  and was obtained for n = 6 by Reichel in 1907, for n = 7 by Schouten in 1931, and for n = 8 by Gurevich [8], [9] in 1935. In this paper we present a classification of trivectors for n = 9. For larger n such a classification, if at all possible, is significantly more complicated.



E. B. Vinberg and A. G. Elasvili, Classification of trivectors of a nine-dimensional space, Trudy Sem. Vekt. Tenz. Analizu, M.G.U. No. XVIII (1978), 197-233. [link]

### Graded Lie algebras

The classification of trivectors is closely related to graded Lie algebras. They are very special nilpotent elements in  $\mathfrak g$ . We can decompose

$$\mathfrak{sl}_{n+1} \cong V^* \oplus \mathfrak{gl}_n \oplus V$$

$$\mathfrak{so}_{2n} \cong \Lambda^{2}V^* \oplus \mathfrak{gl}_n \oplus \Lambda^{2}V$$

$$\mathfrak{e}_n \cong \cdots \oplus \Lambda^{3}V^* \oplus \mathfrak{gl}_n \oplus \Lambda^{3}V \oplus \cdots$$

# Hessenberg varieties

After identifying  $Gr(k, n) = GL_n/P$ , we can reformulate Y as the generic fiber of

$$G \times_{P} N = \{(gP, \tau) \in Gr(k, n) \times \Lambda^{k}\mathbb{C}^{n} : \tau \in gN\}$$

$$\downarrow$$

$$\Lambda^{k}\mathbb{C}^{n} \qquad \text{where } N = \Lambda^{k}\mathbb{C}^{n} \ominus \text{lowest weight space}$$

This is also known as a (generalized) **Hessenberg varieties**, introduced to study affine Springer fibers, see [Yun, §1.6.4].

#### Question

Does this provide a non-pure affine Springer fiber in type A?



Z. Yun. Lectures on Springer theories and orbital integrals.

Rui Xiong ADE 20 / 30

# Affine Dynkin diagrams

Representation theorists would ask the appearance of affine Dynkin diagrams. It turns out its analogy is the hyperplane of (co)adjoint varieties, studied by Benedetti and Perrin [BP22].

For example, for an adjoint variety, the Plücker emebdding

$$G/P \stackrel{\subset}{\longrightarrow} \mathbb{P}(\mathfrak{g}).$$

A generic hyperplane corresponds to a regular semisimple element in  $\mathfrak{g}^* \cong \mathfrak{g}$ . In particular,  $Y \subset G/P$  admits a T-action, and  $Y^T = (G/P)^T$ , so  $H^*(Y)$  is always of Hodge–Tate type.



Benedetti, V.; Perrin, N. Cohomology of hyperplane sections of (co)adjoint varieties. *arXiv*:2207.02089.

21/30

Rui Xiong ADE

# Cluster algebras

The same classification appears in cluster algebras. Precisely, there is an ADE classification of

cluster algebra of  $\mathbb{C}[Gr(k, n)]$  being of finite type.

See [Sco06].

|        | Gr(1,n) | Gr(2, n)           | Gr(3,6)        | Gr(3,7)        | Gr(3,8)        |
|--------|---------|--------------------|----------------|----------------|----------------|
| Quiver | Ø       | $\mathbb{A}_{n-3}$ | $\mathbb{D}_4$ | $\mathbb{E}_6$ | $\mathbb{E}_8$ |



J. Scott, Grassmannians and cluster algebras, Proc. London Math. Soc., 92 (2006), 345–380.

### PROVE VIA TABLEAUX COMBINATORICS



# How to compute the Hodge diamonds (I)

By hard Lefschetz theorem, if we know the Hodge diamond of *X* and the *y*-characteristic

$$\chi_{y}(Y) = \sum_{p\geq 0} y^{p} \chi(Y, \Omega_{Y}^{p}) \in \mathbb{Z}[y],$$

then we are able to compute the Hodge diamond of *Y*. There are several ways of doing it.

- Using Riemann-Roch theorem (very slow);
- Using Localization theorem (slow);
- Using the Pieri formulas [FGSX24] (fast).
- N. Fan, P. Guo, C. Su and R. Xiong, A Pieri type formula for motivic Chern classes of Schubert cells in Grassmannians, arXiv:
  - math.CO/2402.04500, 2024.



Rui Xiong ADE 24 / 30

# How to compute Hodge diamonds (II)

Griffiths' theory [Voi, §6.1.2] provides a way of computing the Hodge filtration of a hyperplane section assuming certain cohomology vanishing.



The vanishing could be evaluated by Bott's parabolic version of Borel–Weil theorem [Bo57]. Luckily, over Grassmanian, there is a combinatorial formula exists.

- - C. Voisin, *Hodge theory and complex algebraic geometry. II*, volume 77 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2003.
- R. Bott, Homogeneous vector bundles, Ann Math. 66 (1957), 203–248.

#### Tableaux combinatorics

#### Theorem (Snow)

For  $\ell \geq 0$ , we have

$$H^{j}(Gr(k,n),\Omega^{p}(\ell))\neq 0$$

if and only if

there exists  $\lambda \in \mathcal{P}_{k,n}$  of p cells with no cell of hook length  $\ell$  such that j equals the number of cells in  $\lambda$  of hook length larger than  $\ell$ .

$$H^2(X,\Omega^7(4))\neq 0$$

7 = number of cells

4 =not a hook length

2 = number of hook length > 4



D. Snow, Cohomology of twisted holomorphic forms on Grassmann manifolds and quadric hypersurfaces, Math. Ann. 276.1 (1986): 159-176.

### Example

The key step is the compute the  $(\dim X - 1)$ -th hypercohomology of

$$\Omega_X^{\dim X-n+1}(1) \xrightarrow{d} \cdots \xrightarrow{d} \Omega_X^{\dim X-1}(n-1) \xrightarrow{d} \mathcal{K}_X(n) \to 0.$$



Consider Gr(3, 9). The spectral sequences is

| 8 | 0  |    | 0  |    |    |    |    |    | 0  |
|---|----|----|----|----|----|----|----|----|----|
| 7 |    | 0  | 0  |    |    |    |    |    | 0  |
| 6 |    |    | 1  |    |    |    |    |    | 0  |
| 5 |    |    | 0  | 0  |    |    |    |    | 0  |
| 4 |    |    | 0  |    | 0  |    |    |    | 0  |
| 3 |    |    | 0  |    |    | 0  |    |    | 0  |
| 2 |    |    | 0  |    |    |    | 0  |    | 0  |
| 1 |    |    | 0  |    |    |    |    | 0  | 0  |
| 0 |    |    | 0  |    |    |    |    |    | 1  |
|   | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

| 8 | 7 | 5 | 4 | 2 | 1 |
|---|---|---|---|---|---|
| 5 | 4 | 2 | 1 |   |   |
| 2 | 1 |   |   | , |   |

$$H^6(Gr(3,9),\Omega^{12}(3)) \neq 0$$

$$h^{9,8}=2$$

Rui Xiong ADE 27 / 30

# Example

#### Consider Gr(4, 8). The spectral sequences is

| 7 | 0 | 0  |    | 0  |    |    |    | 0  |
|---|---|----|----|----|----|----|----|----|
| 6 |   | 1  |    | 0  |    |    |    | 0  |
| 5 |   | 0  | 0  | 0  |    |    |    | 0  |
| 4 |   | 0  |    | 1  |    |    |    | 0  |
| 3 |   | 0  |    | 0  | 0  |    |    | 0  |
| 2 |   | 0  |    | 0  |    | 0  |    | 0  |
| 1 |   | 0  |    | 0  |    |    | 0  | 0  |
| 0 |   | 0  |    | 0  |    |    |    | 1  |
|   | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

$$h^{8,7}=3$$

| 7 | 5 | 3 | 1 |
|---|---|---|---|
| 5 | 3 | 1 |   |
| 3 | 1 |   |   |
| 1 |   | , |   |

$$\textit{H}^{6}(\text{Gr}(4,8),\Omega^{10}(2)) \neq 0$$

| 7 | 6 | 3 | 2 |
|---|---|---|---|
| 6 | 5 | 2 | 1 |
| 3 | 2 |   |   |
| 2 | 1 |   |   |

$$H^4(\mathsf{Gr}(4,8),\Omega^{12}(4)) \neq 0$$

Rui Xiong ADE 28 / 30

#### Precise statement

Actually, in the application of Griffiths' argument, there is no other exceptional non-vanishing for  $k \ge 3$  and  $n \ge 2k$ .

#### Theorem (GLLX)

Assume  $Y \subset Gr(k,n)$  is not in the Hodge–Tate classification. When p < n, the Hodge diamond  $h^{\dim X - p, p-1}(Y) = 0$  and

$$h^{\dim X - n, n-1}(Y) = \begin{cases} 2, & Y \subset \operatorname{Gr}(3, 9) \simeq \operatorname{Gr}(6, 9), \\ 3, & Y \subset \operatorname{Gr}(4, 8), \\ 1, & otherwise. \end{cases}$$

The condition for the case "otherwise" is called "N-Calabi-Yau".

Rui Xiong ADE 29 / 30

### **THANKS**

